7.6 Planeettojen sisärakenne

Koko: px
Aloita esitys sivulta:

Download "7.6 Planeettojen sisärakenne"

Transkriptio

1 7.6 Planeettojen sisärakenne Luotaimien ratoihin kohdistuvat häiriöt planeetan gravitaatiokenttä Gravitaatiokenttä riippuu kappaleen muodosto ja sisäisestä massakajaumasta 1000 km ja suuremmat kappaleet: gravitaatio >> sisäinen lujuus Hydrostaattisessa tasapainossa oleva kappale: pinta efektiivisen potentiaalin tasa-arvopinta pyöriminen lyhimmän akselin ympäri pyörivä pyörähdysellipsoidi Alle 1000 km kokoiset kappaleet: sisäinen lujuus merkittävä, voi olla epämääräisen muotoinen Kappaleen pyörimisnopeudella yläraja: Oletetaan että sisäistä lujuutta ei tarvitse ottaa huomioon Asetetaan kappaleen pinnalla gravitaatio = keskipakoisvoima Kappaleen massa M, säde R, m pinnalla oleva testikappale GMm/R 2 = mv 2 /R pinnan pyörimisnopeus v = 2πR/P Periodi P = 2π p R 3 /GM Jotain tuttua? Miksi? Oletetaan että kappale pallomainen, keskitiheys ρ jolloin M = 4π/3ρR 3 P min = p 3π/Gρ mikäli periodi lyhyempi, testimassa irtoaa Sijoitetaan kiven tiheys ρ = 2700 kg/m 3 minimipyörähdysaika n. 2h Tähtitieteen perusteet, Luento 10,

2 Maankaltaisten planeettojen sisärakenne Maanjäristysallot: taittuvat rajapinnoissa etenemisnopeus riippuu väliaineen tiheydestä ja elastisuudesta pitkittäiset aallot (P): etenevät sekä kiinteässä aineessa että nesteessä poikittaiset aallot (S): etenevät vain kiinteässä aineessa Sula ydin ja kiinteä vaippa Maan ydin: lämpötila k tiheys kg/m 3 Mistä lämpö peräisin? törmäyksistä planeetan synnyn ajalta radioaktiivisten aineiden hajoaminen painovoiman aiheuttama kokoonpuristuminen Differentioituminen: Alkuvaiheessa maa ollut kokonaan sula raskaan aineen vajoaminen ytimeen Fe-Ni ydin (suhteellisesti suurin Merkuriuksella) silikaateista muodostunut vaippa ohut kuori (kymmeniä kilometrejä) Maapallo ainoa planeetta jossa mannerlaattojen liikkumista Vaipassa tapahtuvat konvektiovirtaukset (muutama sata km) (= laattatektoniikka) Tähtitieteen perusteet, Luento 10,

3 Jättiläisplaneettojen sisärakenne Alhainen tiheys etupäässä vetyä/heliumia Jupiter ja Saturnus: Pieni silikaattiydin, ympärillä jäätä Metallisen vedyn kerros (suuri paine molekyylit hajoaa atomeiksi) Lähellä pintaa nestemäistä H 2 Ohut kaasumainen atmosfääri Uranus/Neptunus: Kiviydin pieni, metallisen vedyn kerros olematon Jättiläisplaneetat: ei kiinteää kuorta lämpö pääsee vapaasti pinnalle Säteilevät huomattavasti enemmän kuin mitä vastaanottavat Auringon säteilyä (Saturnus lähes 3-kertaisesti) Tähtitieteen perusteet, Luento 10,

4 Planeettojen pinnanmuodot Kiinteäpintaiset kappaleet: Mannerliikunta (tektoniikka) - Maapallo vulkanismi ( Jupiterin kuu Io) ilmaston eroosio meteoroidi-pommitus ilmakehättömät kappaleet pinnan iän määritys Tähtitieteen perusteet, Luento 10,

5 7.7 Planeettojen magneettikentät Dynamo-ilmiö synnyttää Dipoli-kentän: sähkövirrat, pyöriminen Aurinko: sähköäjohtavan plasman virtaukset Maapallo, Merkurius : sula Fe-Ni ydin napaisuus vaihdellut, viimeksi v sitten Jupiter/Saturnus: metallisen vedyn kerros Uranus/Neptunus: ohut vesi/ammoniakki nestekerros Kuu? ei dipoli-kenttää jäännösmagnetismi Tähtitieteen perusteet, Luento 10,

6 Magnetosfäärit Aurinkotuuli = Auringosta tulevien varattujen hiukkasten (elektroneja, protoneja) virta esim. Maan kohdalla v=500 km/sek, 10 hiukkasta/cm 2 Kohtaa planeetan magneettikentän iskurintama (bow shock) n. 10 säteen päässä Magnetopaussin sisäpuolinen alue = magnetosfääri (varattujen hiukkasten liike planeetan magneettikentän kontrolloimaa) Magnetosfäärin pyrstö (satoja planeetan säteitä) Van Allenin vyöhykeet 1958: varattujen hiukkasten säteilyvyöt Revontulet: Auringon purkaukset varatut hiukkaset tunkeutuvat magnetosfäärin sisään magneettisten napojen kohdalla (Myös Jupiter/Saturnus) Tähtitieteen perusteet, Luento 10,

7 7.8 Atmosfäärit Maankaltaiset planeetat (Merkuriuksella lähes olematon) Jättiläisplaneetat: uloin kaasumainen kerros Saturnuksen kuu Titan, kääpiöplaneetta Pluto (metaania) Rakenne: planeetan painovoima, lämpötila, kemiallinen koostumus Voidaan johtaa hydrostaattisesta tasapainosta: dp = gρdh korkeudella h kerros jonka paksuus dh, paine P, tiheys ρ, painovoiman kiihtyvyys g Approksimoidaan: g = vakio (eli ilmakehän paksuus << Planeetan säde) Ideaalikaasun tilanyhtälö P V = nkt tiheys ρ = µn/v P = ρkt/µ n atomien lukumäärä, k Boltzmann vakio, µ atomin/molekuyylin massa, V tilavuus Sijoitetaan ρ dp P = g µ kt dh P = P 0 exp R h µg 0 kt dh = P 0 exp R h dh 0 H Jossa H = kt µg Skaalakorkeus Käsitellään H vakiona P P 0 = ρ(h) ρ 0 T(h) T 0 = exp h/h Likipitäen eksponentiaalinen paine-profiili Jos skaalapaksuus H saadaan arvioitua keskimääräinen molekyylipaino Tähtitieteen perusteet, Luento 10,

8 Atmosfäärin karkaaminen: kaasumolekyylin nopeus > pakonopeus riippuu planeetan koosta ja lämpötilasta karkaa välittömästi Kineettinen kaasuteoria < v >= p 3kT/m Pakonopues v e = p 2GM/R käytännössä: nopeusjakauma, osa liikkuu riittävän nopeasti karatakseen jos < v >> 0.2v e Lähellä pintaa tiheys suuri kaasumolekyylien törmäykset eksosfääri ilmakehän uloin osa: tn. että törmää pienempi 1/ exp Maapallo 500 km nopeat molekyylit karkaavat Tähtitieteen perusteet, Luento 10,

9 7.9 Aurinkokunnan fotometriaa Aurinkokunnan kappaleiden valo heijastunutta auringonvaloa. Havaittuun magnitudiin vaikuttaa: etäisyys Auringosta (r), etäisyys Maasta ( ) pinnan heijastuskyky ja heijastuksen suuntariippuvuus (vaihekulman α funktio) Bondin albedo A = kappaleen heijastaman ja siihen osuvan säteilyn energianvuon suhde Tuleva energiavuo L i = πr 2 L 4πr 2 Lähtevä energiavuo Lo = AL i = L R 2 4r 2 R kappaleen säde, r etäisyys Auringosta Mikä on havaittu vuontiheys etäisyydellä? Mikäli heijastunut säteily isotrooppista havaittu vuontiheys F = L o 4π 2 Käytännössä heijastuksella on suuntariippuvuus (ääritapaus=peili!) Pallomainen kappale heijastus riippuu vaihekulmasta F(α) = C Φ(α) L o 4π 2 Φ(α) = vaihefunktio, valittu siten että Φ(0 ) = 0 C=normeerausvakio Sijoitetaan L 0 = AL i F(α) = CA 4π Φ(α) L i 2 (*) Tähtitieteen perusteet, Luento 10,

10 Normeeraustekijä C: riippuu vaihe-funktion muodosta F(α) = CL o 4π 2 Φ(α) Oltava R S F(α)dS = L o eli vuo päätyy jonnekin -säteisellä pallopinnalla S pinta-alkio ds = 2 sin α dα dφ Integrointi α = 0 π, φ = 0 2π R S F(α)dS = CL Z Z o 4π 2 φ α Φ(α) 2 sin α dα dφ Z {z } π 2 2 Φ(α) sin αdα α {z } q vaiheintegraali Geometrinen albedo p Bondin albedo voidaan kirjoittaa muotoon A = pq p = geometrinen albedo q = edellä määritelty vaiheintegraali = CL o 4 q = Lo C = 4/q Havainnollinen tulkinta: geometrinen albedo ilmoittaa kappaleen heijastuneen vuontiheyden verrattuna samankokoiseen (πr 2 ) Lambert-levyyn, kun molempia havaitaan vaihekulmalla α = 0 Vuontiheys α = 0 sijoitetaan C = 4/q, A = pq, Φ(0) = 1 yhtälöön (*) F = p L i π 2 Lambert pinta : Pinta joka heijastaa kaiken siihen osuvan säteilyn (A=1), ja jonka pintakirkkaus näyttää samalta kaikista kulmista Lambert pinnalla p = 1 esim. valkoinen seinä tai paperi lähellä Lambert pintaa Tähtitieteen perusteet, Luento 10,

11

12 7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, L i = L R2 4r 2 F = p π Φ(α) 1 2 L R 2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä r Auringosta, kun planeetan etäisyys Maasta on Verrataan tätä Aurinkon säteilyvuon tiheyteen etäisyydellä a=1au F = L 4πa 2 Vuontiheyksien suhde F F = pφ(α)r2 a 2 2 r 2 = Φ(α) pr2 a 2 a 4 2 r 2 Muutetaan magnitudeiksi, merkitään m = Auringon magnitudi 1 AU etäisyydellä m m = 2.5 log 10 F F = 2.5 log 10 pr 2 a log 10 r a log 10 Φ(α) m = V (1, 0) + 5 log 10 r a log 10 Φ(α) missä V (1, 0) = m 2.5 log 10 pr 2 a 2 planeetan absoluuttinen magnitudi Tähtitieteen perusteet, Luento 10,

13 Termi V (1, 0) kuvaa planeetan ominaisuuksia (koko, geometrinen albedo) Asetetaan r = =1Au, α = 0 m = V (1, 0) eli V (1, 0) = planeetan näennäinen magnitudi oppositiossa, jos sitä havaittaisiin ja valaistaisiin 1 AU etäisyydeltä Termi 5 log r 10 a2 etäisyyden vaikutus Termi 2.5 log 10 Φ(α) vaihefunktion vaikutus Eo kaavoista voidaan ratkaista geometrinen albedo 2 p = r 0.4[m(0 ) m ar 10 ] missä m(0 ) on magnitudi oppositiohetkellä Planeetan vaihekäyrä Yleensä havaintoa ei tehdä oppositiossa mittaukset antavat absoluuttisen magnitudin V (1, α) vaihekulmalla α V (1, α) V (1, 0) 2.5 log 10 Φ(α) = m(α) 5 log 10 r a 2 Mittaukset eri α vaihekäyrä Muoto hyvin erilainen riippuen onko planeetalla ilmakehää vai ei: Ilmakehä heijastus liki isotrooppista Vuontiheys riippuu valaistuna näkyvän osan pinta-alasta (kts. Tähtititeen perusteet esim. 7.4) Ilmakehätön kappale: heijastuminen voimakasta valon tulosuuntaan oppositiokirkastuminen (kertoo pinnan rakenteesta) Tähtitieteen perusteet, Luento 10,

14 Oppositioefekti Vaihekäyrässä piikki kun α 0 Kuu, asteroidit (esim. 44Nysa) Saturnuksen renkaat Polarisaatioaste riippuu myös vaihekulmasta Tähtitieteen perusteet, Luento 10,

15 Tähtitieteen perusteet, Luento 10,

16 7.11 Planeettojen Lämpötilat Planeetan lämpötila määräytyy miten hyvin se absorboi Auringon valoa Bondin albedo A absorboituu 1 A Auringon säteilemä vuo: Stefan-Boltzmann laki L = 4πR 2 σt 4 Planeetta absorboima vuo: L abs = L (1 A) πr2 4πr 2 = R 2 σt 4 πr 2 r 2 (1 A) Termisessä tasapainossa T planeetta emittoi saman määrän energiaa mitä se absorboi L emit = ALA σt 4 jossa ALA = säteilevä pinta-ala Tasapainossa L abs = L emit ratkaistaan lämpötila Jos planeetta ei pyöri tai pyörii hitaasti lämpö säteilee vain valaistulta pinnalta, ala 2πR 2 T = T 1 A 2 1/4 R r «1/2 Jos planeetta pyörii nopeasti lämpö säteilee koko pinnalta, ala 4πR 2 «T = T 1 A 1/4 1/2 R r 4 HUOM: planeetan koko eliminoituu kaavoista (luonnollista) Tähtitieteen perusteet, Luento 10,

17 Miten hyvin pätee käytännössä? useimmilla ok Venus: kasvihuoneilmiö Voidaan hyödyntää TNO kohteiden koon määrityksessä (eivät näy pintakohteina) Neptunuksen etäisyydellä 30AU: halkaisija 1000km vastaa 0.05" Wienin siirtymälaki λmax 1/T (IR-alueessa) T Etäisyys KIII laista. Eo Kaavat Bondin albedo A Arvio vaihefunktiolle q geometrinen albedo p = A/q magnitudi oppositiossa läpimitta R Tähtitieteen perusteet, Luento 10,

18 7.12 Merkurius Sisäplaneetta: näkyy aina lähellä Aurinko (max 28 astetta) Samanlaiset vaiheet kuin Kuulla Pyöriminen: pyörähdysaika 58.6 vrk = 2/3 * kiertoaika 88vrk kääntää vuorotellen eri puolen Aurinko kohti perihelissä ( spin-orbit resonance ) Radan perihelin kiertymä: 575"/vuosisata planeettojen häiriöt selittävät 532"/vuosisata puuttuva 43"/vuosisata selittyy yl. suhteellisuusteorian avulla 1800 luvulla spekuloitiin: Vulkanus, Auringon litistyneisyys? Tähtitieteen perusteet, Luento 10,

19 7.13 Venus Max elongaatio Auringosta 47 astetta Vaiheet kuten Kuulla Kirkkaimmillaan m = 5 kun pinnasta valaistuna 35% Kulmaläpimitta 10-60" (näkyy levynä kiikarilla) Paksun pilvipeitteen peitossa C0 2, pilvet rikkihappoa 750 K, 90 bar Pinta kartoitettu tutkahavainnoilla (1962) + luotaimet Venus pyörii retrogradisesti pyörähdysaika 243 vrk (pitempi kuin kiertoaika) syy epäselvä Auringon vuorovesivoimat ilmakehässä, Venus-Maa kytkentä? Vulkaanista toimintaa (tn. yhä aktiivista) laavan peittämät tasangot 90 ylängöt (Terra) kraatereita kuten maapallolla (eroosio hävittää pienet) Ei vettä IAU-nimeämispäätös: mytologiset ja historialliset naisten nimet esim. Ishtar Terra, Aphrodite Terra ylängöt poikkeus: Maxwell Montes vuoristo 11km Tähtitieteen perusteet, Luento 10,

20 7.14 Mars Lähin ulkoplaneetta oppositiossa miljoonaa km läpimitta n. puolet Maasta Pyöriminen lähes kuin Maa (24.5h, ǫ = 25 ) Napakalotit: vesijää, C0 2 jää pölymyrskyjä Punainen väri:rautaoksidi Merkkejä vedestä: jokiuomia ( channels ) lämpötila liian alhainen juoksevalle vedelle Viking 1 ja etsivät merkkejä miktobeista: EI? Aurinkokunnan suurimmat tulivuoret Olympos Mons 20 km, halkaisija 600 km Tähtitieteen perusteet, Luento 10,

21 Marsin kanavat (canals): Schiparelli 1877, Lowell 1900lla optinen illuusio (ei mitään yhteyttä channels ) Marsin kuut: Phobos (Pelko) 27 x 21 x 19 km Deimos (Kauhu) 15 x 12 x 11 km pieniä epäsäännöllisiä (asteroidien kaltaisia) Tähtitieteen perusteet, Luento 10,

22 7.15 MAA-KUU kaksoisplaneetta Kuun massa 1/81 Alkuperä: törmäys 4 miljardia vuotta sitten Maa osittain differentioitunut, Kuu syntynyt Maan vaipasta Pinta törmäyskraatereiden peitossa 10 metrin regoliittikerros (ei merkkiä tulivuorista) Mantereet (Terra) (vaaleat alueet) Meret (Mare) (tummat alueet) suurien meteori-iskujen vapauttamaa laavaa Tähtitieteen perusteet, Luento 10,

23 Vuorovesi-ilmiö Kuun painovoima Maahan: suurempi lähempänä olevaan puoliskoon heikompi kauempana olevaan puoliskoon pyrkii aiheuttamaan Maan venymisen Huom: symmetrinen Maan keskipisteen suhteen Fnear F center = F far F center = Gm (x R) 2 Gm x 2 = Gm x 2 Gm (x+r) 2 Gm x 2 = Gm x 2 «1 (1 R/x) 2 1 «1 (1+R/x) 2 1 Gm x2 (1 + 2R/x 1) = 2GmR x 3 Gm x2 (1 2R/x 1) = 2GmR x 3 HUOM: varo verkon vääriä selityksiä! Helsingin yliopiston soveltavan kasvatustieteen laitos Tähtitieteen perusteet, Luento 10,

24 Kuun vuorovesi-ilmiön vaikutus meriin: (n. puolen vrk jaksoissa) nousuvesi (vuoksi) laskuvesi (luode) Maksimissaan 15m, Oulun edustalla mitätön Auringon vuorovesi (amplitudi 1/3) Vuorovesistä aihautuu kitkaa kuluttaa Maa-Kuu parin kokonaisenergiaa Kuu etääntyy Maasta Miksi Kuu etääntyy kokonaisenergian pienenetyessä? (Etääntyminen merkitsee sitä,että isoakseli kasvaa, rataenergia 1/2a kasvaa) Vuorovesi-pullistuma ei osoita Kuuta kohti, vaan edistää hieman, koska Maan pyöriminen kuun kiertoliikettä nopeampi Pullistuma kohdistaa Kuuhun voiman joka pyrkii kiihdyttämään sitä radallaan Ja hidastamaan samalla Maan pyörimistä (josta energia otetaan) Maan pyöriminen hidastuu msek/vuosisata (loppuu kun Maan pyöröhdysaika = kuukausi) Kuu etääntyy 3 metriä/vuosisata Kuun synkroninen pyöriminen: Maan kuuhun kohdistama vuorovesivoima Tähtitieteen perusteet, Luento 10,

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

Aurinkokunta, yleisiä ominaisuuksia

Aurinkokunta, yleisiä ominaisuuksia Aurinkokunta, yleisiä ominaisuuksia Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia. Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Aurinkokunta, kohteet

Aurinkokunta, kohteet Aurinkokunta, kohteet Merkurius Maasta katsoen Merkurius näkyy aina lähellä Aurinkoa; se voi etääntyä Auringosta vain noin 28 päähän. Siksi Merkurius näkyy vain vaalealla ilta- tai aamutaivaalla. Kirkkaimmillaan

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Jupiterin kuut (1/2)

Jupiterin kuut (1/2) Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen

Lisätiedot

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Ensimmäinen matkani aurinkokuntaan

Ensimmäinen matkani aurinkokuntaan EDITORIAL WEEBLE Ensimmäinen matkani aurinkokuntaan FERNANDO G. RODRIGUEZ http://editorialweeble.com/suomi/ Ensimmäinen matkani aurinkokuntaan 2014 Editorial Weeble Kirjoittaja: Fernando G. Rodríguez info@editorialweeble.com

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa

Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Jättiläisplaneetat Nimensä mukaisesti suuria Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Pyörivät nopeasti. Vuorovesivoimat eivät ole ehtineet jarruttaa massiivisia planeettoja

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen 6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50 7.16 Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring the Solar System and Beyond in Finnish Kehittämä Nam Nguyen Hubble Ultra Deep Field ampui 2014 Exploring aurinkokunnan ja sen jälkeen tavoitteena

Lisätiedot

Ulottuva Aurinko Auringon hallitsema avaruus

Ulottuva Aurinko Auringon hallitsema avaruus Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

4 Fotometriset käsitteet ja magnitudit

4 Fotometriset käsitteet ja magnitudit 4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan

Lisätiedot

TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014

TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014 TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014 1. Laattatektoniikka (10 p.) Mitä tarkoittavat kolmiot ja pisteet alla olevassa kuvassa? Millä tavalla Islanti, Chile, Japani ja Itä-Afrikka eroavat laattatektonisesti

Lisätiedot

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon

Lisätiedot

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti.

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti. Vuorovesivoima Toisen taivaankappaleen painovoima vaikuttaa kappaleen eri kohtiin eri tavoin. Ero havaitaan vuorovesivoimana, joka aiheuttaa esimerkiksi Maan merien vuorovesipullistumat. Tähän EI tarvita

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ II

ASTROFYSIIKAN TEHTÄVIÄ II ASTROFYSIIKAN TEHTÄVIÄ II 91. Selitä mistä aiheutuvat a) vuorokaudenajat, b) vuodenajat, c) kuunpimennykset, d) auringonpimennykset? 92. Vastaa lyhyesti seuraaviin kysymyksiin: a) Mitä eroa on tähdellä

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

1. GRAVITAATIOVAKIO G JA ABERRAATIO

1. GRAVITAATIOVAKIO G JA ABERRAATIO 1. GRAVITAATIOVAKIO G JA ABERRAATIO Massa imee gravitaatiokenttää ja ϕ-kenttää itseensä, joita tässä yhteydessä kutsutaan yhteisesti gravitaatiokentäksi. Pienissä kappaleissa protonit suorittavat alkeisryhmäsieppauksen

Lisätiedot

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006)

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006) Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006) Jaana Koverola Aurinkokuntamme reuna-alueilta on 2000-luvulla löydetty uusia taivaankappaleita, 1000-2000 km halkaisijaltaan olevia kääpiöplaneettoja,

Lisätiedot

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) 16. Tähtijoukot Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot 10 5 10 6 tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947:

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

ASTROFYSIIKAN KAAVOJA:

ASTROFYSIIKAN KAAVOJA: ASTROFYSIIKAN KAAVOJA: Hum! Mustassa ja keltaisessa taulukssa n hieman ei lunnnakiiden aja. Mustan taulukn at at päiitettyjä aja. Useimmat alla leat suueyhtälöt at myös taulukssa: MAOL s. 4-30, 34-35,

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt ISBN: Veera Kallunki, Jari Lavonen, Kalle Juuti, Veijo Meisalo, Anniina Mikama, Mika Suhonen, Jukka Lepikkö, Jyri Jokinen Verkkoversio: http://www.edu.helsinki.fi/astel-ope

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Aurinkokunnan tutkimuksen historiaa

Aurinkokunnan tutkimuksen historiaa Aurinkokunnan tutkimuksen historiaa Maan koko ja muoto Vetovoimalaki ja aurinkokunnan koko Planeettojen löytyminen Planeettojen rakenne ja koostumus Tutkimuslaitteiden ja menetelmien kehittyminen Aurinkokunnan

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Niko Knuutinen, Tuomas Väätäinen, Joel Sihvonen, Eemeli Manninen

Niko Knuutinen, Tuomas Väätäinen, Joel Sihvonen, Eemeli Manninen [MIKKELIN LUKIO] Mars, Curiosity, SAM Latmos- tiedekoulu Pariisissa Niko Knuutinen, Tuomas Väätäinen, Joel Sihvonen, Eemeli Manninen 9-13.10.2012 MARS Mars on neljäs planeetta Auringosta laskien Keskietäisyys

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Raamatullinen geologia

Raamatullinen geologia Raamatullinen geologia Miten maa sai muodon? Onko maa litteä? Raamatun mukaan maa oli alussa ilman muotoa (Englanninkielisessä käännöksessä), kunnes Jumala erotti maan vesistä. Kuivaa aluetta hän kutsui

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot