7.10 Planeettojen magnitudit

Koko: px
Aloita esitys sivulta:

Download "7.10 Planeettojen magnitudit"

Transkriptio

1 7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, F = p π Φ(α) 1 2 L R 2 4r 2 L i = L R2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä r Auringosta, kun planeetan etäisyys Maasta on Verrataan tätä Aurinkon säteilyvuon tiheyteen etäisyydellä a=1au F = L 4πa 2 Vuontiheyksien suhde F = pφ(α)r2 a 2 F 2 r 2 = Φ(α) pr2 a 4 a 2 2 r 2 Tähtitieteen perusteet 2, Luento 2, Vuontiheyksien suhde F F = Φ(α) pr2 a 2 a 4 2 r 2 Muutetaan magnitudeiksi, merkitään m = Auringon magnitudi 1 AU etäisyydellä m m = 2.5 log 10 F F = -2.5 log 10 pr 2 a log 10 r a log 10 Φ(α) m = V (1, 0) + 5 log 10 r a log 10 Φ(α) missä V (1, 0) = m 2.5 log 10 pr 2 a 2 planeetan absoluuttinen magnitudi Termi V (1, 0) kuvaa planeetan ominaisuuksia (koko, geometrinen albedo) Asetetaan r = =1Au, α = 0 m = V (1, 0) eli V (1, 0) = planeetan näennäinen magnitudi oppositiossa, jos sitä havaittaisiin ja valaistaisiin 1 AU etäisyydeltä Termi 5 log r 10 a2 etäisyyden vaikutus Termi 2.5 log 10 Φ(α) vaihefunktion vaikutus Tähtitieteen perusteet 2, Luento 2,

2 Eo kaavoista voidaan ratkaista geometrinen albedo 2 p = r 0.4[m(0 ) m ar 10 ] missä m(0 ) on magnitudi oppositiohetkellä Planeetan vaihekäyrä Yleensä havaintoa ei tehdä oppositiossa mittaukset antavat absoluuttisen magnitudin V (1, α) vaihekulmalla α V (1, α) V (1, 0) 2.5 log 10 Φ(α) = m(α) 5 log 10 r a 2 Mittaukset eri α vaihekäyrä Muoto hyvin erilainen riippuen onko planeetalla ilmakehää vai ei: Ilmakehä heijastus liki isotrooppista Vuontiheys riippuu valaistuna näkyvän osan pinta-alasta (kts. Tähtitieteen perusteet esim. 7.4) Ilmakehätön kappale: heijastuminen voimakasta valon tulosuuntaan oppositiokirkastuminen (kertoo pinnan rakenteesta) Tähtitieteen perusteet 2, Luento 2, Oppositioefekti Vaihekäyrässä piikki kun α 0 Kuu, asteroidit (esim. 44Nysa) Saturnuksen renkaat Polarisaatioaste riippuu myös vaihekulmasta Tähtitieteen perusteet 2, Luento 2,

3 Tähtitieteen perusteet 2, Luento 2, Tähtitieteen perusteet 2, Luento 2,

4 7.11 Planeettojen Lämpötilat Planeetan lämpötila määräytyy miten hyvin se absorboi Auringon valoa Bondin albedo A absorboituu 1 A Auringon säteilemä vuo: Stefan-Boltzmann laki L = 4πR 2 σt 4 Planeetan etäisyydellä r absorboima vuo: L abs = L (1 A) πr2 4πr 2 = R 2 σt 4 πr 2 r 2 (1 A) Termisessä tasapainossa T planeetta emittoi saman määrän energiaa mitä se absorboi L emit = ALA σt 4 jossa ALA = säteilevä pinta-ala Tasapainossa L abs = L emit ratkaistaan lämpötila Jos planeetta ei pyöri tai pyörii hitaasti lämpö säteilee vain valaistulta pinnalta, ALA= 2πR 2 T = T 1 A 2 1/4 R r «1/2 Jos planeetta pyörii nopeasti lämpö säteilee koko pinnalta, ALA= 4πR 2 «T = T 1 A 1/4 1/2 R r 4 HUOM: planeetan koko eliminoituu kaavoista (luonnollista) Tähtitieteen perusteet 2, Luento 2, Miten hyvin pätee käytännössä? useimmilla ok Venus: kasvihuoneilmiö Voidaan hyödyntää TNO kohteiden koon määrityksessä (eivät näy pintakohteina) Neptunuksen etäisyydellä 30AU: halkaisija 1000km vastaa 0.05" Wienin siirtymälaki λmax 1/T (IR-alueessa) T Etäisyys KIII laista. Eo Kaavat Bondin albedo A Arvio vaihefunktiolle q geometrinen albedo p = A/q magnitudi oppositiossa läpimitta R Tähtitieteen perusteet 2, Luento 2,

5 7.12 Merkurius Sisäplaneetta: näkyy aina lähellä Aurinko (max 28 astetta) Samanlaiset vaiheet kuin Kuulla Pyöriminen: pyörähdysaika 58.6 vrk = 2/3 * kiertoaika 88vrk kääntää vuorotellen eri puolen Aurinko kohti perihelissä ( spin-orbit resonance ) Radan perihelin kiertymä: 575"/vuosisata planeettojen häiriöt selittävät 532"/vuosisata puuttuva 43"/vuosisata selittyy yl. suhteellisuusteorian avulla 1800 luvulla spekuloitiin: Vulkanus, Auringon litistyneisyys? Tähtitieteen perusteet 2, Luento 2, Venus Max elongaatio Auringosta 47 astetta Vaiheet kuten Kuulla Kirkkaimmillaan m = 5 kun pinnasta valaistuna 35% Kulmaläpimitta 10-60" (näkyy levynä kiikarilla) Paksun pilvipeitteen peitossa C0 2, pilvet rikkihappoa 750 K, 90 bar Pinta kartoitettu tutkahavainnoilla (1962) + luotaimet Venus pyörii retrogradisesti pyörähdysaika 243 vrk (pitempi kuin kiertoaika) syy epäselvä Auringon vuorovesivoimat ilmakehässä, Venus-Maa kytkentä? Vulkaanista toimintaa (tn. yhä aktiivista) laavan peittämät tasangot 90 ylängöt (Terra) kraatereita kuten maapallolla (eroosio hävittää pienet) Ei vettä IAU-nimeämispäätös: mytologiset ja historialliset naisten nimet esim. Ishtar Terra, Aphrodite Terra ylängöt poikkeus: Maxwell Montes vuoristo 11km Tähtitieteen perusteet 2, Luento 2,

6 7.14 Mars Lähin ulkoplaneetta oppositiossa miljoonaa km läpimitta n. puolet Maasta Pyöriminen lähes kuin Maa (24.5h, ǫ = 25 ) Napakalotit: vesijää, C0 2 jää pölymyrskyjä Punainen väri:rautaoksidi Merkkejä vedestä: jokiuomia ( channels ) lämpötila liian alhainen juoksevalle vedelle Viking 1 ja etsivät merkkejä mikrobeista: EI? Aurinkokunnan suurimmat tulivuoret Olympos Mons 20 km, halkaisija 600 km Tähtitieteen perusteet 2, Luento 2, Marsin kanavat (canals): Schiparelli 1877, Lowell 1900lla optinen illuusio (ei mitään yhteyttä channels ) Marsin kuut: Phobos (Pelko) 27 x 21 x 19 km Deimos (Kauhu) 15 x 12 x 11 km pieniä epäsäännöllisiä (asteroidien kaltaisia) Tähtitieteen perusteet 2, Luento 2,

7 7.15 MAA-KUU kaksoisplaneetta Kuun massa 1/81 Alkuperä: törmäys 4 miljardia vuotta sitten Maa osittain differentioitunut, Kuu syntynyt Maan vaipasta Pinta törmäyskraatereiden peitossa 10 metrin regoliittikerros (ei merkkiä tulivuorista) Mantereet (Terra) (vaaleat alueet) Meret (Mare) (tummat alueet) suurien meteori-iskujen vapauttamaa laavaa Tähtitieteen perusteet 2, Luento 2, Vuorovesi-ilmiö Kuun painovoima Maahan: suurempi lähempänä olevaan puoliskoon heikompi kauempana olevaan puoliskoon pyrkii aiheuttamaan Maan venymisen Huom: symmetrinen Maan keskipisteen suhteen «Fnear F center = Gm (x R) 2 Gm x 2 = Gm x 2 1 (1 R/x) 2 1 F far F center = Gm (x+r) 2 Gm x 2 = Gm x 2 «1 (1+R/x) 2 1 Gm x2 (1 + 2R/x 1) = 2GmR x 3 Gm x2 (1 2R/x 1) = 2GmR x 3 HUOM: varo verkon vääriä selityksiä! Helsingin yliopiston soveltavan kasvatustieteen laitos Tähtitieteen perusteet 2, Luento 2,

8 Kuun vuorovesi-ilmiön vaikutus meriin: (n. puolen vrk jaksoissa) nousuvesi (vuoksi) laskuvesi (luode) Maksimissaan 15m, Oulun edustalla mitätön Auringon vuorovesi (amplitudi 1/3) Vuorovesistä aihautuu kitkaa kuluttaa Maa-Kuu parin kokonaisenergiaa Kuu etääntyy Maasta Miksi Kuu etääntyy kokonaisenergian pienenetyessä? (Etääntyminen merkitsee sitä,että isoakseli kasvaa, rataenergia 1/2a kasvaa!) Energia otetaan maan pyörimisestä: Vuorovesi-pullistuma ei osoita Kuuta kohti, vaan edistää hieman, koska Maan pyöriminen kuun kiertoliikettä nopeampi Pullistuma kohdistaa Kuuhun voiman joka pyrkii kiihdyttämään sitä radallaan (lisää rataenergiaa) Ja hidastamaan samalla Maan pyörimistä (josta energia otetaan) Maan pyöriminen hidastuu msek/vuosisata (loppuu kun Maan pyöröhdysaika = kuukausi) Kuu etääntyy 3 metriä/vuosisata Kuun synkroninen pyöriminen: Maan kuuhun kohdistama vuorovesivoima Tähtitieteen perusteet 2, Luento 2, Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat vyöt (belt) kaasun virtaus sisäänpäin Suuri punainen pilkku = 3 kertaa Maan halkaisija oleva pyörre ens. havainto: Cassini v Pyörähdysaika hitaampaa navoilla (9h55m) kuin ekvaattorilla (9h50m) = differentiaalinen pyöriminen nopea pyöriminen litistinyt 1/15 Tähtitieteen perusteet 2, Luento 2,

9 Jupiterin renkaat löydetty 1979 (Voyager 1) Muodostuneet pölystä: muutaman µm kokoisia kappaleita, eli lähellä valon aallonpituutta voimakkaasti takaisinsirottavia, eli rengas nykyy parhaiten 180 vaihekulmilla, pitkin rengastasoa katsottaessa Pölyrenkaat eivät ole stabiileja, uutta pölyä irtoaa Jupiterin sisimmistä kuista Rengaat/Kuut Jupiterin magnetosfäärin sisällä vaikuttaa varattujen hiukkasten liikkeeseen Galileo-luotaimen kuvista koottu mosaikki Jupiter on voimakas radiosäteilijä: terminen säteily mm-cm alueella ei-terminen desimetri-säteily: magneettikentässä kiertävät elektronit (synrotronisäteily) dekametri-purkaukset (Jorma Riihimaa Oulussa alan pioneeri 1970lla)- littyvät Io-kuun radalla olevaan plasmarenkaaseen Tähtitieteen perusteet 2, Luento 2, Galilean satellites (Galilei 1610) Kiertoajat lukkiintuneet 1:2:4 resonanssiin λ Io 3λ Europa + 2λ Ganymedes = 180 eivät voi olla yhtäaikaa samalla longitudilla pakottavat Io:n eksentriselle radalla, Jupiterin vuorovesivoima voimakas Europan sisärakenne: vettä 2-kertainen määrä Maan meriin ESA luotain: JUpiter ICy Moon Explorer (JUICE) (2022) NASA: Europa Clipper (launch 2023) Tähtitieteen perusteet 2, Luento 2,

7.6 Planeettojen sisärakenne

7.6 Planeettojen sisärakenne 7.6 Planeettojen sisärakenne Luotaimien ratoihin kohdistuvat häiriöt planeetan gravitaatiokenttä Gravitaatiokenttä riippuu kappaleen muodosto ja sisäisestä massakajaumasta 1000 km ja suuremmat kappaleet:

Lisätiedot

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50 7.16 Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Jupiterin kuut (1/2)

Jupiterin kuut (1/2) Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen

Lisätiedot

Aurinkokunta, kohteet

Aurinkokunta, kohteet Aurinkokunta, kohteet Merkurius Maasta katsoen Merkurius näkyy aina lähellä Aurinkoa; se voi etääntyä Auringosta vain noin 28 päähän. Siksi Merkurius näkyy vain vaalealla ilta- tai aamutaivaalla. Kirkkaimmillaan

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

AKAAN AURINKOKUNTAMALLI

AKAAN AURINKOKUNTAMALLI AKAAN AURINKOKUNTAMALLI Millainen on avaruus ympärillämme? Kuinka kaukana Aurinko on meistä? Minkä kokoisia planeetat ovat? Tämä Aurinkokunnan pienoismalli on rakennettu vastaamaan näihin ja moneen muuhun

Lisätiedot

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä. LUMATE-tiedekerhokerta, suunnitelma AIHE: AURINKOKUNTA Huom! Valmistele maitopurkit valmiiksi. Varmista, että sinulla on riittävästi soraa jupiteria varten. 1. Alkupohdintaa Aloitetaan kyselemällä, mitä

Lisätiedot

Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa

Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Jättiläisplaneetat Nimensä mukaisesti suuria Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Pyörivät nopeasti. Vuorovesivoimat eivät ole ehtineet jarruttaa massiivisia planeettoja

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia. Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi

Lisätiedot

Planetologia: Tietoa Aurinkokunnasta

Planetologia: Tietoa Aurinkokunnasta Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Aurinkokunta, yleisiä ominaisuuksia

Aurinkokunta, yleisiä ominaisuuksia Aurinkokunta, yleisiä ominaisuuksia Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Ensimmäinen matkani aurinkokuntaan

Ensimmäinen matkani aurinkokuntaan EDITORIAL WEEBLE Ensimmäinen matkani aurinkokuntaan FERNANDO G. RODRIGUEZ http://editorialweeble.com/suomi/ Ensimmäinen matkani aurinkokuntaan 2014 Editorial Weeble Kirjoittaja: Fernando G. Rodríguez info@editorialweeble.com

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

OPETTAJAN MATERIAALI LUKION OPETTAJALLE

OPETTAJAN MATERIAALI LUKION OPETTAJALLE OPETTAJAN MATERIAALI LUKION OPETTAJALLE Tähän materiaaliin on koottu oppilaille näytettävään diaesitykseen tarkoitettua lisämateriaalia. Tummennetut tekstit ovat lisätietoja jokaista diaa varten ja ne

Lisätiedot

OPETTAJAN MATERIAALI YLÄKOULUN OPETTAJALLE

OPETTAJAN MATERIAALI YLÄKOULUN OPETTAJALLE OPETTAJAN MATERIAALI YLÄKOULUN OPETTAJALLE Tähän materiaaliin on koottu oppilaille näytettävään diaesitykseen tarkoitettua lisämateriaalia. Tummennetut tekstit ovat lisätietoja jokaista diaa varten ja

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen 6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring the Solar System and Beyond in Finnish Kehittämä Nam Nguyen Hubble Ultra Deep Field ampui 2014 Exploring aurinkokunnan ja sen jälkeen tavoitteena

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti.

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti. Vuorovesivoima Toisen taivaankappaleen painovoima vaikuttaa kappaleen eri kohtiin eri tavoin. Ero havaitaan vuorovesivoimana, joka aiheuttaa esimerkiksi Maan merien vuorovesipullistumat. Tähän EI tarvita

Lisätiedot

ja ilmakehän alkuaineista, jotka ravitsevat kaikki eliöitä ja uusiutuvat jatkuvassa aineiden kiertokulussa.

ja ilmakehän alkuaineista, jotka ravitsevat kaikki eliöitä ja uusiutuvat jatkuvassa aineiden kiertokulussa. 1 7 8 9 10 11 1 1 1 1 1 17 18 19 0 1 7 8 9 0 1 7 8 9 0 1 7 8 9 0 1 7 8 9 Maan ulkopuolista elämää etsitään läheltä ja kaukaa. Aurinkokunnassa on viisi paikkaa, joissa teoriassa voisi olla elämän edellytykset.

Lisätiedot

Ulottuva Aurinko Auringon hallitsema avaruus

Ulottuva Aurinko Auringon hallitsema avaruus Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä

Lisätiedot

Etäisyyden yksiköt tähtitieteessä:

Etäisyyden yksiköt tähtitieteessä: Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

LUENTO Kyösti Ryynänen

LUENTO Kyösti Ryynänen LUENTO 13.12.2016 Kyösti Ryynänen ELÄMÄÄ MIKROKOSMOKSEN JA MAKROKOSMOKSEN VÄLISSÄ 1 ELÄMÄN PERUSTA ALKEISHIUKKASET PERUSVOIMAT ITSEORGANISOITUMINEN NYT HAVAITTAVISSA OLEVA UNIVERSUMI HAVAINTOJEN JA TEORIOIDEN

Lisätiedot

Pienkappaleita läheltä ja kaukaa

Pienkappaleita läheltä ja kaukaa Pienkappaleita läheltä ja kaukaa Karri Muinonen 1,2 1 Fysiikan laitos, Helsingin yliopisto 2 Geodeettinen laitos Planetaarinen geofysiikka, luento 7. 2. 2011 Johdantoa Tänään 7. 2. 2011 tunnetaan 7675

Lisätiedot

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2 Luku 3 Ilmakehä suojaa ja suodattaa Sisällys Ilmakehä eli atmosfääri Ilmakehän kerrokset Ilmakehä kaasukoostumuksen mukaan Ilmakehä lämpötilan mukaan Säteilytase ja säteilyn absorboituminen Kasvihuoneilmiö

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

ETÄISYYS TÄHDESTÄ PYÖRÄHDYSAIKA JA KIERTOAIKA

ETÄISYYS TÄHDESTÄ PYÖRÄHDYSAIKA JA KIERTOAIKA Planeetan fyysisiä ominaisuuksia sekä kiertoradan ominaisuuksia tutkitaan piirrosten, tiedonhaun ja simulaatioiden avulla. Seuratkaa ohjeita tarkasti, pohtikaa ja vastatkaa kysymyksiin. Yhdistäkää lopuksi

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Kyösti Ryynänen Luento

Kyösti Ryynänen Luento 1. Aurinkokunta 2. Aurinko Kyösti Ryynänen Luento 15.2.2012 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Kaasupalloja Tähdet pyrkivät

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ II

ASTROFYSIIKAN TEHTÄVIÄ II ASTROFYSIIKAN TEHTÄVIÄ II 91. Selitä mistä aiheutuvat a) vuorokaudenajat, b) vuodenajat, c) kuunpimennykset, d) auringonpimennykset? 92. Vastaa lyhyesti seuraaviin kysymyksiin: a) Mitä eroa on tähdellä

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

Tuulen viemää. Satelliitit ilmansaasteiden kulkeutumisen seurannassa. Anu-Maija Sundström

Tuulen viemää. Satelliitit ilmansaasteiden kulkeutumisen seurannassa. Anu-Maija Sundström Tuulen viemää Satelliitit ilmansaasteiden kulkeutumisen seurannassa Anu-Maija Sundström Henrik Virta, Suvi-Tuulia Haakana, Iolanda Ialongo ja Johanna Tamminen Saasteiden kulkeutuminen ilmakehässä Saasteen

Lisätiedot

Tähtitieteen historiaa

Tähtitieteen historiaa Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä

Lisätiedot

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006)

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006) Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006) Jaana Koverola Aurinkokuntamme reuna-alueilta on 2000-luvulla löydetty uusia taivaankappaleita, 1000-2000 km halkaisijaltaan olevia kääpiöplaneettoja,

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Luento 4: kertaus edelliseltä luennolta

Luento 4: kertaus edelliseltä luennolta Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit

Lisätiedot

Aurinkokunnan tutkimuksen historiaa

Aurinkokunnan tutkimuksen historiaa Aurinkokunnan tutkimuksen historiaa Maan koko ja muoto Vetovoimalaki ja aurinkokunnan koko Planeettojen löytyminen Planeettojen rakenne ja koostumus Tutkimuslaitteiden ja menetelmien kehittyminen Aurinkokunnan

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

Ajan osasia, päivien palasia

Ajan osasia, päivien palasia Ajan osasia, päivien palasia Ajan mittaamiseen tarvitaan liikettä. Elleivät taivaankappaleet olisi määrätyssä liikkeessä keskenään, ajan mittausta ei välttämättä olisi syntynyt. Säännöllinen, yhtäjaksoinen

Lisätiedot

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) 16. Tähtijoukot Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot 10 5 10 6 tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947:

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA Kahden kappaleen suhteellisen liikkeen yhtälö: R m 2 R = µ R r 3 jossa µ = G(m 1 + m 2 ) Liikeyhtälön integraalit m 1 R 1 R 2 k = R R suhteellisen liikkeen imp.mom/massayksikkö

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä 1 / 46 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Edellä pallokolmioiden yleiset ratkaisukaavat: sin B sin a = sin A sin b cos B sin a = cos A sin b cos c + cos b sin c cos a = cos A sin b sin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN. Heikki Sipilä LF-Seura

INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN. Heikki Sipilä LF-Seura INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN Heikki Sipilä LF-Seura 18.9.2018 Sisältö Henkilökohtaista taustaa Insinööri ja fysiikka Dimensioanalyysi insinöörin menetelmänä Esimerkki havainnon ja teorian yhdistämisestä

Lisätiedot

Tähtitieteen LUMA-työpaja

Tähtitieteen LUMA-työpaja Tähtitieteen LUMA-työpaja (Ohje työpajaan, jota käsiteltiin MAOL:in syyspäivillä 2016) Pertti Rautiainen Tähtitieteen tutkimusyksikkö Oulun yliopisto Tähtitieteen LUMA-työpaja: Maa on planeetta taustatietoa

Lisätiedot

JOHDATUS TÄHTITIETEESEEN

JOHDATUS TÄHTITIETEESEEN JOHDATUS TÄHTITIETEESEEN 765109P, 2OP HEIKKI SALO, SYKSY 2015 (heikki.salo@oulu.fi) Kurssin sisältö/aikataulu: 7 x 2h luentokertaa, perjantaisin 14-16 salissa L10 (ensimmäinen luento IT115) 11.9 1. Historiaa/Tähtitaivaan

Lisätiedot

Globaali virtapiiri. Reko Hynönen

Globaali virtapiiri. Reko Hynönen Globaali virtapiiri Reko Hynönen 23.2.2009 Globaali virtapiiri Globaali virtapiiri Galaktiset kosmiset säteet (GCR, Galactical Cosmic Rays) vuorovaikuttavat ilmakehän hiukkasten kanssa ionisoimalla niitä

Lisätiedot

Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana!

Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana! Tietokilpailun finaali Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana! Mikä on kolmas kosminen nopeus? Pakonopeus luotaimelle, joka lähetetään Maan pinnalta ulos aurinkokunnasta.

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Kehät ja väripilvet. Ilmiöistä ja synnystä

Kehät ja väripilvet. Ilmiöistä ja synnystä Kehät ja väripilvet Ilmiöistä ja synnystä Kehät - yleistä Yksi yleisimmistä ilmakehän optisista valoilmiöistä Värireunainen valokiekko Auringon, Kuun tai muun valolähteen ympärillä Maallikoilla ja riviharrastajilla

Lisätiedot

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

2. MITÄ FOTOMETRIA ON?

2. MITÄ FOTOMETRIA ON? Fotometria Tekijät: Hänninen Essi, Loponen Lasse, Rasinmäki Tommi, Silvonen Timka ja Suuronen Anne Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine: Fysiikka

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi lyhyesti. a) a, c, e, g, b),,, 7,, Ratkaisut: a) i ja k - oikea perustelu ja oikeat kirjaimet, annetaan

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

1. GRAVITAATIOVAKIO G JA ABERRAATIO

1. GRAVITAATIOVAKIO G JA ABERRAATIO 1. GRAVITAATIOVAKIO G JA ABERRAATIO Massa imee gravitaatiokenttää ja ϕ-kenttää itseensä, joita tässä yhteydessä kutsutaan yhteisesti gravitaatiokentäksi. Pienissä kappaleissa protonit suorittavat alkeisryhmäsieppauksen

Lisätiedot

Luento 10: Keskeisvoimat ja gravitaatio

Luento 10: Keskeisvoimat ja gravitaatio Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Lisätiedot