VIELÄ KÄYTÄNNÖN ASIAA

Koko: px
Aloita esitys sivulta:

Download "VIELÄ KÄYTÄNNÖN ASIAA"

Transkriptio

1 VIELÄ KÄYTÄNNÖN ASIAA Kurssin luentomuis8inpanot (ja tulevat laskarimallit) näkyvät vain kun olet kirjautunut sisään ja rekisteröitynyt kurssille WebOodin kauga Kurssi seuraa oppikirjaa kohtuullisen tarkkaan, muga pärjännet myös muillakin opuksilla jos välillä vilkuilet kirjaa esim. kirjastossa (apua mm. laskareihin) Linkki Feynmannin kirjoihin lisägy Materials kohtaan (vain taustalukemiseksi, ei vaadita kurssilla)

2 KERTAUSTA EDELLISELTÄ LUENNOLTA Sähkövaraus ja sähköinen vuorovaikutus (kahta lajia, hylkii/vetovoima, kokonaisvaraus säilyy muga siirtyy) kentän käsite (koita seligää tämä omin sanoin!) Määritetään vuorovaikutuksen kauga, muga on siellä vaikkei ole mitään minkä kanssa vuorovaikugaa Coulombin laki (mikä se on ja mistä se tuli) F(r) = k q 1 q 2 r 2 ˆr, vrt. gravitaa8o k=1/4πε 0

3 KYSYMYS: Elektroni laitetaan pisteeseen P sähkökengään E. Elektroniin vaikugava voima osoigaa P A. Oikealle B. Vasemmalle C. Nolla D. Ei ole tarpeeksi tietoa määrittää etätä

4 KERTAUSTA EDELLISELTÄ LUENNOLTA SähkökenGä on määritegy E=F/q, eli kentän suunta on siis aina voiman suunta, jonka se kohdistaisi posi8iviseen varaukseen. SähkökenGä hidastaa tai kiihdygää hiukkasta a = dv dt = F m = qe m Superposi8o! (vrt. VuKa gravitaa8o)

5 KYSYMYS: Varausten A ja B välillä on hylkivä voima. q A =4q B. Mikä seuraavista väigämistä on toga? A. F A on B > F B on A B. F A on B < F B on A C. F A on B = F B on A

6 KYSYMYS: Kaksi hiukkasta, joiden molempien varaus on +q sijaitsevat kuvan mukaises8 vierekkäin. Hiukkaseen B vaikugava voima on esitegy kuvassa. Kun hiukkasten välinen etäisyys r kaksinkertaistetaan A:+q r B:+q F 2r? A:+q B: +q A) Hiukkaseen B vaikugava voima kaksinkertaistuu, B) Hiukkaseen B vaikugava voima kasvaa yli kaksinkertaiseksi C) Hiukkaseen B vaikugava voima pienenee neljännekseen D) Hiukkaseen B vaikugava voima ei muutu

7 PISTEVARAUKSEN SÄHKÖKENTTÄ Pistevaraus q vaikugaa Coulombin lain mukaan etäisyydellä r olevaan varaukseen q 0 voimalla: F(r) = 1 4πε 0 qq 0 r 2 ˆr ˆr q q0 E Edellä olleen määritelmän mukaan pistevarauksen sähkökengävektori on: E = F q 0 = 1 4πε 0 qq 0 r 2 ˆr 1 q 0 E = 1 4πε 0 q r 2 ˆr à pallosymmetrinen, joka suuntaan samanlainen.

8 PISTEVARAUKSEN SÄHKÖKENTTÄ YLEINEN Entäpä jos pistevaraus ei ole origossa? à yleinen muoto: E(r) = 1 4πε 0 q (r r ) r r 3 tarkastelupiste Useita varauksia q i, i = 1,..., N? r r - r varaus q à superposi8o (kengä on osakenzen summa): r E(r) = 1 4πε 0 N (r r q i ) i=1 i 3 r r i Origo

9 KAKSI ERIMERKKISTÄ PISTEVARAUSTA: KENTTÄVIIVAESITYS Kentän suunta tangen8n suuntaan Kentän voimakkuus = viivojen 8heys

10 KAKSI POSITIIVISTA PISTEVARAUSTA: KENTTÄVIIVAESITYS

11 Laskuharjoitus 1. Tehtävä 4 Tasasivuisen kolmion sivun pituus on a. Kolmion jokaiseen kärkeen asetetaan posi8ivinen pistevarus +q. Määritä sähkökengävektori E säännöllisen tetraedrin kärjessä, jonka pohja edellä mainigu kolmio on. Vihje: Valitse yksi kolmion sivu esim. x- akselin suuntaiseksi niin egä keskipiste on y- akselilla. Laske tetraedrin korkeus. Määritä etäisyysvektorit varauksien ja kärjen välillä. Laske kokonaissähkökengä superposi8operiaageella. Mie8 myös hieman symmetriaa! +q +q a +q

12 KYSYMYS: Laita sähkökentän voimakkuudet pisteissä 1,2,3 ja 4 pienimmästä suurimpaan q r 1 2q 2r r 2 q 2r 3 2q 4 A. E 2 > E 4 > E 1 > E 3 B. E 1 = E 2 > E 3 = E 4 C. E 2 > E 1 = E 4 > E 3 D. E 2 > E 1 > E 4 > E 3 E. E 1 > E 2 > E 3 > E 4

13 KYSYMYS: Mihin suuntaa sähkökengä pisteessä P osoigaa? - P + + A. Ylös B. Alas C. Vasemmalle D. Oikealle E. Sähkökenttä on nolla

14 SÄHKÖDIPOLI JA DIPOLIN SÄHKÖKENTTÄ kahden yhtä suuren, muga erimerkkisen pistevarauksen systeemi. à kokonaisvaraus on nolla Yksinkertaisin neutraalin aineen osanen Miten lasketaan dipolin sähköken9ä pisteessä P? à V: Kummankin varauksen aiheugaman kentän summa (superposi8operiaate) E = E + + E = 1 4πε 0 ( q r + 2 ˆr + q r 2 ˆr ) r + P E + E E - r - ˆr ˆr + +q d -q

15 NaCl- molekyyli on dipoli, jossa Na + ja Cl - ionien etäisyys d = 0.26 nm. Samalle etäisyydelle d kummankin ionin keskipis- teestä tuodaan elektroni. Mikä voima vaikugaa elektroniin ja minkä kiihtyvyyden se saa? Cl- ionin ja elektronin välinen voima pyrkii työntämään elektronia Cl- ionista poispäin Coulombin lain mukaan ionit vaikugavat elektroniin voimilla! F 1 eq = rˆ 2 4πε d 0 DIPOLIN SÄHKÖKENTTÄ: ESIMERKKI Na- ionin ja elektronin välinen voima vetää elektronia Na- ionia koh8. y x d Cl - q=-e d -e F - F + d Na + q=+e F kok

16 Superposi8operiaaGeen mukaan elektroniin vaikugava kokonais- voima on näiden vektorisumma F e,kok =F - +F + Vektorien F - ja F + pystysuorat komponen8t F y ovat yhtä suuret, muga vastakkaissuuntaiset, joten ne kumoutuvat. 0 0 Fx cos60 F+ cos60 F F = 1 4πε e d kok 2 0 DIPOLIN SÄHKÖKENTTÄ: ESIMERKKI Vaakasuorat komponen8t x-akselin suuntaan ovat myös yhtä suuret: 2 0 ½ e = = F = 2cos60 F+ = 2 4 πε d 2! F kok = 1 à kok 2 0 e 2 î = 3,42 nnî 2 4πε 0 d Kiihtyvyys on impulssiperiaageen mukaan! F = d! p dt = m e d! v dt

17 Laskuharjoitus 1. Tehtävä 5 Määritä sähködipolin aiheugaman sähkökentän suunta ja suuruus kaukana dipolista a) Dipolin akselilla b) Dipolin keskinormaalilla Vihje: Lue oppikirjaa! Sieltä löytyy kyseisen tehtävän lasku aika tarkkaan käytynä lävitse. Mie8 minkälaisen voiman dipolin varaukset aiheugavat tarkastelu- pisteisiin. Käytä hyväksi egä tässä pätee nyt siis s << r. Kiinnitä huomiota minkälaisia approksimaa8oita joudut tekemään - s + r r

18 Laskuharjoitus 1. Tehtävä 5 Määritä sähködipolin aiheugaman sähkökentän suunta ja suuruus kaukana dipolista a) Dipolin akselilla b) Dipolin keskinormaalilla Vastaukset: r Suunnat: hahmogelemalla kentät huomaat helpos8 mitkä kompo- nen8t menevät nollaan - s + r

19 Laskuharjoitus 1. Tehtävä 5 Määritä sähködipolin aiheugaman sähkökentän suunta ja suuruus kaukana dipolista a) Dipolin akselilla b) Dipolin keskinormaalilla Suunnat: hahmogelemalla kentät huomaat helpos8 mitkä komponen8t menevät nollaan (kengäviivaesitys). Samalla antaa vihjeitä miksi riippuvuus on nyt r -3 eikä r -2 kuten pistevaraukselle.

20 määritellään: p=qd DIPOLIN DIPOLIMOMENTTI missä d on vektori dipolin nega8ivisesta varauksesta posi8iviseen varaukseen Dipolin akselilla kaukana dipolista dipolin sähkökengä- vektori on (laskuharjoitus 1.5 ja kirja!) d +q à E = 1 2πε 0 p y 3, -q p missä dipolin keskipisteen on oletegu olevan origossa ja dipolimomen8n y- akselin suuntainen.

21 DIPOLI SÄHKÖKENTÄSSÄ Mitä tapahtuu jos laitetaan dipoli homogeeniseen sähköken9ään? V: Dipolin posi8iviseen varaukseen vaikugaa kentän suuntainen voima F = Eq. Dipolin nega8iviseen varaukseen vaikugaa yhtä suuri, muga vastakkaissuuntainen voima. à SähkökenGä pyrkii siis kiertämään dipolia kentän suuntaiseksi. -q F p E F +q (d/2)sinθ VääntömomenZ τ=r F dipolin massakeskipisteen suhteen on: τ = F(d 2)sinθ + F(d 2)sinθ = Fd sinθ, missä θ dipolimomenzvektorin ja sähkökentän välinen kulma.

22 DIPOLI SÄHKÖKENTÄSSÄ Kirjoitetaan F=qE ja d=p/q, jolloin vääntömomen8lle saadaan E p τ = qe sinθ = pe sinθ q VääntömomenZvektorille saadaan siten τ = p E -q F p F +q Miten dipoli suuntautuu suhteessa sitä kääntävään ken9ään? (d/2)sinθ Dipolin kengä heikentää ulkoista kengää à polarisoituman mekanismi

23 DIPOLI SÄHKÖKENTÄSSÄ Mitä tapahtuu jos ken9ä onkin epähomogeeninen? +Q:n aiheugamat sähkökentät +q ja q kohdissa* F +q -q + s - F + +Q * Muista egä pistevarauksen kengä pienenee r -2 à epähomogeeninen kengä

24 DIPOLI SÄHKÖKENTÄSSÄ Homogeeninen sähkökengä kääntää dipolia (kentän suuntaiseksi niin egä se heikentää ulkoista kengää) Epähomogeeninen sähkökengä myös kiihdygää dipolia

25 Laskuharjoitus 1. Tehtävä 6 Vesimolekyylillä H 2 O on pysyvä sähköinen dipolimomenz, jonka suuruus on Cm. Määritä vesimolekyyliin kohdistuva vääntömomenz dipolimomen8n ja sähkökentän suunnan välisen kulman funk8ona sähkökentässä, jonka suuruus on on N/C. Piirrä vääntömomen8n kuvaaja kulman funk8ona. Milloin vääntömomenz on suurin ja milloin se häviää? Vihje: VääntömomenZ sähkökentässä ja miten kengä vääntää dipolia (miten riippuu dipolin ja sähkökentän välisestä kulmasta) Myös pohdi: molekyylissä on kolme varausta, ei kaksi. Miten vesimolekyylin dipolimomenz määritetään? Kokonaisvarus on kuitenkin nolla. p

26 Dipoli voi olla pysyvä tai se voi syntyä ulkoisen kentän vaikutuksesta. Esimerkki: DIPOLIN SYNTYMINEN p p Vesimolekyylin on pysyvä dipoli. Nega8iviset elektronit viegävät enemmän aikaa happiatomissa Tämä dipoli on syntynyt ulkoisen kentän vaikutuksesta.

27 DIPOLIN KENTTÄ YLEISESTI Asetetaan varaus q paikkaan r ja varaus +q paikkaan r +d kuvan mukaises8 r r ' r E(r) y q d +q r ' r '+ d Dipolin kengä E pisteessä r on (superposi8o!) E(r) = q 4πε 0 " $ $ # r r d r r r r d 3 r r 3 % ' ' & x

28 DIPOLIN KENTTÄ KAUKANA DIPOLISTA (YLEINEN) KenGä kaukana dipolista, ts. kun r-r >> d saadaan kun approksimoidaan r-r'-d 3 = " #! ( ) 2 ( r r' ) d $ % & 3 2 =! "(r r') 2 2(r r') d + d 2 = r r' 3 (1 2 # $ 3/2 (r r') d + d 2 r r' 2 r-r' 2 ) 3/2 hyvin pieni termi r r ' 3 (r r') d (1+ 3 ), sillä (1+ x) n 1+ nx kun x <<1 r r' 2 Sijoitetaan takaisin edellisen kalvon sähkökentän lausekkeeseen. SiGen sievennetään ja merkitään p = qd,

29 DIPOLIN KENTTÄ KAUKANA DIPOLISTA (YLEINEN) 1 3 (r r ) p p Er () = ( r r') 4 πε 0 r r r r E(r) = 1 4πε Jos varaus q on origossa à r = 0. Huomioimalla yksikkö- vektori rˆ = r r, saadaan # 3p ˆr ˆr p & 1 % ( = # $ r 3 r 3 ' 4πε 0 r 3 p ˆr 3 $ ( ) ˆr p & ' qscosθ Huom. Laskuharjoitus 1 Tehtävän 5 tulokset voitaisiin laskea myös tästä yleisestä tuloksesta suoraan. à tästä huomataan, egä dipolin kengä kaukana myös mielivaltaisessa pisteessä on muotoa r -3

30 KYSYMYS: Mikä sähköken8stä aiheugaa kyseisen protonin radan? A) B) C) D) E)

KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan.

KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. : Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. Protoni Elektroni 17 protonia 19 electronia 1,000,000 protonia 1,000,000 elektronia lasipallo puu*uu 3 elektronia (A) (B) (C) (D) (E)

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

KURSSIN TÄRKEIMPIÄ AIHEITA

KURSSIN TÄRKEIMPIÄ AIHEITA KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus AT taattinen kenttäteoria kevät 6 / 5 Laskuharjoitus / Coulombin laki ja sähkökentänvoimakkuus Tehtävä Kaksi pistevarausta ja sijaitsevat x-tason pisteissä r x e x e ja r x e x e. Mikä ehto varauksien

Lisätiedot

Teddy 1. harjoituksen malliratkaisu kevät 2011

Teddy 1. harjoituksen malliratkaisu kevät 2011 Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

SOVELLUS: SYKLOTRNI- KIIHDYTIN

SOVELLUS: SYKLOTRNI- KIIHDYTIN SOVELLUS: SYKLOTRNI- KIIHDYTIN sähköken+ä levyjen välissä vaihtuu jaksollisesj taajudella f cyc, niin e+ä se kiihdy+ää vara+ua hiukkasta aina kun se kulkee välikön ohi. potenjaali ΔV oskilloi ns. syklotroni

Lisätiedot

Potentiaali ja potentiaalienergia

Potentiaali ja potentiaalienergia Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,

Lisätiedot

Coulombin laki ja sähkökenttä

Coulombin laki ja sähkökenttä Luku 1 Coulombin laki ja sähkökenttä 1.1 Sähkövaraus ja Coulombin voima Sähköisten ilmiöiden olemassaolo ilmenee niiden aiheuttamista mekaanisista vaikutuksista (osittain myös optisista vaikutuksista;

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

STATIIKKA. TF00BN89 5op

STATIIKKA. TF00BN89 5op STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 2 Tavoitteet Sähkövaraus ja sähkökenttä Sähködipoli Gaussin laki Varaus ja sähkövuo Sähkövuon laskeminen Gaussin laki Gaussin

Lisätiedot

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

Paraabeli suuntaisia suoria.

Paraabeli suuntaisia suoria. 15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki

Lisätiedot

Osa 5. lukujonot ja sarjat.

Osa 5. lukujonot ja sarjat. Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

4 Kaksi- ja kolmiulotteinen liike

4 Kaksi- ja kolmiulotteinen liike Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2 Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot