7.6 Planeettojen sisärakenne

Koko: px
Aloita esitys sivulta:

Download "7.6 Planeettojen sisärakenne"

Transkriptio

1 7.6 Planeettojen sisärakenne Luotaimien ratoihin kohdistuvat häiriöt planeetan gravitaatiokenttä Gravitaatiokenttä riippuu kappaleen muodosto ja sisäisestä massakajaumasta 1000 km ja suuremmat kappaleet: gravitaatio >> sisäinen lujuus Hydrostaattisessa tasapainossa oleva kappale: pinta efektiivisen potentiaalin tasa-arvopinta pyöriminen lyhimmän akselin ympäri pyörivä pyörähdysellipsoidi Alle 1000 km kokoiset kappaleet: sisäinen lujuus merkittävä, voi olla epämääräisen muotoinen Kappaleen pyörimisnopeudella yläraja: Oletetaan että sisäistä lujuutta ei tarvitse ottaa huomioon Asetetaan kappaleen pinnalla gravitaatio = keskipakoisvoima Kappaleen massa M, säde R, m pinnalla oleva testikappale GMm/R 2 = mv 2 /R pinnan pyörimisnopeus v = 2πR/P Periodi P = 2π p R 3 /GM Jotain tuttua? Miksi? Oletetaan että kappale pallomainen, keskitiheys ρ jolloin M = 4π/3ρR 3 P min = p 3π/Gρ mikäli periodi lyhyempi, testimassa irtoaa Sijoitetaan kiven tiheys ρ = 2700 kg/m 3 minimipyörähdysaika n. 2h Tähtitieteen perusteet, Luento 10,

2 Maankaltaisten planeettojen sisärakenne Maanjäristysallot: taittuvat rajapinnoissa etenemisnopeus riippuu väliaineen tiheydestä ja elastisuudesta pitkittäiset aallot (P): etenevät sekä kiinteässä aineessa että nesteessä poikittaiset aallot (S): etenevät vain kiinteässä aineessa Sula ydin ja kiinteä vaippa Maan ydin: lämpötila k tiheys kg/m 3 Mistä lämpö peräisin? törmäyksistä planeetan synnyn ajalta radioaktiivisten aineiden hajoaminen painovoiman aiheuttama kokoonpuristuminen Differentioituminen: Alkuvaiheessa maa ollut kokonaan sula raskaan aineen vajoaminen ytimeen Fe-Ni ydin (suhteellisesti suurin Merkuriuksella) silikaateista muodostunut vaippa ohut kuori (kymmeniä kilometrejä) Maapallo ainoa planeetta jossa mannerlaattojen liikkumista Vaipassa tapahtuvat konvektiovirtaukset (muutama sata km) (= laattatektoniikka) Tähtitieteen perusteet, Luento 10,

3 Jättiläisplaneettojen sisärakenne Alhainen tiheys etupäässä vetyä/heliumia Jupiter ja Saturnus: Pieni silikaattiydin, ympärillä jäätä Metallisen vedyn kerros (suuri paine molekyylit hajoaa atomeiksi) Lähellä pintaa nestemäistä H 2 Ohut kaasumainen atmosfääri Uranus/Neptunus: Kiviydin pieni, metallisen vedyn kerros olematon Jättiläisplaneetat: ei kiinteää kuorta lämpö pääsee vapaasti pinnalle Säteilevät huomattavasti enemmän kuin mitä vastaanottavat Auringon säteilyä (Saturnus lähes 3-kertaisesti) Tähtitieteen perusteet, Luento 10,

4 Planeettojen pinnanmuodot Kiinteäpintaiset kappaleet: Mannerliikunta (tektoniikka) - Maapallo vulkanismi ( Jupiterin kuu Io) ilmaston eroosio meteoroidi-pommitus ilmakehättömät kappaleet pinnan iän määritys Tähtitieteen perusteet, Luento 10,

5 7.7 Planeettojen magneettikentät Dynamo-ilmiö synnyttää Dipoli-kentän: sähkövirrat, pyöriminen Aurinko: sähköäjohtavan plasman virtaukset Maapallo, Merkurius : sula Fe-Ni ydin napaisuus vaihdellut, viimeksi v sitten Jupiter/Saturnus: metallisen vedyn kerros Uranus/Neptunus: ohut vesi/ammoniakki nestekerros Kuu? ei dipoli-kenttää jäännösmagnetismi Tähtitieteen perusteet, Luento 10,

6 Magnetosfäärit Aurinkotuuli = Auringosta tulevien varattujen hiukkasten (elektroneja, protoneja) virta esim. Maan kohdalla v=500 km/sek, 10 hiukkasta/cm 2 Kohtaa planeetan magneettikentän iskurintama (bow shock) n. 10 säteen päässä Magnetopaussin sisäpuolinen alue = magnetosfääri (varattujen hiukkasten liike planeetan magneettikentän kontrolloimaa) Magnetosfäärin pyrstö (satoja planeetan säteitä) Van Allenin vyöhykeet 1958: varattujen hiukkasten säteilyvyöt Revontulet: Auringon purkaukset varatut hiukkaset tunkeutuvat magnetosfäärin sisään magneettisten napojen kohdalla (Myös Jupiter/Saturnus) Tähtitieteen perusteet, Luento 10,

7 7.8 Atmosfäärit Maankaltaiset planeetat (Merkuriuksella lähes olematon) Jättiläisplaneetat: uloin kaasumainen kerros Saturnuksen kuu Titan, kääpiöplaneetta Pluto (metaania) Rakenne: planeetan painovoima, lämpötila, kemiallinen koostumus Voidaan johtaa hydrostaattisesta tasapainosta: dp = gρdh korkeudella h kerros jonka paksuus dh, paine P, tiheys ρ, painovoiman kiihtyvyys g Approksimoidaan: g = vakio (eli ilmakehän paksuus << Planeetan säde) Ideaalikaasun tilanyhtälö P V = nkt tiheys ρ = µn/v P = ρkt/µ n atomien lukumäärä, k Boltzmann vakio, µ atomin/molekuyylin massa, V tilavuus Sijoitetaan ρ dp P = g µ kt dh P = P 0 exp R h µg 0 kt dh = P 0 exp R h dh 0 H Jossa H = kt µg Skaalakorkeus Käsitellään H vakiona P P 0 = ρ(h) ρ 0 T(h) T 0 = exp h/h Likipitäen eksponentiaalinen paine-profiili Jos skaalapaksuus H saadaan arvioitua keskimääräinen molekyylipaino Tähtitieteen perusteet, Luento 10,

8 Atmosfäärin karkaaminen: kaasumolekyylin nopeus > pakonopeus riippuu planeetan koosta ja lämpötilasta karkaa välittömästi Kineettinen kaasuteoria < v >= p 3kT/m Pakonopues v e = p 2GM/R käytännössä: nopeusjakauma, osa liikkuu riittävän nopeasti karatakseen jos < v >> 0.2v e Lähellä pintaa tiheys suuri kaasumolekyylien törmäykset eksosfääri ilmakehän uloin osa: tn. että törmää pienempi 1/ exp Maapallo 500 km nopeat molekyylit karkaavat Tähtitieteen perusteet, Luento 10,

9 7.9 Aurinkokunnan fotometriaa Aurinkokunnan kappaleiden valo heijastunutta auringonvaloa. Havaittuun magnitudiin vaikuttaa: etäisyys Auringosta (r), etäisyys Maasta ( ) pinnan heijastuskyky ja heijastuksen suuntariippuvuus (vaihekulman α funktio) Bondin albedo A = kappaleen heijastaman ja siihen osuvan säteilyn energianvuon suhde Tuleva energiavuo L i = πr 2 L 4πr 2 Lähtevä energiavuo Lo = AL i = L R 2 4r 2 R kappaleen säde, r etäisyys Auringosta Mikä on havaittu vuontiheys etäisyydellä? Mikäli heijastunut säteily isotrooppista havaittu vuontiheys F = L o 4π 2 Käytännössä heijastuksella on suuntariippuvuus (ääritapaus=peili!) Pallomainen kappale heijastus riippuu vaihekulmasta F(α) = C Φ(α) L o 4π 2 Φ(α) = vaihefunktio, valittu siten että Φ(0 ) = 0 C=normeerausvakio Sijoitetaan L 0 = AL i F(α) = CA 4π Φ(α) L i 2 (*) Tähtitieteen perusteet, Luento 10,

10 Normeeraustekijä C: riippuu vaihe-funktion muodosta F(α) = CL o 4π 2 Φ(α) Oltava R S F(α)dS = L o eli vuo päätyy jonnekin -säteisellä pallopinnalla S pinta-alkio ds = 2 sin α dα dφ Integrointi α = 0 π, φ = 0 2π R S F(α)dS = CL Z Z o 4π 2 φ α Φ(α) 2 sin α dα dφ Z {z } π 2 2 Φ(α) sin αdα α {z } q vaiheintegraali Geometrinen albedo p Bondin albedo voidaan kirjoittaa muotoon A = pq p = geometrinen albedo q = edellä määritelty vaiheintegraali = CL o 4 q = Lo C = 4/q Havainnollinen tulkinta: geometrinen albedo ilmoittaa kappaleen heijastuneen vuontiheyden verrattuna samankokoiseen (πr 2 ) Lambert-levyyn, kun molempia havaitaan vaihekulmalla α = 0 Vuontiheys α = 0 sijoitetaan C = 4/q, A = pq, Φ(0) = 1 yhtälöön (*) F = p L i π 2 Lambert pinta : Pinta joka heijastaa kaiken siihen osuvan säteilyn (A=1), ja jonka pintakirkkaus näyttää samalta kaikista kulmista Lambert pinnalla p = 1 esim. valkoinen seinä tai paperi lähellä Lambert pintaa Tähtitieteen perusteet, Luento 10,

11

12 7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, L i = L R2 4r 2 F = p π Φ(α) 1 2 L R 2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä r Auringosta, kun planeetan etäisyys Maasta on Verrataan tätä Aurinkon säteilyvuon tiheyteen etäisyydellä a=1au F = L 4πa 2 Vuontiheyksien suhde F F = pφ(α)r2 a 2 2 r 2 = Φ(α) pr2 a 2 a 4 2 r 2 Muutetaan magnitudeiksi, merkitään m = Auringon magnitudi 1 AU etäisyydellä m m = 2.5 log 10 F F = 2.5 log 10 pr 2 a log 10 r a log 10 Φ(α) m = V (1, 0) + 5 log 10 r a log 10 Φ(α) missä V (1, 0) = m 2.5 log 10 pr 2 a 2 planeetan absoluuttinen magnitudi Tähtitieteen perusteet, Luento 10,

13 Termi V (1, 0) kuvaa planeetan ominaisuuksia (koko, geometrinen albedo) Asetetaan r = =1Au, α = 0 m = V (1, 0) eli V (1, 0) = planeetan näennäinen magnitudi oppositiossa, jos sitä havaittaisiin ja valaistaisiin 1 AU etäisyydeltä Termi 5 log r 10 a2 etäisyyden vaikutus Termi 2.5 log 10 Φ(α) vaihefunktion vaikutus Eo kaavoista voidaan ratkaista geometrinen albedo 2 p = r 0.4[m(0 ) m ar 10 ] missä m(0 ) on magnitudi oppositiohetkellä Planeetan vaihekäyrä Yleensä havaintoa ei tehdä oppositiossa mittaukset antavat absoluuttisen magnitudin V (1, α) vaihekulmalla α V (1, α) V (1, 0) 2.5 log 10 Φ(α) = m(α) 5 log 10 r a 2 Mittaukset eri α vaihekäyrä Muoto hyvin erilainen riippuen onko planeetalla ilmakehää vai ei: Ilmakehä heijastus liki isotrooppista Vuontiheys riippuu valaistuna näkyvän osan pinta-alasta (kts. Tähtititeen perusteet esim. 7.4) Ilmakehätön kappale: heijastuminen voimakasta valon tulosuuntaan oppositiokirkastuminen (kertoo pinnan rakenteesta) Tähtitieteen perusteet, Luento 10,

14 Oppositioefekti Vaihekäyrässä piikki kun α 0 Kuu, asteroidit (esim. 44Nysa) Saturnuksen renkaat Polarisaatioaste riippuu myös vaihekulmasta Tähtitieteen perusteet, Luento 10,

15 Tähtitieteen perusteet, Luento 10,

16 7.11 Planeettojen Lämpötilat Planeetan lämpötila määräytyy miten hyvin se absorboi Auringon valoa Bondin albedo A absorboituu 1 A Auringon säteilemä vuo: Stefan-Boltzmann laki L = 4πR 2 σt 4 Planeetta absorboima vuo: L abs = L (1 A) πr2 4πr 2 = R 2 σt 4 πr 2 r 2 (1 A) Termisessä tasapainossa T planeetta emittoi saman määrän energiaa mitä se absorboi L emit = ALA σt 4 jossa ALA = säteilevä pinta-ala Tasapainossa L abs = L emit ratkaistaan lämpötila Jos planeetta ei pyöri tai pyörii hitaasti lämpö säteilee vain valaistulta pinnalta, ala 2πR 2 T = T 1 A 2 1/4 R r «1/2 Jos planeetta pyörii nopeasti lämpö säteilee koko pinnalta, ala 4πR 2 «T = T 1 A 1/4 1/2 R r 4 HUOM: planeetan koko eliminoituu kaavoista (luonnollista) Tähtitieteen perusteet, Luento 10,

17 Miten hyvin pätee käytännössä? useimmilla ok Venus: kasvihuoneilmiö Voidaan hyödyntää TNO kohteiden koon määrityksessä (eivät näy pintakohteina) Neptunuksen etäisyydellä 30AU: halkaisija 1000km vastaa 0.05" Wienin siirtymälaki λmax 1/T (IR-alueessa) T Etäisyys KIII laista. Eo Kaavat Bondin albedo A Arvio vaihefunktiolle q geometrinen albedo p = A/q magnitudi oppositiossa läpimitta R Tähtitieteen perusteet, Luento 10,

18 7.12 Merkurius Sisäplaneetta: näkyy aina lähellä Aurinko (max 28 astetta) Samanlaiset vaiheet kuin Kuulla Pyöriminen: pyörähdysaika 58.6 vrk = 2/3 * kiertoaika 88vrk kääntää vuorotellen eri puolen Aurinko kohti perihelissä ( spin-orbit resonance ) Radan perihelin kiertymä: 575"/vuosisata planeettojen häiriöt selittävät 532"/vuosisata puuttuva 43"/vuosisata selittyy yl. suhteellisuusteorian avulla 1800 luvulla spekuloitiin: Vulkanus, Auringon litistyneisyys? Tähtitieteen perusteet, Luento 10,

19 7.13 Venus Max elongaatio Auringosta 47 astetta Vaiheet kuten Kuulla Kirkkaimmillaan m = 5 kun pinnasta valaistuna 35% Kulmaläpimitta 10-60" (näkyy levynä kiikarilla) Paksun pilvipeitteen peitossa C0 2, pilvet rikkihappoa 750 K, 90 bar Pinta kartoitettu tutkahavainnoilla (1962) + luotaimet Venus pyörii retrogradisesti pyörähdysaika 243 vrk (pitempi kuin kiertoaika) syy epäselvä Auringon vuorovesivoimat ilmakehässä, Venus-Maa kytkentä? Vulkaanista toimintaa (tn. yhä aktiivista) laavan peittämät tasangot 90 ylängöt (Terra) kraatereita kuten maapallolla (eroosio hävittää pienet) Ei vettä IAU-nimeämispäätös: mytologiset ja historialliset naisten nimet esim. Ishtar Terra, Aphrodite Terra ylängöt poikkeus: Maxwell Montes vuoristo 11km Tähtitieteen perusteet, Luento 10,

20 7.14 Mars Lähin ulkoplaneetta oppositiossa miljoonaa km läpimitta n. puolet Maasta Pyöriminen lähes kuin Maa (24.5h, ǫ = 25 ) Napakalotit: vesijää, C0 2 jää pölymyrskyjä Punainen väri:rautaoksidi Merkkejä vedestä: jokiuomia ( channels ) lämpötila liian alhainen juoksevalle vedelle Viking 1 ja etsivät merkkejä miktobeista: EI? Aurinkokunnan suurimmat tulivuoret Olympos Mons 20 km, halkaisija 600 km Tähtitieteen perusteet, Luento 10,

21 Marsin kanavat (canals): Schiparelli 1877, Lowell 1900lla optinen illuusio (ei mitään yhteyttä channels ) Marsin kuut: Phobos (Pelko) 27 x 21 x 19 km Deimos (Kauhu) 15 x 12 x 11 km pieniä epäsäännöllisiä (asteroidien kaltaisia) Tähtitieteen perusteet, Luento 10,

22 7.15 MAA-KUU kaksoisplaneetta Kuun massa 1/81 Alkuperä: törmäys 4 miljardia vuotta sitten Maa osittain differentioitunut, Kuu syntynyt Maan vaipasta Pinta törmäyskraatereiden peitossa 10 metrin regoliittikerros (ei merkkiä tulivuorista) Mantereet (Terra) (vaaleat alueet) Meret (Mare) (tummat alueet) suurien meteori-iskujen vapauttamaa laavaa Tähtitieteen perusteet, Luento 10,

23 Vuorovesi-ilmiö Kuun painovoima Maahan: suurempi lähempänä olevaan puoliskoon heikompi kauempana olevaan puoliskoon pyrkii aiheuttamaan Maan venymisen Huom: symmetrinen Maan keskipisteen suhteen Fnear F center = F far F center = Gm (x R) 2 Gm x 2 = Gm x 2 Gm (x+r) 2 Gm x 2 = Gm x 2 «1 (1 R/x) 2 1 «1 (1+R/x) 2 1 Gm x2 (1 + 2R/x 1) = 2GmR x 3 Gm x2 (1 2R/x 1) = 2GmR x 3 HUOM: varo verkon vääriä selityksiä! Helsingin yliopiston soveltavan kasvatustieteen laitos Tähtitieteen perusteet, Luento 10,

24 Kuun vuorovesi-ilmiön vaikutus meriin: (n. puolen vrk jaksoissa) nousuvesi (vuoksi) laskuvesi (luode) Maksimissaan 15m, Oulun edustalla mitätön Auringon vuorovesi (amplitudi 1/3) Vuorovesistä aihautuu kitkaa kuluttaa Maa-Kuu parin kokonaisenergiaa Kuu etääntyy Maasta Miksi Kuu etääntyy kokonaisenergian pienenetyessä? (Etääntyminen merkitsee sitä,että isoakseli kasvaa, rataenergia 1/2a kasvaa) Vuorovesi-pullistuma ei osoita Kuuta kohti, vaan edistää hieman, koska Maan pyöriminen kuun kiertoliikettä nopeampi Pullistuma kohdistaa Kuuhun voiman joka pyrkii kiihdyttämään sitä radallaan Ja hidastamaan samalla Maan pyörimistä (josta energia otetaan) Maan pyöriminen hidastuu msek/vuosisata (loppuu kun Maan pyöröhdysaika = kuukausi) Kuu etääntyy 3 metriä/vuosisata Kuun synkroninen pyöriminen: Maan kuuhun kohdistama vuorovesivoima Tähtitieteen perusteet, Luento 10,

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä. LUMATE-tiedekerhokerta, suunnitelma AIHE: AURINKOKUNTA Huom! Valmistele maitopurkit valmiiksi. Varmista, että sinulla on riittävästi soraa jupiteria varten. 1. Alkupohdintaa Aloitetaan kyselemällä, mitä

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Planetologia: Tietoa Aurinkokunnasta

Planetologia: Tietoa Aurinkokunnasta Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Pienkappaleita läheltä ja kaukaa

Pienkappaleita läheltä ja kaukaa Pienkappaleita läheltä ja kaukaa Karri Muinonen 1,2 1 Fysiikan laitos, Helsingin yliopisto 2 Geodeettinen laitos Planetaarinen geofysiikka, luento 7. 2. 2011 Johdantoa Tänään 7. 2. 2011 tunnetaan 7675

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

Kyösti Ryynänen Luento

Kyösti Ryynänen Luento 1. Aurinkokunta 2. Aurinko Kyösti Ryynänen Luento 15.2.2012 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Kaasupalloja Tähdet pyrkivät

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Avaruussää. Tekijä: Kai Kaltiola

Avaruussää. Tekijä: Kai Kaltiola Avaruussää Kohderyhmä: yläasteen suorittaneet / 9-luokkalaiset Työskentelymenetelmä: ryhmätyöt Kuvaa yleistajuisesti avaruussään syntymisen ja siihen liittyvät ilmiöt Tekijä: Kai Kaltiola kai.kaltiola@gmail.com

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Luento 10: Keskeisvoimat ja gravitaatio

Luento 10: Keskeisvoimat ja gravitaatio Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio

Luento 12: Keskeisvoimat ja gravitaatio Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti.

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti. Vuorovesivoima Toisen taivaankappaleen painovoima vaikuttaa kappaleen eri kohtiin eri tavoin. Ero havaitaan vuorovesivoimana, joka aiheuttaa esimerkiksi Maan merien vuorovesipullistumat. Tähän EI tarvita

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän

Lisätiedot

Esimerkki - Näkymätön kuu

Esimerkki - Näkymätön kuu Inversio-ongelmat Inversio = käänteinen, päinvastainen Inversio-ongelmilla tarkoitetaan (suoran) ongelman ratkaisua takaperin. Arkipäiväisiä inversio-ongelmia ovat mm. lääketieteellinen röntgentomografia

Lisätiedot

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Ajan osasia, päivien palasia

Ajan osasia, päivien palasia Ajan osasia, päivien palasia Ajan mittaamiseen tarvitaan liikettä. Elleivät taivaankappaleet olisi määrätyssä liikkeessä keskenään, ajan mittausta ei välttämättä olisi syntynyt. Säännöllinen, yhtäjaksoinen

Lisätiedot

Uskotko ilmastonmuutokseen? Reetta Jänis Rotarykokous 24.10.2013

Uskotko ilmastonmuutokseen? Reetta Jänis Rotarykokous 24.10.2013 Uskotko ilmastonmuutokseen? Reetta Jänis Rotarykokous 24.10.2013 Maapallolle saapuva auringon säteily 100 % Ilmakehästä heijastuu 6% Pilvistä heijastuu 20 % Maanpinnasta heijastuu 4 % Lämpösäteily Absorboituminen

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt ISBN: Veera Kallunki, Jari Lavonen, Kalle Juuti, Veijo Meisalo, Anniina Mikama, Mika Suhonen, Jukka Lepikkö, Jyri Jokinen Verkkoversio: http://www.edu.helsinki.fi/astel-ope

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Heijastuminen ionosfääristä

Heijastuminen ionosfääristä Aaltojen eteneminen Etenemistavat Pinta-aalto troposfäärissä Aallon heijastuminen ionosfääristä Lisäksi joitakin erikoisempia heijastumistapoja Eteneminen riippuu väliaineen ominaisuuksista, eri ilmiöt

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot