Coulombin laki ja sähkökenttä

Koko: px
Aloita esitys sivulta:

Download "Coulombin laki ja sähkökenttä"

Transkriptio

1 Luku 1 Coulombin laki ja sähkökenttä 1.1 Sähkövaraus ja Coulombin voima Sähköisten ilmiöiden olemassaolo ilmenee niiden aiheuttamista mekaanisista vaikutuksista (osittain myös optisista vaikutuksista; kipinät ja salamat). Kappaleita voidaan varata sähköisesti ja näiden varausten olemassaolo ilmenee varattujen kappaleiden välisinä voimina. Havaitaan, että sähkövarausta on kahta lajia. On nimittäin mahdollista varata kaksi metallikappaletta siten, että niiden aiheuttamat sähköiset ilmiöt häviävät, kun kappaleet yhdistetään. Tämä voidaan matemaattisesti esittää positiivisten ja negatiivisten suureiden avulla. Jos toisen metallikappaleen varaus on +q ja toisen q, on kappaleiden yhdistämisen jälkeen varaus +q + ( q) = 0. Sähköisten ilmiöiden häviäminen selittyy sillä, että yhdistetyn kappaleen sähkövaraus on nolla. Jos yhdistettävien kappaleiden varaukset eivät ole vastalukuja, sähköiset ilmiöt eivät häviä yhdistämisen jälkeen. q 1 F 21 q 2 r21 Kuva 1.1: Voima, jonka varaus 2 kohdistaa varaukseen 1. Kahden paikallaan olevan varatun kappaleen välillä voi vaikuttaa vetovoima tai poistovoima. Tämäkin selitetään positiivisten ja negatiivisten varausten avulla. Samanmerkkisten varausten välillä vaikuttaa poistovoima, erimerkkisten välillä vetovoima. Kaikissa tapauksissa voiman suuruus on verrannollinen kumpaankin varaukseen ja kääntäen verrannollinen varausten väliseen etäisyyteen. Pieni kappale näyttää etäältä katsottuna pistemäiseltä. Tällaisten pistemäisten varausten välinen voima voidaan esittää Coulombin voiman (Charles Coulomb, 1785) avulla muodossa c Tuomo Nygrén, 2010 F 21 = q 1q 2 4πε 0 r 2 21 u r = q 1q 2 4πε 0 r 3 21 r 21. (1.1) 23

2 24 LUKU 1. COULOMBIN LAKI JA SÄHKÖKENTTÄ Tässä F 21 on voima, jolla varaus 2 vaikuttaa varaukseen 1, q 1 ja q 2 ovat varausten 1 ja 2 suuruudet, r 21 on varauksen 1 etäisyys varauksesta 2, u r on yksikkövektori, joka osoittaa varauksesta 2 varauksen 1 suuntaan ja ε 0 on tyhjiön permittiivisyys. Coulombin lain esitysmuoto (1.1) sisältää sekä poisto- että vetovoiman. Jos nimittäin kaksi varausta ovat samanmerkkisiä, q 1 q 2 > 0, ja F 21 on samansuuntainen kuin u r, jolloin kyseessä on poistovoima. Jos taas kaksi varausta ovat erimerkkisiä, q 1 q 2 < 0, ja F 21 ja u r ovat vastakkaissuuntaisia. Tällöin kyseessä on vetovoima. Jos yhtälö (1.1) kirjoitetaan sille voimalle, jonka varaus 1 kohdistaa varaukseen 2, huomataan, että lauseke pysyy muuten samana, mutta yksikkövektorin u r suunta muuttuu päinvastaiseksi. Siitä seuraa, että F 21 = F 12, joten Coulombin laki on sopusoinnussa vaikutuksen ja vastavaikutuksen lain kanssa, kuten tulee ollakin. SI-järjestelmässä sähkövarauksen yksikkö määritellään sähkövirran yksikön ampeerin avulla ja se on [q] = As = C, (1.2) missä on otettu käyttöön uusi yksikkönimi coulombi. Permittiivisyys on SI-järjesmään liittyvä luonnonvakio, ja yhtälön (1.1) perusteella sen yksikkö olisi C 2 /(Nm 2 ). Tätä esitystapaa ei kuitenkaan käytetä, vaan voidaan osoittaa, että [ε 0 ] = As Vm = F m, (1.3) missä V on jännitten yksikkö voltti ja F on kapasitanssin yksikkö faraday. Tyhjiön permittiivisyyden arvo on ε 0 = 1 As µ 0 c2 Vm. (1.4) Useamman varauksen yhteen varaukseen vaikuttava voima saadaan muotoa (1.1) olevien voimien vektorisummana. Esimerkiksi kuvassa 1.2 varaus q 1 kohdistaa varaukseen q voiman F 1q ja varaus 2 voiman F 2q. Varaukseen q kohdistuva kokonaisvoima on silloin F q = F 1q + F 2q. Tällaisessa tapauksessa on käytännöllistä käyttää varausten paikkavektoreita r 1, r 2 ja r. Silloin on huomattava, että paikkavektori kaavassa (1.1) ilmoittaa voiman kohteen paikan voiman aiheuttajan suhteen. Näinollen q 1 r 1 r 1q F 2q O r 2 q 2 r r 2q q F 1q F Kuva 1.2: Kahden varauksen kolmanteen kohdistama voima.

3 1.2. SÄHKÖKENTTÄ 25 kuvan 1.2 tapauksessa kaavassa on käytettävä etäisyysvektoreita r 1q = r r 1 ja r 2q = r r 2. Siis F = F 1q + F 2q = q 1 q 4πε 0 r r 1 (r r q 2 q 1) + 3 4πε 0 r r 2 (r r 2). (1.5) 3 Tulos on suoraan yleistettävissä mielivaltaiseen varausjoukkoon. Jos avaruudessa sijaitsee N pistevarausta q i paikoissa r i, niin paikassa r olevaan varaukseen q kohdistuva voima on F = q N q i 4πε 0 r r i (r r i). (1.6) 3 i=1 Toisin kuin mekaniikan yhtälöt, sähköopin yhtälöt eivät ole yksikköjärjestelmästä riippumattomia. Esimerkiksi Coulombin voiman esitys (1.1) ei päde cgs-järjestelmässä. Tämä johtuu siitä, että sähkövaraus (tai virta) määritellään eri järjestelmissä eri tavoilla. On myös olemassa useita erilaisia cgs-järjestelmiä. Sähkövaraus on eräs alkeishiukkasten ominaisuus. Aineessa se ilmenee siten, että atomien ytimet ovat positiivisesti varattuja ja elektronit negatiivisesti varattuja. Sähkövaraus on kvantittunut: kaikki vapaat varaukset ovat alkeisvarauksen e monikertoja. Syytä tähän ei tiedetä. Alkeisvarauksen suuruus on e = (1, ± 0, ) C. Protonin varaus on +e ja elektronin varaus e. Baryonit (esim. protonit ja neutronit) koostuvat kvarkeista. Kvarkkien varaukset ovat alkeisvarauksen murto-osia ±e/3 tai ±2e/3. Baryonit (esimerkiksi protoni ja neutroni) koostuvat aina kolmesta kvarkista siten, että kokonaisvaraus on 0, e tai e. Kvarkkeja ei ole havaittu vapaina. Coulombi on hyvin suuri sähkövaraus. Hankaamalla kappaleeseen voidaan saada suuruusluokkaa = 10 8 C = 10 nc oleva varaus. Voimakkaasti varatun kappaleen pinnalla vain noin yksi 10 5 atomista menettää elektronin tai saa ylimääräisen elektronin. Toisaalta kappaleet sisältävät runsaasti sähkövarauksia: 250 g:ssa vettä on negatiivista varausta g/18 (g mol 1 ) mol 1 ( 1, ) C = 1, C. Ytimissä on kuitenkin yhtä paljon positiivista varausta, jolloin neutraalin veden kokonaisvaraus on nolla. 1.2 Sähkökenttä Yhtälön (1.6) mukaan varaukseen vaikuttava sähköinen voima on verrannollinen varauksen suuruuteen. Jos tämä voima jaetaan kohdevarauksen suuruudella, saadaan vektori E = F q = 1 4πε 0 N i=1 q i r r i 3 (r r i), (1.7) joka ei riipu siitä varauksesta, johon voima F vaikuttaa. Jos varausta q liikutetaan paikasta toiseen ja varauksia q i pidetään paikallaan, voidaan E määrittää jokaisessa avaruuden pisteessä. Näinollen kyseessä on vektorikenttä, jota nimitetään

4 26 LUKU 1. COULOMBIN LAKI JA SÄHKÖKENTTÄ sähkökentän voimakkuudeksi tai lyhyemmin sähkökentäksi. Sähkökentässä E paikallaan olevaan varaukseen q kohdistuu siis voima F = qe. (1.8) Tämän mukaan sähkökentän yksikkö olisi N/C, mutta tällaista yksikkömerkintää ei kuitenkaan käytetä. Osoittautuu että [E] = [F ] [q] = V m, (1.9) mikä on yleisesti käytössä oleva sähkökentän SI-yksikkö. Tässä esiintyvä uusi yksikkö V on nimeltään voltti. Coulombin lain (1.1) avulla pistemäisen origossa sijaitsevan varauksen q aiheuttamaksi sähkökentäksi saadaan (tässä q t on paikkaan r = ru r asetettu testivaraus) E = F q t = q 4πε 0 r 2 u r = E r (r)u r, (1.10) missä E r (r) = q/(4πε 0 r 2 ) on sähkökentän radiaalikomponentti (pallokoordinaatistossa). Huomaa, että tämä komponentti on positiivinen, jos q > 0 ja negatiivinen jos q < 0. Faraday otti käyttöön noin v kenttäviivat, joiden avulla sähkökenttää (ja muita kenttiä) voidaan visualisoida. Kenttäviivoilla on seuraavat ominaisuudet: Kenttäviivat ovat kaikkialla sähkökentän suuntaisia (siis kenttäviivan tangentti antaa E:n suunnan). Kenttäviivojen tiheys on verrannollinen sähkökentän voimakkuuteen. Kenttäviivat alkavat positiivisesta varauksesta ja päättyvät negatiiviseen. Kenttäviivat ovat jatkuvia varausten välisessä avaruudessa. Kenttäviivat eivät leikkaa toisiaan. q > 0 q < 0 Kuva 1.3: Pistevarauksen aiheuttaman sähkökentän kenttävivat.

5 1.3. JATKUVASTI JAKAUTUNUT VARAUS 27 Kuva 1.4: Dipolikentän kenttävivat. Positiivisen pistevarauksen aiheuttaman sähkökentän kenttäviivat ovat suoria, jotka lähtevät varauksesta kaikkiin suntiin (kuva 1.3). Vastaavasti negatiivisen pistevarauksen aiheuttamat kenttäviivat ovat suoria, jotka saapuvat kaikista suunnista ja päätyvät varaukseen. Itseisarvoltaan yhtäsuuret, mutta vastakkaismerkkiset varaukset muodostavat sähködipolin. Tällaisen varaussysteemin kenttäviivat lähtevät dipolin positiivisesta varauksesta ja päätyvät negatiiviseen. Ne on esitetty kuvassa Jatkuvasti jakautunut varaus Jos avaruudessa on hyvin lähellä toisiaan paljon pieniä varauksia, ovat kaavat (1.6) ja (1.7) epäkäytännöllisiä. Tällaisessa tapauksessa sähkövarausta voidaan pitää jatkuvasti jakautuneena ja voidaan määritellä varaustiheys seuraavalla tavalla. Kuvassa 1.5 a) paikassa r oleva pieni tilavuusalkio δτ sisältää erään nettovarauksen δq, joka a)!#!q = "!# b) r "(r) r-r r r!s r - r r O O Kuva 1.5: Tilavuus- ja pinta-alkion sisältämä varaus.

6 28 LUKU 1. COULOMBIN LAKI JA SÄHKÖKENTTÄ on tilavuuden sisällä olevien varausten summa. Tällöin varaustiheys paikassa r on δq ρ(r) = lim δτ 0 δτ. (1.11) Varaustiheyden idea on täsmälleen sama kuin mekaniikassa käytetyn massan tiheyden idea. Samoin kuin massan tiheys määritellään massana tilavuusyksikköä kohti, määritellään varaustiheys varauksena tilavusyksikköä kohti. Varaustiheys voi olla erilainen eri paikoissa; siis se voi olla paikan funktio. Koska varaustiheys on skalaari, kyseessä on skalaarikenttä. Varaustiheyden yksikkö on [ρ] = C m 3. (1.12) Joskus varaus voi sijaita niin ohuessa kerroksessa, että on käytännöllistä katsoa sen muodostavan äärettömän ohuen varauslevyn. Tällaista tilannetta esittää kuva 1.5 b). Jos paikassa r pinnalla S oleva pieni pinta-alkio δs sisältää varauksen δτ, määritellään pinnan varauskate yhtälöllä Varauskatteen yksikkö on δq σ(r) = lim δs 0 δs. (1.13) [σ] = C m 2. (1.14) 1.4 Jatkuvasti jakautuneen varauksen kenttä Sähkökentän laskemiseksi jatkuvasti jakautuneen varauksen tapauksessa (kuva 1.5 a) koko avaruus ajatellaan ensin jaetuksi pieniin tilavuusalkioihin. Jos i:nnen alkion tilavuus on δτ i on sen varaus δq = ρ(r i )δτ i, missä r i on alkion paikka. Yhtälön (1.7) mukaisesti kaikkien näin saatujen varausalkioiden aiheuttama sähkökenttä on tällaisten alkioiden aiheuttamien sähkökenttien summa. Siis E(r) = 1 4πε 0 n i=1 ρ(r i )δτ i r r i 3 (r r i). (1.15) Kun avaruuden jakoa tilavuuselementteihin tihennetään rajatta, summa lähenee tilavuusintegraalia, joten sähkökenttä on E(r) = 1 4πε 0 ρ(r )(r r )dτ r r 3, (1.16) missä tilavuusintegrointi suoritetaan koko avaruuden yli. Samalla periaatteella nähdään, että ohuella pinnalla olevan varauksen aiheuttama sähkökenttä on E(r) = 1 4πε 0 missä integraali lasketaan kaikkien varattujen pintojen yli. σ(r )(r r )ds r r 3, (1.17)

7 1.5. SÄHKÖKENTÄN LASKEMINEN COULOMBIN LAISTA Sähkökentän laskeminen Coulombin laista Tässä kappaleessa sovelletaan Coulombin lakia pariiin esimerkkiin Viivalähde Tarkastellaan äärettömän pitkää suoraa varattua lankaa, jonka varaus pituusyksikköä kohti on λ (kuva 1.6) ja lasketaan sähkökenttä etäisyydellä r langasta. Valitaan z-akseli langan suuntaiseksi ja asetetaan tarkastelupiste x-akselille. Kohdassa z oleva pituuselementti dz sisältää varauksen dq + = λdz ja se aiheuttaa tarkastelupisteessä sähkökentän de + = dq + 4πε 0 a 2 u + = λdz 4πε 0 (z 2 + r 2 ) u +. (1.18) Vastaavasti kohdassa z oleva pituuselementti dz sisältää varauksen dq = dq + = λdz ja sen aiheuttama sähkökenttä on de = dq 4πε 0 a 2 u = λdz 4πε 0 (z 2 + r 2 ) u. (1.19) Ilmeisesti näiden kahden kentän z-komponentit ovat itseisarvoltaan yhtä suuret, mutta vastakkaismerkkiset, joten ne kumoavat toisensa. Näinollen summakentällä on vain x-komponentti de = 2 cos θ λdz 4πε 0 (z 2 + r 2 ) u x = rλdz 2πε 0 a(z 2 + r 2 ) u x = rλdz 2πε 0 (z 2 + r 2 ) 3/2 u x. (1.20) Kokonaissähkökenttä saadaan tästä integroimalla. Integrointi onnistuu sijoituksella z = r tan θ, josta dz = rdθ/ cos 2 θ ja 1/(z 2 + r 2 ) 3/2 = cos 3 θ/r 3. Siis joten de = rλ cos3 θ rdθ 2πε 0 r 3 cos 2 θ u x = E = λ 2πε 0 r π/2 0 cos θdθu x = λ cos θdθ 2πε 0 r u x, (1.21) λ 2πε 0 r u x. (1.22) de+ x deu+ u-! r a=(r 2 + z 2 ) 1/2 dz -z 0 z z Kuva 1.6: Viivalähteen sähkökentän laskeminen.

8 30 LUKU 1. COULOMBIN LAKI JA SÄHKÖKENTTÄ Rengaslähde Rengasmaisen varausjakautuman kentän laskeminen yleisessä avaruuden pisteessä johtaa elliptisiin integraaleihin. Tässä tyydytään laskemaan kenttä vain renkaan akselilla. Valitaan renkaan akseli koordinaatiston z-akseliksi (kuva 1.7). Jos renkaan varaus pituusyksikköä kohti on λ, on ds:n mittaisen viivaelementin varaus λds. Ilmeisesti renkaan vastakkaisilta puolilta löytyvien viivaelementtien ds 1 ja ds 2 sisältämät varaukset aiheuttavat z-akselilla itseisarvoltaan yhtä suuret kentät de 1 ja de 2. Kuva on piirretty siten, että λ on oletettu positiiviseksi. Kenttien de 1 ja de 2 suunnat ovat sellaiset, että niiden z-akselia vastaan kohtisuorat komponentit kumoavat toisensa. Näinollen kokonaissähkökenttä on z-akselin suuntainen ja sen laskemiseksi riittää, että lasketaan kentän de 1 z-komponentti ja integroidaan renkaan ympäri. Ilmeisesti de 1z (z) = = λds 4πε 0 (a 2 + z 2 ) u u λds z z = 4πε 0 (a 2 + z 2 ) (a 2 + z 2 ) 1/2 λzds, (1.23) 4πε 0 (a 2 + z 2 ) 3/2 missä u on ds:stä poispäin osoittava yksikkövektori. Siis kokonaiskenttä on E z (z) = = λz 4πε 0 (a 2 + z 2 ) 3/2 C ds = λz 2πa 4πε 0 (a 2 + z 2 ) 3/2 λaz. (1.24) 2ε 0 (a 2 + z 2 ) 3/2 Tämä johto on muotoiltu niin, että tulos on voimassa sekä positiivisilla että negatiivisilla λ:n ja z:n arvoilla. Siis jos λ > 0, on E z (z) positiivinen positiivisella z- akselilla ja negatiivinen negatiivisella z-akselilla. Negatiivisilla λ:n arvoilla suunnat ovat päinvastaiset. x ds 1 (a 2 + z 2 ) 1/2 a de 2 y C O z de 1 z ds 2 Kuva 1.7: Rengaslähteen ja ympyrälevyn sähkökentän laskeminen renkaan akselilla.

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

1 Voima ja energia sähköstatiikassa

1 Voima ja energia sähköstatiikassa 1 Voima ja energia sähköstatiikassa ähköstatiikassa tarkastellaan levossa olevia sähkövarauksia. 1.6 ähkövaraus Ranskalainen fyysikko Charles Coulomb osoitti kokeillaan v. 1785, että sähköllä varattujen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään 31 VEKTORIANALYYSI Luento 5 Divergenssi F Vektorikentän F(, y, z ) divergenssi määritellään F F F y z y F z. Divergenssistä käytetään usein myös merkintää div, Divergenssi pistetulona, F div F. F voidaan

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Teddy 1. harjoituksen malliratkaisu kevät 2011

Teddy 1. harjoituksen malliratkaisu kevät 2011 Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 1 Katsaus kurssin aihepiiriin Sähkömagnetiikka Luentoviikko

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 1 Katsaus kurssin aihepiiriin Sähkömagnetiikka Luentoviikko 1: tavoitteet Vektorianalyysiä Karteesinen koordinaatisto Peruslaskutoimitukset

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni. Luku 14 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G: 7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

12. Derivointioperaattoreista geometrisissa avaruuksissa

12. Derivointioperaattoreista geometrisissa avaruuksissa 12. Derivointioperaattoreista geometrisissa avaruuksissa 12.1. Gradientti, divergenssi ja roottori 328. Laske u, kun u on vektorikenttä a) (z y)i + (x z)j + (y x)k, b) e xyz (i + xlnyj + x 2 zk), c) (x

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

= ( F dx F dy F dz).

= ( F dx F dy F dz). 17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin

Lisätiedot

5 Kentät ja energia (fields and energy)

5 Kentät ja energia (fields and energy) 5 Kentät ja energia (fields and energy) Mansfield and O Sullivan: Understanding Physics, kappaleen 5 alkuosa 5.1 Newtonin gravitaatiolaki Newton: vetovoima kahden kappaleen välillä on tai tarkemmin F m

Lisätiedot

Fr ( ) Fxyz (,, ), täytyy integroida:

Fr ( ) Fxyz (,, ), täytyy integroida: 15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima

Lisätiedot

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ 58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Fysiikan perusteet 2

Fysiikan perusteet 2 Fysiikan perusteet 2 Petri Välisuo petri.valisuo@uva.fi 2. lokakuuta 2013 Sisältö 1 Sähkövaraus ja sähkökenttä 5 1.1 Sähkövaraus ja aineen rakenne................... 5 1.2 Johteet, eristeet ja indusoitunut

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 2 Tavoitteet Sähkövaraus ja sähkökenttä Sähködipoli Gaussin laki Varaus ja sähkövuo Sähkövuon laskeminen Gaussin laki Gaussin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot