3.1 Varhaiset atomimallit (1/3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "3.1 Varhaiset atomimallit (1/3)"

Transkriptio

1 + 3 ATOMIN MALLI

2 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti ohutta kultakalvoa alfa-hiukkasilla, jolloin pieni osa alfa-hiukkasista kimposi takaisin tulosuuntaansa. Näiden havaintojen perusteella syntyi Rutherfordin atomimalli, jossa lähes koko atomin massa on keskittynyt pieneen ytimeen ja sen ympärillä oleva elektroniverho määrää atomin koon.

3 3.1 Varhaiset atomimallit (2/3) Klassisen fysiikan mukaan ympyräradalla kiertävä elektroni on kiihtyvässä liikkeessä ja säteilee energiaa, joten sen pitäisi lopulta syöksyä ytimeen. Miksi näin ei käy? Ratkaisun avain löytyi vetyatomin emissiospektristä: Vetyatomin emissiospektristä havaittiin, että spektriviivojen aallonpituudet saadaan yhtälöstä, missä1 1 1 R H on RHrydbergin vakio vedylle = 1, λ 2 2 n m 7 n = 1, 2, 3, m = n+1, n+2, 1 m

4 3.1 Varhaiset atomimallit (3/3) Bohrin vetyatomimalli selitti havaitut vetyatomin spektriviivat ja Rutherfordin tekemät havainnot: 1. Elektroni kiertää ympyrärataa positiivisen ytimen ympärillä. 2. Elektroni pysyy radallaan sähkömagneettisen vuorovaikutuksen ansiosta. 3. Elektronin rata voidaan määrittää klassisen mekaniikan mukaisesti dynamiikan peruslain avulla. 4. Tietyt elektronin radat ovat pysyviä, jolloin atomi on stationäärisessä tilassa eikä säteile energiaa. 5. Kun atomi siirtyy stationäärisestä tilasta toiseen, se absorboi tai emittoi energiakvantin ja elektroni siirtyy radalta toiselle. Vetyatomin energiatilat Vetyatomin pysyvien eli stationääristen tilojen energiat E n = hcr. H 2 n Vetyatomi on perustilassa, kun n = 1. Muut tilat ovat viritystiloja.

5 3.2 Energiatasokaavio, virittyminen ja purkautuminen (1/3) Virittyminen Atomi virittyy, kun atomi absorboi fotonin, jonka energia on kahden energiatilan energioiden erotus. Tällöin elektroni siirtyy alemmasta energiatilasta korkeampaan. Viritystilan purkautuminen Atomin viritystila purkautuu, kun elektroni palaa korkeammasta energiatilasta alempaan. Tällöin atomi emittoi fotonin, jonka energia on kyseisten energiatilojen energioiden erotus. Siirtymää vastaava energia Vetyatomin kahden tilan energioiden erotus on E = E m E n =, missä n on alempi energiatila, n = 1, 2,... m on ylempi energiatila, hcr m = n+1, H hcr n+2, H 2 m n 2

6

7 3.2 Energiatasokaavio, virittyminen ja purkautuminen (2/3) Kvanttimekaaninen atomimalli Kvanttimekaanisessa atomimallissa elektronin tilaa kuvataan neljällä kvanttiluvulla: Pääkvanttiluku n = 1, 2, 3, Sivukvanttiluku l = 0, 1, 2,, n-1 Magneettinen kvanttiluku m l = 0, ±1, ±2,, ±l Spinkvanttiluku m s = +½, -½ Kvanttiluvut n, l ja m l määrittelevät atomin elektroniorbitaalin. Elektroniorbitaalin avulla voidaan ennustaa alue, jossa elektroni todennäköisimmin on. Yhdellä orbitaalilla voi olla kaksi elektronia, joilla on eri spinkvanttiluku. Paulin kieltosääntö Kaikilla saman atomin elektroneilla on erilainen neljän kvanttiluvun yhdistelmä. Toisin sanoen saman atomin elektronit ovat aina eri tiloissa.

8 3.2 Energiatasokaavio, virittyminen ja purkautuminen (3/3) Atomin kuorimalli Energiatilojen sijasta käytetään usein mallia, jossa puhutaan atomin elektronikuorista: Atomin pääkuori määräytyy pääkvanttiluvun mukaan. Pääkvanttiluvun tunnuksina käytetään yleensä kvanttiluvun arvoja 1, 2, 3, 4,, mutta joskus myös isoja kirjaimia K, L, M, N, O, P. Atomin alakuoret määräytyvät pääkvanttiluvun ja sivukvanttiluvun l mukaan. Sivukvanttiluvun tunnuksina käytetään yleensä pieniä kirjaimia s, p, d, f ja g. Atomin alakuoret ovat 1s, 2s, 2,p, 3s, 3p, 3d, 4s, Energiatasokaavio Samalla alakuorella voi olla kaksi elektronia, joilla on eri spinkvanttiluku. Samalla alakuorella olevilla elektroneilla on sama energiatila. Energiatasokaaviossa energiatilat ilmaistaan alakuorien tunnuksilla.

9 3.3 Kvanttimekaanisia ilmiöitä (1/2) Energian kvantittuminen näkyy kaikessa, mitä fysiikassa nykyisin tehdään. Luminenssi-ilmiössä viritystilan purkautuessa atomit lähettävät näkyvää valoa. kiiltomadot, itämeren pikkumaneetit Fluoresenssi-ilmiössä fotonin synnyttämä viritystila purkautuu välittömästi virittymisen jälkeen. television kuvaputki ja loistelamppu Fosforesenssi-ilmiössä fotonin synnyttämä viritystila purkautuu viiveellä. itsevalaisevat eli fosforoivat aineet Fosforesenssi

10 3.3 Kvanttimekaanisia ilmiöitä (2/2) Laserissa valo syntyy stimuloidun emission kautta. Laserissa olevan kaasun atomien viritystilojen purkautuessa syntyneet fotonit purkavat lisää viritystiloja ja syntyy säteilyä, joka on samassa vaiheessa ja jolla on sama aallonpituus. cd- ja DVD-soittimet, tulostimet, viivakoodinlukijat silmäleikkaukset, etäisyysmittaukset LED:n valo syntyy p- ja n-tyypin puolijohteiden rajapinnassa. Sähkövirran vaikutuksesta elektronit putoavat aukkoihin ja energiaa vapautuu säteilynä. erilaiset lamput, liikennevalot Spektrianalyysiä käytetään aineiden tunnistamiseen (esim. s. 63 ja 64).

Kemian syventävät kurssit

Kemian syventävät kurssit Kemian syventävät kurssit KE2 Kemian mikromaailma aineen rakenteen ja ominaisuuksien selittäminen KE3 Reaktiot ja energia laskuja ja reaktiotyyppejä KE4 Metallit ja materiaalit sähkökemiaa: esimerkiksi

Lisätiedot

ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN

ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN PRO GRADU -TUTKIELMA MARJUT PARRILA OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 005 Sisällysluettelo 1.

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

8. MONIELEKTRONISET ATOMIT

8. MONIELEKTRONISET ATOMIT 8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

4. ATOMI. Kuva atomista?

4. ATOMI. Kuva atomista? 4. ATOMI Kuva atomista? 4. ATOMIN RAKENNE YDIN 8-luvun lopulla useimmat tutkijat jo uskoivat, että materiaalit koostuvat atomeista pienistä jakamattomista osista 898 J.J. Thomson löysi elektronit ja esitti

Lisätiedot

Luento5 8. Atomifysiikka

Luento5 8. Atomifysiikka Atomifysiikka Luento5 8 54 Kvanttimekaniikan avulla ymmärrämme atomin rakenteen ja toiminnan. Laser on yksi esimerkki atomien ja valon kvanttimekaniikasta. Luennon tavoite: Oppia ymmärtämään atomin rakenne

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Kvanttisointi Aiheet:

Kvanttisointi Aiheet: Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?

Lisätiedot

SMG-4300: Yhteenveto ensimmäisestä luennosta

SMG-4300: Yhteenveto ensimmäisestä luennosta SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

FY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00

FY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00 FY8 Sivu 1 FY8_muistiinpanot 10. marraskuuta 2013 10:00 Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. FY8 Sivu 2 Sähkömagneettinen säteily s. 5 11.

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valohiukkanen eli fotoni on

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Lukion kemia 6 Kemian kokonaiskuva 1.teema

Lukion kemia 6 Kemian kokonaiskuva 1.teema Lukion kemia 6 Kemian kokonaiskuva 1.teema Kuva: The International Society for the Philosophy of Chemistry (ISPC) - Lehti: Hyle Kurssin sisältö Ylioppilaskirjoitukset Tehtävien jakautuminen Tehtävien luonne

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

c λ n m hf n m E m = h = E n 1. Teoria 1.1. Atomin energiatilat ja säteily

c λ n m hf n m E m = h = E n 1. Teoria 1.1. Atomin energiatilat ja säteily SPEKTROMETRIA Tekijät: Mönkkönen Tomi, Reinikainen Mikko, Tiilikainen Eero, Toivanen Maria ja Rikkinen Topi Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Kvanttimekaaninen atomimalli

Kvanttimekaaninen atomimalli Kvanttimekaaninen atomimalli Kvanttimekaaninen atomimalli Rakenne: Pääkuori Alakuori Orbitaalit Elektronit sijaitsevat ydintä ympäröivässä energiapilvessä tietyillä energiatiloilla (pääkuoret). Elektronien

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8. Aine ja säteily. Sanoma Pro Oy Helsinki

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8. Aine ja säteily. Sanoma Pro Oy Helsinki Tehtävien ratkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8 Aine ja säteily Sanoma Pro Oy Helsinki Sisällys Johdantotehtävien ratkaisut... 4 1 Säteily ja kvantit... 6 Atomi

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

Luento Atomin rakenne

Luento Atomin rakenne Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa

Lisätiedot

SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA

SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA PRO GRADU -TUTKIELMA HENRIK VAHTOLA OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS OULU 2000 Alkusanat Kiitän professori Helena Akselaa ja

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FYSP106/2 Franckin ja Hertzin koe 1 FYSP106/2 FRANCKIN JA HERTZIN KOE Työssä mitataan elohopea-atomin erään viritystilan energia käyttäen samantyyppistä koejärjestelyä, jolla Franck ja Hertz vuonna 1914

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen

Lisätiedot

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11 S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Kolmannen luennon aihepiirit Reduktionistinen tapa aurinkokennon virta-jännite-käyrän muodon ymmärtämiseen Lähdetään liikkeelle aurinkokennosta, ja pilkotaan sitä pienempiin

Lisätiedot

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.

Lisätiedot

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen

Lisätiedot

ATOMIN KVANTTIMEKAANINEN MALLI...133

ATOMIN KVANTTIMEKAANINEN MALLI...133 ATOMIN KVANTTIMEKAANINEN MALLI...133 4.1 Johdanto...133 4. Atomin ydinmallin kehittyminen...134 4.3 Rutherfordin sironta...136 4.4 Rutherfordin sironnan kulmariippuvuus...138 4.5 Makroskooppisen vaikutusalan

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet.

Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. FYSIIKAN KOE 30.9.2016 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. Fysiikka pyrkii ymmärtämään luonnon perusrakennetta, luonnonilmiöiden perusmekanismeja

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

S Fysiikka III (EST) (6 op) 1. välikoe

S Fysiikka III (EST) (6 op) 1. välikoe S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

24AB. Lasertutkimus ja spektrianalyysi

24AB. Lasertutkimus ja spektrianalyysi TURUN AMMATTIKORKAKOULU TYÖOHJ 1/7 24AB. Lasertutkimus ja spektrianalyysi 1. Työn tarkoitus Lasereilla on runsaasti käytännön sovelluksia esimerkiksi tiedonsiirrossa, aineiden analysoinnissa ja työstämisessä

Lisätiedot

S Fysiikka III (Est) 2 VK

S Fysiikka III (Est) 2 VK S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

4.3 Magnitudijärjestelmät

4.3 Magnitudijärjestelmät 4.3 Magnitudijärjestelmät Näennäinen magnitudi riippuu tarkasteltavasta aallonpituusalueesta ja havaintovälineen herkkyydestä tällä aallonpituusalueella Erilaiset magnitudijärjestelmät Järjestelmien nollakohdat

Lisätiedot

Spin ja atomifysiikka

Spin ja atomifysiikka Spin ja atomifysiikka Harris luku 8 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Lämmittelykysymys Pohdi parin kanssa 5 min Kysymys Atomin säde on epämääräinen käsite. Miksi?

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

766326A Atomifysiikka 1 - Syksy 2013

766326A Atomifysiikka 1 - Syksy 2013 766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9

Lisätiedot

FYSN300 Nuclear Physics I. Välikoe

FYSN300 Nuclear Physics I. Välikoe Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN PRO GRADU -TUTKIELMA SAKARI MIKKONEN OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 2005 Sisällysluettelo

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen

Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen Janne Klemola Oulun yliopisto Fysiikan tutkinto-ohjelma Pro gradu -tutkielma Toukokuu 2017 Sisältö Johdanto 1 1 Kurssin asiasisältö 2 1.1 Sähkömagneettisten

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

KVANTTIFYSIIKAN ILMIÖMAAILMA...1 KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

Luento 11. Elektronin spin

Luento 11. Elektronin spin Elektronin spin Luento 11 Spektrimittaukset osoittivat, että energiatasot jakautuvat todellisuudessa useampaan kuin normaalin Zeemanin ilmiön ennustamaan kolmeen. Ruvettiin puhumaan anomaalisesta Zeemanin

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Alikuoret eli orbitaalit

Alikuoret eli orbitaalit Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia

Lisätiedot

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate

Lisätiedot

2. Modernin fysiikan perusta

2. Modernin fysiikan perusta 2. Modernin fysiikan perusta Luento 4 Mustan kappaleen säteily Valon emissio ja absorptio Säteilyn spektri Elektronin löytyminen Ytimen löytyminen 1 2 Mustan kappaleen säteily Pintaa, joka absorboi kaiken

Lisätiedot

Mitä ledi on ja mitkä ovat sen edut ja haitat?

Mitä ledi on ja mitkä ovat sen edut ja haitat? Mitä ledi on ja mitkä ovat sen edut ja haitat? Eino Tetri, TkT Valaistusyksikkö Elektroniikan, tietoliikenteen ja automaation tiedekunta Elektroniikan laitos Valaistusyksikön tutkimusalueet: Sisävalaistus

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

KVANTTIFYSIIKAN ILMIÖMAAILMA...1 KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta

Lisätiedot

tutkijankloppi pani fysiikan uusiksi...

tutkijankloppi pani fysiikan uusiksi... Cromalin-godk. Red sek.: Layouter: HB.: Prod.: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 39 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Niels

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ V

ASTROFYSIIKAN TEHTÄVIÄ V ASTROFYSIIKAN TEHTÄVIÄ V 501. Sarjakuvassa Lassi ja Leevi seikkailevat avaruudessa. Esitä neljä perusteltua syytä, miksi kuvattu toiminta ei ole mahdollista avaruudessa vallitsevissa fysikaalisissa olosuhteissa.

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot