Hamiltonin mekaniikka

Koko: px
Aloita esitys sivulta:

Download "Hamiltonin mekaniikka"

Transkriptio

1 Luku 7 Hamltonn mekankka Tässä luvussa mekankan formalsma vedään velä Lagrangen mekankkaakn järeämpään muotoon. Tutustumme jo luvussa 3 johnkn kanonsen formalsmn peruspalkohn, kuten kanonsn mpulssehn, syklsn koordnaattehn ja Hamltonn funktoon. Kanonnen formalsm eroaa Lagrangen formalsmsta sten, että kun Lagrangen formalsmssa ol selkeäst erllset koordnaatt {q} ja nopeudet { q}, nn nyt kanonset muuttujajoukot {q} ja {p} ovat samanarvosessa asemassa. Nden välllä vodaan tehdä nk. kanonsa muunnoksa tarkasteltavan ongelman kannalta mahdollsmman tehokkaan muuttujajoukon löytämseks. Vakka nyt esntulevat tarkastelut saattavatkn tuntua tarpeettoman abstraktelta, nllä on tärkeä osa esmerkks srryttäessä kvanttmekankkaan, muotoltaessa statststa fyskkaa ta tarkasteltaessa kaoottsen dynamkan ongelma. Sspä turvavyöt knn ja pää kylmänä eteenpän! 7.1 Hamltonn lkeyhtälöt Lagrangen funkto annetaan koordnaatten, nden nopeuksen ja ajan funktona L({q}, { q}, t). Lsäks olemme määrtelleet kanonset mpulsst p = L q. Kanonsessa formalsmssa systeem kuvataan (q, q)-avaruuden sjasta (q, p)-avaruudessa. Muunnos tehdään antamalla koordnaattnopeudet funktona q = q ({q}, {p}, t). Luvussa 3 johdettu Hamltonn funkto ( ) L H = q L (7.1) q vodaan nyt määrtella lausekkeella H({q}, {p}, t) = p q ({q}, {p}, t) L({q}, { q({q}, {p}, t)}, t). (7.2) 112

2 LUKU 7. HAMILTONIN MEKANIIKKA 113 Koska kanonset koordnaatt ja mpulsst ovat rppumattoma tosstaan, saadaan Hamltonn funkton gradenteks nden suhteen yhtälöt H q k = p q q k L q k L q q q k = q p d q k dt p k q p q k = ṗ k (7.3) ja H = q k + q p L q p k p k q p k = q k. (7.4) Saatuja yhtälötä H q k = ṗ k (7.5) H p k = q k (7.6) kutsutaan Hamltonn lkeyhtälöks. Yhtälöstä (7.5) näkyy suoraan, että jos koordnaatt q k on syklnen, nn stä vastaava kanonnen mpulss p k on lkevako. Lagrangen yhtälössä on vapausasteden lukumäärän (n) verran tosen kertaluvun dfferentaalyhtälötä, kun taas Hamltonn yhtälössä on 2n kpl ensmmäsen kertaluvun yhtälötä. Teoreettsssa tarkastelussa ensmmäsen kertaluvun yhtälöt ovat usemmten yksnkertasempa kästellä, vakka ntä ols kaksnkertanen määrä. Mkäl lopulta on kutenkn laskettava hukkasen rata, täytyy ṗ k :t velä ntegroda kertaalleen, jotta nstä saadaan nopeus. Lasketaan stten Hamltonn funkton kokonasakadervaatta, josta tulee dh dt = L t. (7.7) Jos Lagrangen funkto e rpu eksplsttsest ajasta, energa (E) on lkevako. Tällön Hamltonn funkto on muotoa H = T + U = E. Hamltonn funkto ja kokonasenerga evät välttämättä ole sama asa! Ne vodaan samastaa varmuudella anoastaan skleronomslle (ajasta rppumattomlle) konservatvslle systeemelle. Tarkastellaan asan valasemseks klasssta esmerkkä, jossa tasasella nopeudella v 0 lkkuvassa kärryssä on jousen (jousvako k) varassa lkkeen suunnassa oskllova massa m. Ohttakoon massa orgon hetkellä t = 0 ollen juur sllon tasapanoasemassaan (el valtaan orgo sllä tavalla). Lagrangen funkto on nyt josta saadaan lkeyhtälöks L(x, ẋ, t) = T U = 1 2 mẋ2 1 2 k(x v 0t) 2, (7.8) mẍ = k(x v 0 t). (7.9)

3 LUKU 7. HAMILTONIN MEKANIIKKA 114 Tekemällä muuttujan vahdos kärryn mukana lkkuvaan koordnaatstoon x = x v 0 t saadaan tästä tetenkn harmonsen oskllaattorn lkeyhtälö mẍ = kx. (7.10) Hamltonn funkto on puolestaan H(x, p, t) = T + U = p2 2m k(x v 0t) 2. (7.11) H on kärryn ja oskllovan massan muodostaman systeemn kokonasenerga. Se e kutenkaan ole vako, koska ulkosen voman täytyy tehdä työtä, jotta kärryn vauht pysyy oletuksen mukasest vakona v 0. Lasketaan stten L ja H muunnetussa koordnaatessa L (x, ẋ ) = 1 2 mẋ 2 + mẋ v mv kx 2 (7.12) H (x, p ) = (p mv 0 ) m 2 kx mv2 0. (7.13) Selväst H on ajasta rppumaton, ss sälyvä suure, mutta se e ole kokonasenerga. Vakka H ja H ovat er suura ja nllä on erlanen akarppuvuus sekä funktonaalnen muoto, nstä molemmsta saadaan kutenkn samat lkeyhtälöt. Koordnaatston valnta e tetenkään vo muuttaa tse fyskaalsen systeemn omnasuuksa. Hamltonn lkeyhtälöt vodaan johtaa myös varaatoperaatteesta δ L dt = 0 (HT): t2 t2 δ L dt = δ t 1 = = t 1 t2 t 1 t2 t 1 ( ) p q H({q}, {p}, t) dt (7.14) ( p δ q + q δp (( q H ) δp p ( H δp + H )) δq dt p ( ṗ + H ) ) δq dt, mssä δq :n kertomen laskemseks on tehty yks osttasntegront. Kun nyt vaadtaan, että varaatoden δq ja δp kertomet ovat nolla kaklla varaatolla saadaan Hamltonn lkeyhtälöt. Yleensä tässä tarkastelussa vaadtaan (muuttujen q ja p samanarvosuuden vuoks), että δp hävää päätepstessä. Kyseessä e ss ole tarkkaan ottaen luvun 3 Hamltonn peraate (jossa tämä vaadttn van δq:lle). Tätä kutsutaankn sen vuoks joskus modfoduks Hamltonn peraatteeks. Tämä vodaan ottaa samanlaseks mekankan aksoomaks kun Hamltonn peraate Lagrangen mekankassa. Lopulta tärkentä on kutenkn löytää systeemä kuvalevat mahdollsmman käyttökelposet lkeyhtälöt. Esmerkk: Lke konservatvsessa keskesvomakentässä Jälleen vanha tuttu tapaus, jossa T = 1 2 m(ṙ2 +r 2 ϕ 2 ) ja U = U(r). Kanonsen mpulssn koordnaatt ovat p r = mṙ ja p ϕ = mr 2 ϕ ja Hamltonn

4 LUKU 7. HAMILTONIN MEKANIIKKA 115 funktoks tulee H(r, ϕ, p r, p ϕ ) = p r ṙ + p ϕ ϕ 1 2 m(ṙ2 + r 2 ϕ 2 ) + U(r) Hamltonn yhtälöt ovat nyt = 1 2m p2 r + 1 2mr 2 p2 ϕ + U(r). (7.15) p2 ϕ mr 3 + U = ṗ r r U ϕ = 0 = ṗ ϕ p r m = ṙ (7.16) p ϕ mr 2 = ϕ dh = 0. dt Yhtälöstä ensmmänen on radaalnen Newtonn lkeyhtälö, tonen lmasee lkemäärämomentn sälymsen, kolmas ja neljäs ovat kanonsen mpulssn määrttely-yhtälöt ja vmenen energan sälymslak. Esmerkk: Varatun hukkasen lke Tonen tärkeä esmerkk on jälleen varauksen lke sähkö- ja magneettkentssä. Luvussa 3 saatn potentaal muotoon U = q(φ v A), (7.17) mssä Φ on sähkökentän skalaarpotentaal ja A sähkömagneettsen kentän vektorpotentaal. Lagrangen funkto on tetenkn L = 1 2 mṙ2 U. Lasketaan syklstä koordnaatta r vastaava kanonnen mpulss p = L ṙ = mṙ + qa. (7.18) Tämä on elektrodynamkassa okea sälyvä lkemäärä. Se on ss hukkasen mekaannen lkemäärä plus kentästä tsestään tuleva osa. Hamltonn funktoks saadaan stten suoralla laskulla (HT; käytetään vektornotaatota ja summaussääntöä :n yl) H(p, r, t) = ṙ p L(r, ṙ, t) = ṙ p 1 2 mṙ2 + qφ qṙ A = 1 2m (p qa)2 + qφ. (7.19) Tästä saadaan kanonsks lkeyhtälöks sähkömagneettsessa kentässä ṙ = H p = 1 m (p qa ) (7.20) ṗ = H r = q Φ r + q m p A r q2 m A A r. (7.21) Vo olla varsn hyödyllnen harjotustehtävä lähteä nästä yhtälöstä lkkeelle ja johtaa takasn Newtonn lkeyhtälö, mssä vomana on Lorentzn voma.

5 LUKU 7. HAMILTONIN MEKANIIKKA 116 Tässä tapauksessa kanonnen formalsm e ehkä johtanut kovn kaunseen lopputulokseen, mutta kuten jo luvussa 3 manttn, sähkömagneettnen kenttä vedään juur nällä kenon kvanttmekankkaan. Hamltonn yhtälötä käytetään tok myös klasssessa elektrodynamkassa ja sen sovellutuksssa, esm. laskettaessa varattujen hukkasten ratoja monmutkasssa geometrossa kuten esmerkks erlasssa fuusolattessa (tokamakt, spheromakt, jne.), jossa kuuman plasman hukkasa pdetään vangttuna rakenteeltaan monmutkasn magneettkenttn. Tämä perustuu shen, että löydetään sellanen koordnaatston muunnos, jossa on mahdollsmman monta syklstä koordnaatta. Tähän palataan tuonnempana. 7.2 Legendren muunnokset Edellä tehtn muunnos (q, q) (q, p) antamalla koordnaattnopeudet funktona { q} = { q({q}, {p}, t)}. Hamltonn funkto määrteltn lausekkeella (7.2). Matematkassa tällasa muunnoksa kutsutaan Legendren muunnoksks. Asan yksnkertastamseks tarkastellaan esmerkknä kahden muuttujan funktota f = f(x, y). Sen kokonasdfferentaal on mssä df = u dx + v dy, u = f x ; v = f y. Jospa nyt haluammekn syystä ta tosesta esttää tarkasteltavan fyskaalsen ongelman muuttujen u ja y avulla (mekankan näkökulmasta u vastaa ss kanonsen mpulssn käyttöä nopeuden sjasta). Nyt dfferentaalset suureet ptää lausua du:n ja dy:n avulla Tämä onnstuu muodostamalla uus funkto jollon Nyt puolestaan v ja x ovat g = f ux, dg = df u dx x du = v dy x du. x = g u ; v = g y. Tässä yhteydessä tarkastellaan ss mekankkaa sellasesta näkökulmasta, jossa systeemä halutaan kuvalla koordnaattnopeuksen sjasta kanonsten mpulssen avulla. Tällön Legendren muunnos johtaa Lagrangen funkton käytöstä Hamltonn funkton käyttöön. Kaava (7.2) yhden vapausasteen tapauksessahan on yksnkertasest H(q, p, t) = qp L(q, q, t). (7.22) Mekankan ja kvanttmekankan lsäks Legendren muunnoksa käytetään paljon termodynamkassa. Sellä systeemlle vodaan määrtellä

6 LUKU 7. HAMILTONIN MEKANIIKKA 117 useta erlasa potentaaleja, joden käyttökelposuus rppuu tarkasteltaven prosessen omnasuukssta, esmerkks stä, sälyykö prosessssa entropa vako lämpötla ta pane vako tlavuus. Termodynamkan ensmmänen pääsääntö lmasee energan sälymsen muodossa du = dq dw, (7.23) mssä U on systeemn ssänen energa, Q lämpömäärä ja W työ. Kaasun reversbellle prosesslle du = T ds p dv, (7.24) mssä T on lämpötla, S entropa, p pane ja V tlavuus. Tässä tlanteessa on ss luonnollsta tarkastella uuta funktona U = U(S, V ), jollon edellsen tarkastelun perusteella T = U S ; p = U V. (7.25) Tlantessa, jossa ptää huomoda ssänen energa ja esmerkks kaasun laajenemseen lttyvää mekaansta energaa, luonnollnen energafunkto on entalpa, joka määrtellään H = U + pv. (7.26) Huom. Tässä H e ss ole Hamltonn funkto! Krjotetaan H:n kokonasdfferentaal dh = du + V dp + p dv = T ds + V dp, (7.27) jollon on melekästä tarkastella funktota H = H(S, p) el tehdä muunnos (S, V ) (S, p) ja T = H S ; V = H p. (7.28) Vastaavast termodynamkassa määrtellään esmerkks Helmholtzn vapaa energa F = U T S ; (S, V ) (T, V ) (7.29) ja Gbbsn vapaa energa G = H T S ; (S, p) (T, p). (7.30) Nästä kutenkn enemmän termofyskan ja statstsen fyskan kurssella. Me palaamme Legendren muunnoksn hetken päästä kanonsten muunnosten yhteydessä. 7.3 Possonn sulut Possonn sulut ovat hyödyllnen työkalu kehtettäessä kvanttmekankan ja statstsen mekankan formalsma. Tarkastellaan kahta kanonsten muuttujen {q} ja {p} sekä ajan t funktota f ja g. Näden Possonn sulut määrtellään lausekkeella [f, g] ( f g f ) g. (7.31) q p p

7 LUKU 7. HAMILTONIN MEKANIIKKA 118 Tämän määrtelmän avulla on suoravvanen laskutehtävä (HT) osottaa Possonn sulkujen algebrallset omnasuudet [f, g] = [g, f] (7.32) [f, C] = 0, jos C on vako (7.33) [f, g + h] = [f, g] + [f, h] (7.34) [f, g h] = [f, g] h + [f, h] g. (7.35) Possonn sululle on lsäks vomassa ns. Jacobn dentteett [f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0. (7.36) Käyttämällä funktona kanonsa koordnatteja tseään, saadaan nden vällle sulkulausekkeet [q, q j ] = 0, [p, p j ] = 0, [q, p j ] = δ j. (7.37) Jos puolestaan lasketaan melvaltasen dervotuvan funkton f({q}, {p}, t) Possonn sulut kanonsten koordnaatten kanssa saadaan yhtälöt [f, q ] = f p [f, p ] = f. (7.38) Possonn sulkujen avulla vodaan lmasta mnkä tahansa mekaansen suureen f({q}, {p}, t) kokonasakadervaatta el lkeyhtälö. Ensnnäkn df dt = ( f q + f ) ṗ + f p t. (7.39) Sovelletaan tähän Hamltonn lkeyhtälötä, jollon df = ( f H f ) H + f dt q p p t = [f, H] + f t. (7.40) Tästä näemme suoraan, että ajasta eksplsttsest rppumaton suure ( f/ t = 0) on lkevako, jos sen Possonn sulku Hamltonn funkton kanssa on nolla. Myös ajasta rppuva suure vo tok olla lkevako, jos ylläolevan yhtälön okea puol on denttsest nolla. Käyttämällä tässä jälleen funktona kanonsa muuttuja tseään saadaan q = [q, H] = H p ṗ = [p, H] = H (7.41) kaklla, el olemme päässeet takasn Hamltonn lkeyhtälöhn.

8 LUKU 7. HAMILTONIN MEKANIIKKA 119 Lke keskesvomakentässä Tarkastellaan esmerkknä jälleen lkettä keskesvomakentässä ja krjotetaan Hamltonn funkto muodossa H(r, ϕ, p r, p ϕ ) = 1 2m p2 r + 1 2mr 2 p2 ϕ + U(r, ϕ). Lasketaan p ϕ :n akadervaatta Possonn sulkujen avulla ṗ ϕ = [p ϕ, H] = 1 2m [ pϕ, p 2 r] + 1 2m = [p ϕ, U(r)] = U ϕ. [ pϕ, p 2 ϕ/r 2] + [p ϕ, U(r)] Nyt nähdään, että mkäl potentaal U e ole kulman ϕ funkto, nn ṗ ϕ = 0 el ϕ-kulmakoordnaatta vastaava kanonnen mpulss on lkevako. Tämä on tetenkn vanha tuttu lkemäärämomentt (mpulssmomentt). Huom. Tässä kanonsta mpulssa p ϕ e saa sekottaa tavallsen lkemäärän ϕ-komponenttn! (HT: tarkasta molempen suunta ja fyskaalnen dmenso.) Tosaalta p r :n akadervaataks saadaan ṗ r = [p r, H] = p2 ϕ [ pr, r 2] + [p r, U] 2m = p2 ϕ mr 3 U r, mkä on tetenkn radaalnen Newtonn yhtälö. Krjotetaan velä Hamltonn funkto ylesest pallokoordnaatstossa (HT) muodossa ( ) H = 1 p 2 r + p2 θ 2m r 2 + p2 ϕ r 2 sn 2 + U(r). θ Tällön Possonn sulut laskemalla näkee suoraan (HT), että sekä p ϕ että p 2 θ + p2 ϕ/ sn 2 θ ovat lkevakota. 7.4 Kanonset muunnokset Olemme jo ptkn kurssa nähneet, että srtymnen ongelman kannalta edullseen koordnaatstoon on monest mltepä välttämätöntä ongelman ratkasun löytämseks järjellsellä työmäärällä. Lagrangen formalsmssa muunnokset ovat olleet pstemuunnoksa, jossa ss systeemn pakkakoordnaatteja q on muunnettu tyyln Q = Q (q, t) ja nopeudet on laskettu nätä dervomalla. Tällanen muunnos tapahtuu ss konfguraatoavaruudessa (pakka-avaruudessa). Hamltonn formalsmssa kutenkn pakkakoordnaatt q ja mpulsskoordnaatt p ovat molemmat samanarvosa muuttuja ja vastaavat sten ylestettyjä koordnaatteja q Lagrangen formalsmssa. Tämän

9 LUKU 7. HAMILTONIN MEKANIIKKA 120 vuoks Hamltonn formalsmssa on tarpeen etsä ylesempää näkökulmaa muuttujen q ja p muunnoksn tällä kertaa näden määräämässä 2n-ulottesesssa faasavaruudessa (vaheavaruudessa). Oletetaan, että olemme löytäneet Hamltonn yhtälöt muuttujajoukossa {q 1, q 2,..., q n, p 1, p 2,..., p n }. Määrtellään stten uudet pakka- ja mpulssmuuttujat {Q} ja {P } yhtälöllä Q = Q (q, p, t) P = P (q, p, t). (7.42) Merkntöjen yksnkertastamseks krjotetaan {q} = q, {p} = p, {Q} = Q, {P } = P ja käytetään ndeksejä sllon, kun vtataan yksttäsn muuttujn. Näden kääntesmuunnokset ovat q = q (Q, P, t) p = p (Q, P, t). (7.43) Jos nyt on olemassa funkto K(Q, P, t) sten, että kanonset yhtälöt Q = K P P = K (7.44) Q kuvaavat systeemn lkettä, nn muunnoksa kutsutaan kanonsks muunnoksks. Funktota K kutsutaan joskus Kamltonn funktoks kuvastamaan stä, että se on kanonsest muunnettu Hamltonn funkto. Huom. Vakka kanonnen muunnos tehdäänkn, jotta päästäsn tarkasteltavan ongelman kannalta mahdollsmman tehokkasn koordnaattehn, e muunnos saa rppua ongelmasta (el H:sta). Jos esmerkks halutaan kuvalla kaksulottesta helura uusssa koordnaatessa, nn nden avulla on pystyttävä formulomaan myös Keplern lke kahdessa ulottuvasuudessa. (Täytyy ss olla mahdollsta löytää myös Keplern ongelmaa vastaava Kamlton oskllaattorlle kehtetyssä koordnaatessa.) Tämä e tetenkään tarkota, että koordnaatten tarvtss olla mtenkään ertysen hyvä tähän toseen ongelmaan Generovat funktot Koska Hamltonn yhtälöt ovat sopusonnussa modfodun Hamltonn peraatteen kanssa, vodaan kanonsest muunnetulle koordnaatelle krjottaa δ t2 t 1 ( P Q K) dt = 0. (7.45) Tämän ntegrada vodaan ptää uutena Lagrangen funktona. Jotta yhtälöt kuvasvat samaa systeemä, uus ja vanha Lagrangen funkto saavat erota tosstaan addtvsella vakolla, vakokertomella ta jonkn funkton G akadervaatalla. Nästä kaks ensmmästä ehtoa ovat muunnoksna trvaaleja, joskn muunnoksen skaalaamnen vakokertomella tuo ongelman kästeltäessä Possonn sulkuja, joten suljetaan nämä tapaukset tarkastelun ulkopuolelle.

10 LUKU 7. HAMILTONIN MEKANIIKKA 121 Mahdollsuus lsätä muunnokseen jonkn funkton akadervaatta osottautuu erttän tehokkaaks työkaluks. Krjotetaan tämä ehto muodossa p q H = P Q K + dg dt. (7.46) Funktota G kutsutaan muunnoksen generovaks funktoks. Tässä yhtälössä on 4n kappaletta muuttuja, mutta koska P :t ja Q:t rppuvat muuttujsta p ja q, jäljelle jää van 2n rppumatonta muuttujaa. Tämän ansosta vodaan generaattorn muuttujks valta ongelman ratkasulle sopvn par joukosta (q, Q), (q, P ), (p, Q), (p, P ). Vastaava muunnoksen generova funktota merktään alandeksellä 1 4. Yksnkertasn mahdollnen kanonnen muunnos on koordnaatston muunnos q Q(q). Tämä on ss edellä manttu pstemuunnos. Se on erkostapaus muunnoksesta, jonka genero funkto G = G 2 (q, P, t). Tutktaan ensn muunnoksa, jotka genero tyyppä G = G 1 (q, Q, t) oleva funkto. Tämän kokonasakadervaatta on dg 1 = ( G1 q + G ) 1 Q + G 1 dt q Q t. (7.47) Nyt kaavasta (7.46) tulee p q H = P Q K + ( G1 q + G 1 Q Q ) + G 1 t. (7.48) Srretään kakk termt yhtälön vasemmalle puolelle ja kerätään rppumattomen funktoden q ja Q kertomet yhteen, jollon saadaan yhtälö ( p G ) 1 q ( P + G ) ( 1 Q + H K G ) 1 = 0. q Q t (7.49) Tämä toteutuu denttsest, kun p = G 1 (7.50) P = G 1 Q (7.51) K = H + G 1 t (7.52) kaklla = 1,..., n. Tässä 2n + 1 yhtälön rytäkässä ss G 1 on joku tunnettu funkto. Sen avulla vodaan esmerkks n:n yhtälön ryhmästä (7.51) ratkasta q = q (Q, P, t) ja sjottamalla tämä n:n yhtälön ryhmään (7.50) saadaan puolestaan yhtälöt p = p (Q, P, t). (Tämä vodaan tehdä myös pänvaston, jos halutaan lausekkeet P :lle ja Q :lle.) Lopuks sjotetaan p :t ja q :t H:n lausekkeeseen, jonka jälkeen mellä onkn lauseke K:lle. El G 1 on generonut kanonsen muunnoksen. Stä nmtys. Huom. Kanonsen muunnoksen johtamnen annetusta generovasta funktosta on ss suoravvanen tehtävä. Paljon hankalampaa on löytää generaattor annetulle muunnokselle.

11 LUKU 7. HAMILTONIN MEKANIIKKA 122 Kun kerran on päästy alkuun, nn muden rppumattomen muuttujaparen generovat funktot löytyvät tekemällä G 1 :lle Legendren muunnokset: Muuttujaparlle (q, P ): G 2 (q, P, t) = G 1 + P Q. (7.53) Muuttujaparlle (p, Q): G 3 (Q, p, t) = G 1 p q. (7.54) Muuttujaparlle (p, P ): G 4 (p, P, t) = G 1 + P Q p q. (7.55) Nälle on suoravvanen tehtävä johtaa ( ):n kaltanen yhtälöryhmä krjottamalla kunkn G :n kokonasakadervaatta ja sjottamalla se lausekkeeseen (7.46). Esmerkks G 2 :lle saadaan p = G 2 (7.56) Q = G 2 P (7.57) K = H + G 2 t (7.58) ja loput jääkööt harjotustehtävks. Nyt on tärkeää ymmärtää, että jokanen G ( = 1,..., 4) ptää ssällään rajattomast erlasa muunnoksa, jotka soveltuvat er tlantessa. Alandekset vttaavat van shen, mnkätyyppseen muuttujajoukkojen parn lopulta päädytään. Esmerkkejä Mllasa muunnoksa edellä estetyt kanonset muunnokset oken ovat? Tarkastellaan ensks generovaa funktota G 1 = q Q. Yhtälöstä ( ) näkee suoraan, että p = Q P = q Kanonsessa formalsmssa vodaan ss haluttaessa muuntaa koordnaatteja mpulsssuureks ja pänvaston. Tarkastellaan stten generovaa funktota G 3 = p Q. q = G 3 p = Q P = G 3 Q = p

12 LUKU 7. HAMILTONIN MEKANIIKKA 123 el nän määrtelty G 3 genero denttettmuunnoksen. Saman tekee G 2, jos se määrtellään lausekkeella G 2 = q P. Vahtamalla näden generaattoreden etumerkt, saadaan puolestaan muunnos, joka anoastaan muuttaa muuttujen etumerkt el kääntää faasavaruuden koordnaattakselen suunnat pänvastasks. Palataan stten jo aemmn manttuun pstemuunnokseen ja tarkastellaan generovaa funktota G = G 2 (q, P, t) Q P. Nyt p q H = = + P Q K + dg dt P Q K + ( G2 q + G ) 2 P P Q P P Q + G 2 t, josta seuraa ( p G ) 2 q + q ( Q G ) 2 P P ( H K + G ) 2 = 0. t Nän on saatu G 2 = p (7.59) G 2 P = Q (7.60) K = H + G 2 t. (7.61) Valtaan nyt G 2 (q, P, t) = j P j Q j (q, t), (7.62) mssä Q j :t ovat muuttujen q ja t funktota. Tällön Q = Q (q, t), p = j P j Q j. (7.63) Nästä ensmmänen on selväst pstemuunnos el muunnos, jollasa on tehty ptkn matkaa Lagrangen mekankassa. Jälkmmäsen vo puolestaan kääntää: P = P (q, p, t). Lasekkeen (7.62) määrttelemä muunnos on yks (mutte anoa) pstemuunnoksen Q = Q (q, t) generova funkto. Jos velä Q = q kyseessä on dentteettmuunnos. Harmonnen oskllaattor Ratkastaan mallks kanonsten muunnosten käytöstä vanha tuttu harmonnen oskllaattor. Sen Hamltonn funkto on H(q, p) = p2 2m mω2 0q 2.

13 LUKU 7. HAMILTONIN MEKANIIKKA 124 Yrtetään löytää muunnos syklseen koordnaattn Q ja kokellaan erttän jälkvsaast, löytyskö muotoa oleva kanonnen muunnos. Nyt p = f(p ) cos Q q = f(p ) mω 0 sn Q K = H p(q,p ),q(q,p ) = f 2 (P ) 2m (cos2 Q + sn 2 Q) = f 2 (P ) 2m. Mutta mkä f(p ) on? Jaetaan muunnosyhtälöt puolttan, jollon p = qmω 0 cot Q = p(q, Q) el muunnos on tyyppä G 1 (q, Q) ja p = G 1 / q = qmω 0 cot Q, joten ntegromalla saadaan generovaks funktoks Nyt G 1 (q, Q) = 1 2 mω 0q 2 cot Q. P = G 1 Q = mω 0q 2 2 sn 2 Q. Ratkastaan stten alkuperäset kanonset muuttujat uusen muuttujen avulla 2P q = sn Q mω 0 p = 2mω 0 P cos Q, joten etstty f(p ) = 2mω 0 P. Koska G e rpu ajasta K = H = E ja K = ω 0 P cos 2 Q + ω 0 P sn 2 Q = ω 0 P. Tästä saadaan suoraan P = E/ω 0. Koska H e rpu Q:sta, Q on syklnen koordnaatt ja se löytyy kanonsesta lkeyhtälöstä Q = K P = ω 0. Tämä on trvaal ntegrotava: Q = ω 0 t+ϕ 0. Ss fksust valttu kanonnen muunnos on tehnyt muunnetusta mpulsssta suureen energa/taajuus ja valnnut koordnaatks oskllaattorn vahekulman. Sjotetaan nämä nyt q:n lausekkeeseen ja olemme löytäneet tutun ratkasun. 2E q = sn(ω 0 t + ϕ 0 ). mω 2 0 Edellä q:ta ratkastaessa ols tetenkn votu valta myös mnus-merkk. Se ols srtänyt oskllaattorn vahetta tekjällä π. No mtäs loa tästä stten ol? Okeastaan koko ongelma ol ratkastu, kun löydettn sopva generaattor. Anoa ntegront ol vakon ntegront ajan suhteen, jota e vo ptää kovn vaatvana tehtävänä. Kuten jo aemmn todettn muunnoskaavojen laskemnen generaattorsta on suoravvanen tehtävä, mutta generaattorn keksmnen näppärää muunnosta varten onkn jo vakeampaa.

14 LUKU 7. HAMILTONIN MEKANIIKKA Infntesmaalset kontaktmuunnokset Tarkastellaan seuraavaks ajasta rppumattoma nfntesmaalsa muunnoksa Q = q + δq P = p + δp. (7.64) Kyseessä on ss nfntesmaalsen lähellä dentteettmuunnosta oleva muunnos. Sellasen vo generoda esmerkks funktolla G 2 = q P + ε G(q, P ), (7.65) mssä ε on nfntesmaalnen parametr. G 2 -tyyppselle generaattorlle joten Nyt p = G 2 Q = G 2 P = P + ε G = q + ε G P, (7.66) δp = ε G δq = ε G P. (7.67) ( G(q, P ) = G q, p ε G ) G(q, p) G(q, p) G(q, p) ε. p joten muunnosyhtälössä G(q, p) δp = ε + O(ε 2 ) δq = ε G(q, p) P + O(ε 2 ). (7.68) Jätetään suuruusluokkaa O(ε 2 ) olevat termt pos, jollon G(q, P ) = G(q, p). Koska G:tä e ole rajotettu sen tarkemmn, vodaan valta G(q, p) = H(q, p), (7.69) jollon ε on luonnollsta tulkta peneks ajallseks srrokseks dt. Tällön δq = dt H p = q dt = dq δp = dt H = ṗ dt = dp (7.70) Ss G el tässä tapauksessa Hamltonn funkto H genero muuttujen {q} ja {p} joukossa kanonsen muunnoksen, joka vodaan ymmärtää systeemn lkkeeks akavälllä dt faasavaruudessa (q, p). Hamltonn funkto vodaan sten tulkta lkkeen nfntesmaalseks generaattorks ja

15 LUKU 7. HAMILTONIN MEKANIIKKA 126 systeemn dynaamnen kehtys on jono perättäsä kontaktmuunnoksa. Tälläkn löydöllä on hyödyllnen vastneensa kvanttmekankassa, jossa systeemn akakehtystä kuvataan Hamltonn operaattorn avulla. Tarkastellaan stten, kunka joku annettu funkto f(q, p) muuntuu tällasessa kontaktmuunnoksessa. Ensnnäkn δf = f(q + δq, p + δp) f(q, p) (7.71) ja toseks δf = f δq + f p δp. (7.72) Ilmastaan δq ja δp generaattorn G avulla δf = ε ( f ε G f ε G ) = ε [f, G]. (7.73) q p p Valtaan stten ajasta rppumattoman systeemn Hamltonn funkto H funktoks f el δh = ε [H, G]. Nyt G:n lkeyhtälö on kaavan (7.40) mukasest dg dt = [G, H] + G t. (7.74) Jos nyt G on ajasta rppumaton ( G/ t = 0) ja lkevako (dg/dt = 0), nn [G, H] = 0 δh = 0. Tällön ss H on nvarantt. Tämän vo tulkta nn, että ajasta rppumattomat lkevakot ovat sellasten kontaktmuunnosten generaattoreta, jotka jättävät H:n nvarantks. Tämä vo auttaa lkevakoden etsmsessä Kanonset muunnokset ja Possonn sulut Osotetaan seuraavaks, että Possonn sulut ovat nvarantt kanonsssa muunnokssta el [f, g] q,p = [f, g] Q,P. (7.75) Stten vaan reppaast laskemaan [f, g] q,p = ( f g f ) g q p p = { ( f g Q j + g ) P j + q,j Q j p P j p f ( g Q j + g )} P j p Q j P j = ( g [f, Q j ] Q q,p + g ) [f, P j ] j j P q,p. (7.76) j Sovelletaan tätä tulosta sulkuhn [Q, f] q,p el lasketaan [Q, f] q,p = j ( f [Q, Q j ] Q q,p + f ) [Q, P j ] j P q,p. (7.77) j

16 LUKU 7. HAMILTONIN MEKANIIKKA 127 Nyt ptää selvttää, mtä ovat [Q, Q j ] q,p ja [Q, P j ] q,p. Lähdetään lkkeelle nfntesmaalsesta kontaktmuunnoksesta G 2 = q P +ε G(q, P ), jolle olemme jo johtaneet tulokset Q = q + ε G P P = p ε G. Nyt saadaan suorlla laskulla (rajalla ε 0) [ [Q, Q j ] q,p = q + ε G, q j + ε G ] P P j [ = q, ε G ] [ + ε G, q j p j p = ε ( 2 G p p j 2 G p j p ] + O(ε 2 ) ) + O(ε 2 ) = O(ε 2 ) = 0, (7.78) ja [Q, P j ] q,p = [ q + ε G = δ j + = δ j + ε, p j ε G ] P q j ] + [ ε G, p j p ( 2 G p q j [ q, ε G q j 2 G q j p ] + O(ε 2 ) ) + O(ε 2 ) = δ j. (7.79) Vakka tämä onkn todstettu van G 2 -tyyppä olevan generaattorn tuottamalle kanonselle muunnokselle, tulos on ylespätevä. Vomme nmttän tehdä ensn kanonsen muunnoksen ajasta rppumattomaan systeemn (q, p) (Q(q, p, t 0 ), P (q, p, t 0 )), jolle Possonn sulkujen nvaranss löytyy näppäräst. Funktota g vodaan nmttän sllon ptää jonkn kuvtteellsen systeemn Hamltonn funktona, joten [f, g] q,p = df/dt. Koska nyt df/dt e vo rppua koordnaatten (q, p) valnnasta, nvaranss on totta. Tämän jälkeen systeemn akakehtys hetkestä t 0 hetkeen t vodaan tulkta jonoks nfntesmaalsa kontaktmuunnoksa, jolle jokaselle relaatot (7.78 ja 7.79) ovat vomassa. Nänollen ne ovat vomassa mlle tahansa kanonselle muunnokselle (q, p) (Q(q, p, t), P (q, p, t)). Sjottamalla nämä relaatot yhtälöön (7.77) saadaan [Q, f] q,p = f P, mstä seuraa tetenkn [f, Q j ] q,p = f/ P j ja vastaavast [f, P j ] q,p = f/ Q j. Sjottamalla nämä yhtälön (7.76) vmeseen lausekkeeseen on nvaranss (7.75) todstettu. Tästä seuraa, että vomme suorttaa laskutomtuksen käyttäen melesä kanonsa muuttuja ja luottaa shen, että lopputulos on oken.

17 LUKU 7. HAMILTONIN MEKANIIKKA 128 Possonn sulkujen nvaranssn vo tse asassa ottaa kanonsen muunnoksen määrtelmäks. Jos ss on tarve todstaa joku muunnos kanonseks, rttää osottaa, että (7.75) toteutuu. Jos olsmme alunpern kelpuuttaneet kanonsks myös sellaset muunnokset, jossa (7.46):n vasen puol kerrotaan jollan vakolla, ylläoleva tulos e ols vomassa el Possonn sululla ols er numeroarvo er koordnaatstossa. 7.5 Hamltonn-Jacobn teoraa Hamltonn lkeyhtälöden ratkasut ovat muotoa q = H p ; ṗ = H q = q (q 0, p 0, t) p = p (q 0, p 0, t), (7.80) mssä p 0 ja q 0 ovat ntegromsvakota, esm. kanonsten muuttujen q ja p alkuarvojoukot. Nämä yhtälöt vodaan kääntää, jollon q 0j = q 0j (q, p, t) Q j p 0j = p 0j (q, p, t) P j. (7.81) Tämä vodaan tulkta kanonsena muunnoksena (q, p) (Q, P ). Nyt uudet muuttujat ovat vakota (ongelman alkuarvot), joten Hamltonn yhtälöt nälle muuttujlle krjotettuna ovat Q j = K P j = 0 P j = K = 0 (7.82) Q j el muunnettu Hamltonn funkto K e rpu uussta muuttujsta ja on sten vako, joka vodaan asettaa denttsest nollaks. Otetaan stten käyttöön generova funkto G 2 = S = S(q, P, t), jolle on vomassa K = H(q, p, t) + S t = 0. (7.83) Tosaalta muotoa G 2 olevalle generaattorlle on vomassa p = S Q = S P. (7.84) Merktään Q β ja P α, jotka nyt ovat vakota. Nnpä S = S(q, α, t) el S on n+1:n muuttujan (q 1,..., q n, t) funkto. Olemme päässeet yhtälöön H(q, S S, t) + q t = 0. (7.85)

18 LUKU 7. HAMILTONIN MEKANIIKKA 129 Tämä yhtälö tunnetaan nmellä Hamltonn-Jacobn yhtälö. Se on ss n+1:n muuttujan ensmmäsen kertaluvun osttasdfferentaalyhtälö funktolle S. Funktota S kutsutaan Hamltonn prnspaalfunktoks (mkä on kökkö suomennos englannnkelsestä termstä prncpal functon). Funkto S genero kanonsen muunnoksen, jossa muunnetut koordnaatt ja mpulsst ovat vakota. Nyt tarkasteltavan ongelman ratkasuproseduur on lmenen. Ratkastaan ensn funkto S = S(q, α, t), jonka jälkeen saadaan lasketuks suoraan β = S α (q, α, t). Nämä yhtälöt antavat systeemn radan mplsttmuodossa. Kääntämällä yhtälöt päästään ss radan lausekkesn q = q(α, β, t), joten mellä on ss systeemn rata konfguraatoavaruudessa {q} alkuarvoneen pävneen. Ongelman anoa vakea tehtävä on ratkasta S; mekaansen ongelman ratkasu on ss Hamltonn-Jacobn teorassa sama asa kun sopvan kanonsen muunnoksen löytämnen! Konservatvsessa tapauksessa H = p2 2m + U(r) ja p = S el komponenttmuodossa p Jacobn yhtälö saa muodon = S/ r. Nyt Hamltonn- 1 2m ( S)2 + U(q) + S t = 0. (7.86) Konservatvselle systeemlle H = E, joten E + S/ t = 0, joka on trvaal ntegrotava S = S q (q, α) Et. (7.87) Funkto S separotuu ss pakka- ja akaosnsa. α:t ovat systeemn lkevakota ja koska S q väksnkn rppuu E:stä, kannattaa yhdeks α:ks valta E. on S:n akadervaatta ptkn systeemn rataa (n-ulottesessa q-avaruudessa) ds dt = S q + S t = p q H = L. (7.88) Tästä seuraa S = L dt + vako, joten Hamltonn peraate vodaan krjottaa δs = 0. Nän e onnstuta määräämään S:ää, sllä tässähän rata täytyy tuntea ennestään, mutta yhtälö antaa kutenkn fyskaalsen tulknnan funktolle S: kyseessä on selväst Hamltonn vakutusntegraal. Harmonnen oskllaattor Esmerkknä ongelman ratkasemsesta Hamltonn-Jacobn teorassa tarkastellaan jälleen tuttua lneaarsta harmonsta oskllaatora, jonka Hamltonn funkto on H = p2 2m kq2 = E.

19 LUKU 7. HAMILTONIN MEKANIIKKA 130 Hamltonn-Jacobn yhtälöks tulee 1 2m ( ) S q 2 kq2 + S t = 0. Koska systeem on konservatvnen, etstään ratkasua edellä estetyn nnottamana yrtteellä S = S q (q, E) Et, jollon 1 2m Integrotava yhtälö on ss joten S q q = S = mk ( ) 2 Sq + 1 q 2 kq2 = E. mk ( ) 2E k q2. 2E dq k q2 Et. Lasketaan stten kanonnen koordnaatt β el Q β = S m E = k ( ) 2E 1/2 dq k q2 t, josta ( ) m k β + t = k arccos q. 2E Nyt ω 0 = k/m on tetenkn oskllaattorn taajuus ja olemme saaneet tutun tuloksen 2α q = k cos ω 0(t + β). Muunnetun systeemn kanonset muuttujat ovat ss Q = β ja P = E ovat lkevakoota, jotka rppuvat oskllaattorn alkuarvosta, mutta evät selvästkään ole q(0) ja p(0). Keskeslke Tonen tostuva esmerkk on tetenkn lke keskesvomakentässä. Pallokoordnaatston tasossa θ = π/2 Hamltonn funkto on ( ) H(r, ϕ, p r, p ϕ ) = 1 p 2 r + p2 ϕ 2m r 2 + U(r). Koska systeem on konservatvnen S = S q (r, ϕ, α) α 1 t, mssä α 1 = E ja Hamltonn-Jacobn yhtälöks tulee 1 (( r S q ) 2 + ( ϕs q ) 2 ) 2m r 2 + U(r) = α 1. Nyt ϕ on syklnen koordnaatt, joten p ϕ =vako= l α 2 ja ϕ S q = α 2. Tämän ntegraal on muotoa S q = S r (r; α) + ϕα 2

20 LUKU 7. HAMILTONIN MEKANIIKKA 131 ja ( ) 1 ( r S r ) 2 + α2 2 2m r 2 + U(r) = α 1. Ratkastaan jälkmmäsestä r S r el S r r = 2m[α 1 U(r)] α2 2 r 2 Integrodaan tämä ja sjotetaan lausekeeseen S = S q α 1 t = S r +ϕα 2 α 1 t el S = dr 2m[α 1 U(r)] α2 2 r 2 + ϕα 2 α 1 t. Kanonset koordnaatt β 1 ja β 2 ovat β 1 = S = α 1 β 2 = S α 2 = m dr 2m[α 1 U(r)] α2 2 r 2 t α 2 dr + ϕ. r 2 2m[α 1 U(r)] α2 2 r 2 Nämä antavat lkeradan yhtälöt muodossa r(t, α, β) ta ϕ(t, α, β). 7.6 Vakutus- ja kulmamuuttujat Mekaanset systeemt ovat usen tavalla ta tosella perodsa. Harmonnen oskllaattor on ollut tällä kursslla esmerkknä jo lankn monta kertaa, planeettojen radat ovat anakn melken perodsa, klasssessa kuvassa elektront kertävät atomen ytmä, atomt värähtelevät molekyylessä, molekyylestä rakentuva ane johtaa paneaaltoja ja nn edelleen. Perodnen lke vodaan jakaa kahteen perustyyppn: lbraato, jossa systeem helahtelee tasapanoasemansa ympär, ja rotaato, jossa systeem tekee täysä kerroksa. Tällasa tlanteta tarkasteltaessa srrytään usen vakutus- ja kulmamuuttujn. Edellä kästellyssä Hamltonn-Jacobn menetelmässä päädyttn käyttämään kanonsna mpulssena ntegrontvakota α. Merkntöjen yksnkertastamseks krjotetaan α = {α }. Otetaan käyttöön vakutusmuuttujat J (α), jotka määrtellään kaavolla J = p dq kaklla = 1,..., n, (7.89) mssä q :t ovat perodsa muuttuja, ntegront on kunkn täyden perodn yl ja merktään jatkossa jälleen J = {J }. Rajotutaan lsäks sellasn konservatvsn systeemehn, joden edellä estelty S-funkto separotuu täydellsest q-koordnaatessa el S q = S q (q ; α). Edellsen jakson perusteella p = S q /, joten J (α) = Sq (q ; α) dq (7.90)

21 LUKU 7. HAMILTONIN MEKANIIKKA 132 kaklle. Tässä e tetenkään oleteta summausta :n yl. Integront antaa ss J :n α :tten funktona, josta vodaan kääntää tulos Tämän ansosta S q vodaan lmasta muodossa α = α (J). (7.91) S q = S q (q, J). (7.92) Nyt H = E el vako ja sten anoastaa vakoden {J} funkto H = H(J). (7.93) Samaan tapaan kun edellä määrteltn kanonset muunnokset (β = S/ α ), määrtellään vakutusmuuttuja J vastaavat kulmamuuttujat lausekkeella w = S q J. (7.94) Tämä vastaa kanonsta muunnosta (q, p) (w, J), jonka genero S q (q, J). Koska systeem on konservatvnen, H = E = α 1 (J). Muunnos e rpu ajasta, joten K = H(J), mkä e ole w:n funkto, el kulmamuuttujat ovat syklsä koordnaatteja. Nyt kanonsks lkeyhtälöks tulee joten Ss w :t ovat ajan lneaarsa funktota. ẇ = H J ν (J) = vako, (7.95) w = ν (J)t + β. (7.96) Nyt vodaan esttää kysymys, paljonko kulmamuuttuja w muuttuu, kun koordnaatt q tekee täyden sykln (joko edestakasen helahduksen ta täyden kerroksen)? Lasketaanpa w = j w q j dq j = j 2 S q q j J dq j = j pj J dq j. (7.97) Koska J :t ovat vakota, nden suhteen otetut dervaatat vodaan ottaa ntegraaln ulkopuolelle ja saamme tuloksen w = d p j dq j = dj j = 1. (7.98) dj j dj j Ss kulmamuuttuja kasvaa yhden ykskön täyden perodn akana. Merktään perodn ptuutta τ :lla, jollon w = ν τ = 1. (7.99) Vako ν on ss perodn kääntesluku el q :n perodsen lkkeen taajuus. Vakutus-kulmamuuttujen avulla vodaan ss määrätä lkkeen perod ratkasematta systeemn lkerataa. Vakutusmuuttujan J määrttely-yhtälöstä näkyy suoraan, että J:n dmenso on sama kun mpulssmomentn dmenso [J] = [qp]. Nnpä

22 LUKU 7. HAMILTONIN MEKANIIKKA 133 sen kanonsen konjugaatn el kulmamuuttujan dmenso on juur kulman dmenso, mkä SI-ykskössä on ykkönen. Tällasa luonnollsa kanonsa konjugaattpareja ovat ss (r, p), (θ, L ), (t 0, E) jne. Kvanttmekankassa nähn parehn lttyy Hesenbergn epätarkkuusperaate el mtä tarkemmn parn tonen jäsen tedetään, stä suuremp epätarkkuus lttyy parn toseen jäseneen. Mutta fyskaalslta perusteltaan se on jo tonen tarna. Manttakoon velä, että jossan klasssen mekankan oppkrjossa juur vakutus-kulmamuuttuja kutsutaan kanonsks muuttujks (esm. Landau Lfshtz). Harmonsen oskllaattorn perod Nällä työkalulla onnstumme määrttämään harmonsen oskllaatorn perodn ratkasematta sen lkettä. Hamltonn funkto on ss Nyt J = H = p2 2m kq2 = E. p dq = 2E mk k q2 dq. Integraal yksnkertastuu sjotuksella q = 2E/k sn θ, jollon m 2π m J = 2E cos 2 θ dθ = 2πE k 0 k. Koska H = E, saadaan H = J k 2π m, joten H J = ν = 1 k ( = ω ) 0 2π m 2π Tämä tulos tetenkn ptkn saada Kanonsta häröteoraa Fyskaalsten systeemen lkeyhtälöt ovat usen e-ntegrotuva. Vakka yhtälöt vodaan johtaa esm. Hamltonn-Jacobn teoralla, nden ntegromnen analyyttsest e välttämättä onnstu. Monest systeemn ntegrotumattomuus johtuu lkeyhtälön termestä, jota vo approksmoda pennä. Kuten epälneaarsten oskllaattoreden yhteydessä opttn, hyödyllnen tapa kästellä systeemn lkettä on tällön häröteora. Oletetaan, että fyskaalsen systeemn dynamkka vodaan esttää ntegrotuvalla Hamltonn funktolla, johon on lsätty joku pen härö. Tätä menetelmää käytetään esmerkks tavaanmekankassa. Maan rata Aurngon ympär on ntegrotuva systeem, johon lähnnä Mars ja Jupter tuottavat härötä. Häröt ovat kutenkn varsn penä. Tarkastellaan häröteoraa kanonsen formalsmn kenon, jollon stä kutsutaan kanonseks häröteoraks. Sen dea on seuraavanlanen.

23 LUKU 7. HAMILTONIN MEKANIIKKA 134 Kuvallaan systeemn Hamltonn funktota ntegrotuvalla osalla H 0 ja penellä häröllä H H = H 0 + H. (7.100) Jätetään aluks H huomotta ja muunnetaan H 0 kanonsest käyttäen tyyppä G 2 (q, P, t) olevaa generovaa funktota S 0 (q, P, t) sellasn kanonsn muuttujn (Q, P ), jolla K 0 (Q, P ) = 0. Hamltonn-Jacobn teoran perusteella funkto S 0 toteuttaa yhtälön H 0 (q, S 0 q, t) + S 0 t = 0. (7.101) Hamltonn yhtälöden mukaan sllon uudet muuttujat Q 0 ja P 0 ovat lkevakota. Tehdään stten sama kanonnen muunnos Q(q, P, t) = S 0 P (q, P, t) (7.102) p(q, P, t) = S 0 (q, P, t) (7.103) koko Hamltonn funktolle H = H 0 + H, jollon saadaan muunnettu Hamltonn funkto K(Q, P, t) = H + S 0 t = H(q(Q, P, t), p(q, P, t), t) (7.104) joka on ss nyt koko systeemn Hamltonn funkto uusssa koordnaatessa (Q, P ). Tämän avulla vodaan antaa Hamltonn lkeyhtälöt uuslle koordnaatelle: Q = K(Q, P, t) (7.105) P P = K(Q, P, t). (7.106) Q Pelkkä kanonnen muunnos e tetenkään tee systeemmstä ntegrotuvaa, mutta nyt vomme käyttää hyväks stä, että härö on pen ja uudet muuttujat nän lkman vakota. Dervonten jälkeen sjotetaan yhtälön okealle puolelle (Q, P )-muuttujks häröttömät muuttujat (Q 0, P 0 ). Tämän jälkeen yhtälöt ntegrodaan ajan suhteen ja saadaan ensmmäsen kertaluvun ratkasut uuslle koordnaatelle Q = Q 1 (t, Q 0, P 0 ) ja P = P 1 (t, Q 0, P 0 ). Välttömäst huomataan, että medän e välttämättä tarvtse pysähtyä tähän. Ensmmäsen kertaluvun ratkasuthan vodaan nyt sjottaa lkeyhtälöden ( ) okealle puolelle, jollon yhtälöt saadaan edelleen ntegrotua. Tämä johtaa tosen kertaluvun ratkasuhn Q 2 (t, Q 0, P 0 ) ja P 2 (t, Q 0, P 0 ) ja nn edelleen. Iteraatoprosess vodaan krjottaa muodossa Q +1 = ( K) P (Q, P, t) (7.107) P +1 = ( K) Q (Q, P, t), (7.108) mssä dervonnn jälkeen tehdyt sjotukset on merktty näkyvn. Huom. Tässä ndekst vttaavat ss terontkerrokseen evät muuttujajoukkojen P ja Q elementtehn, jota on n kapaletta kumpakn!

24 LUKU 7. HAMILTONIN MEKANIIKKA 135 Perheln kertymä Tarkastellaan esmerkknä planeetan perheln suunnan kertymstä. Ertoten Merkuruksen perheln kertymä on ollut hstorallsest tärkeä, koska sllä ol merkttävä asema ylesen suhteellsuusteoran todentamsessa. Bertrandn teoreeman tunnetun tuloksen mukaan ympyräratojen häröt johtavat tosessa kertaluvussa suljettuhn ratohn van Keplern ( (1/r)) ja Hooken ( r 2 ) potentaalen tapauksessa. Nässä tlantessa radat ovat suljettuja ja Keplern lkkeessä perheln suunta on vako. Planeettakunta e kutenkaan ole kahden kappaleen ongelma. Toset planeetat härtsevät tarkasteltavan planeetan lkettä ja seurauksena on planeetan perheln kertymä. Hamltonn funkto on nyt H = H 0 + H(r, ϕ, t) ( ) = 1 p 2 r + p2 ϕ 2m r 2 k r + H(r, ϕ, t). Olemme jo aemmn ratkaseet radan Hamltonn-Jacobn teorassa lman härötermä β 1 = S m dr = t α 1 2m[α 1 U(r)] α2 2 r 2 α 2 dr = + ϕ, β 2 = S α 2 r 2 2m[α 1 U(r)] α2 2 r 2 mssä nyt U(r) = k/r, α 1 = E P 01 ja α 2 = p ϕ = l = P 02. Nän saadaan muunnetuks koordnaateks m dr Q 01 = ( 2m P 01 + k ) t, P 02 2 r r 2 joka antaa ajan pakan funktona t = t(r 0 ), ja P 02 dr Q 02 = ( r 2m 2 P 01 + k ) P 02 2 r r 2 + ϕ, joka puolestaan antaa pakan radan vahekulman avulla el mssä p = P 2 02 mk = r = r 0 (ϕ) = p 1 + ɛ cos(ϕ Q 02 ), l mk ; ɛ = 1 + 2P 01P02 2 mk 2 = 1 + 2El2 mk 2. Rataelementtenä lmastuna Q 01 = τ el perhelaka, Q 02 = ϖ el perheln ptuus ja ɛ tetenkn radan eksentrsyys.

25 LUKU 7. HAMILTONIN MEKANIIKKA 136 Nyt ϖ = K/ l, joten ϖ = l T 0 K dt = l 2π 0 H(r 0, ϕ 0, t 0 ) mr 2 0 l mssä jälkmmäsessä yhtälössä on käytetty tetoa l = mr 2 0 ϕ. dϕ, Jos esmerkks härö-hamlton on muotoa H = C/r 2, saadaan perheln ptuudeks ϖ == l 2π 0 H(r 0, ϕ 0, t 0 ) mr 2 0 l dϕ = l 2πmC l = 2πmC l 2. Sovelletaan tätä stten Merkuruksen rataan. Havantojen mukaan planeetan perhel kertyy 5600 /100 a (ss kaarsekunteja 100 vuodessa). Suurmman osan tästä (5026 /100 a) aheuttaa kevättasauspsteen prekesso, joten todellsta perheln kertymää on 574 /100 a. Muden planeettojen aheuttamat häröt ovat muotoa GM m H(r, ϕ, t) =, r 2 + R 2 2rR cos ψ mssä R = R (t) on planeetan rata ja ψ = (r, R ). Numeerset laskut, jossa huomodaan kakken muden planeettojen häröt antavat yhdessä keskmääräsen kertymänopeuden ϖ = 531 /100 a. Tämä tulos tunnettn jo 1800-luvulla ja puuttuvlle 43 vuossadassa etsttn kuumesest seltystä. Hyvn suosttu seltysyrtys ol oletus Merkuruksen radan ssäpuolella olevasta planeetasta, jolle annettn nmeks Vulkanus. Vulkausta e kutenkaan löytynyt. Vuonna 1916 Ensten julkas ylesen suhteellsuusteoransa, jonka mukaan avaruuden kaareutumnen tuo velä yhden korjaustermn, joka on muotoa H = h/r 3. Tämä antaa kertymän ϖ == l 2π Suhteellsuusteora antaa h:ks 0 mh (1 + ɛ cos ϕ) dϕ = 2πm 2 kh l p l l 3 = 6πm2 kh l 4. h = k c 2 l 2 m 2, mstä tulee juur tuo puuttuva 43 /100 a. Tämä ol yks ensmmäsä ylesen suhteellsuusteoran suura vottoja. Myös klpalevat gravtaatoteorat ennustvat perheln kertymää, muttevät okean suurusta. Kysymykseen perheln kertymästä jä kutenkn yks epävarmuustekjä, nmttän Aurngon mahdollsesta ltstymsestä johtuva vakutus. Aurngon muoto on vakea mtata tarkast, mutta parhaat nykyakaset havannot osottavat, että efekt on nn pen, ette se vakuta tähän tulokseen. 7.8 Adabaattset nvarantt Kvanttfyskan aamuhämärssä vuonna 1911 kerrotaan herrojen Lorentzn ja Enstenn pohtneen seuraavanlasta mekaansta ongelmaa. Olkoon mellä katosta rppuva helur, jonka vars on katossa olevasta

26 LUKU 7. HAMILTONIN MEKANIIKKA 137 re ästä pujotettu lanka. Lankaa joko nostetaan ta lasketaan hyvn htaast helurn perodn verrattuna, jollon helurn vars joko lyhenee ta ptenee. On selvää, että tässä prosessssa helurn tehdään työtä ja sten sen kokonasenerga e säly. Lorentzn Enstenlle esttämä kysymys ol, mkäs tässä tlanteessa stten sälyy. Ensten vastas, että energa (E) on verrannollnen taajuuteen (ν) el J = E/ν on sälyvä suure. Tällasa melken perodsen systeemn jonkun parametrn (tässä tapauksessa helurn varren ptuuden) htaan muutoksen seurauksena sälyvä suureta kutsutaan adabaattsks nvaranteks. Tarkastellaan asaa Hamltonn mekankan välnellä. Systeemä kuvaavan parametrn λ hdas muutos vodaan esttää muodossa T dλ/dt λ, (7.109) mssä T on lkkeen jakso. Jos λ ols vako, systeem ols tarkast perodnen sälyttäen sekä energan että energasta rppuvan perodn. Olkoon nyt H(q, p; λ) systeemn Hamltonn funkto, joka ss rppuu ajasta rppuvasta parametrsta λ(t). Nyt de dt = H t = H dλ λ dt. (7.110) Okeanpuolenen lauseke rppuu myös nopeast oskllovsta muuttujsta q ja p. Koska tlannetta tarkastellaan htaast muuttuvan parametrn akaskaalassa, vodaan ylläolevasta lausekkeesta ottaa akakeskarvo perodsen lkkeen yl. Merktään tätä de dt = dλ dt H. (7.111) λ Koska λ muuttuu htaast, laskettaessa H:n keskarvoa rttää tarkastella pelkästään nopeta muuttuja q ja p. Okealla puolella oleva keskarvo on ss H = 1 λ T T 0 H λ dt. (7.112) Hamltonn lkeyhtälöstä q = H/ p seuraa ( ) H 1 dt = dq, (7.113) p joten perod T on T = T 0 dt = dq ( ) H 1. (7.114) p Energan muutoksen akakeskarvo vodaan nyt krjottaa muodossa de = dλ ( H/ λ) dq ( H/ p) 1. (7.115) dt dt dq ( H/ p) 1 Nyt on tärkeää mustaa, että osttasdervaattojen kyseessä ollen e vo automaattsest krjottaa ( H/ p) 1 = p/ H)! Nyt ntegronnt täytyy tehdä ptkn rataa q ptäen λ vakona. Sellasella radalla Hamltonn funkton arvo on vako E ja kanonnen mpulss p on koordnaatn q ja kahden vakoparametrn E ja λ funkto el p = p(q; E, λ). Tästä seuraa, että ( ) H 1 = p p E. (7.116)

27 LUKU 7. HAMILTONIN MEKANIIKKA 138 Dervodaan yhtälöä H(q, p; λ) = E parametrn λ suhteen ( ) ( ) H H p λ + = 0 (7.117) p λ el H/ λ H/ p = p λ. (7.118) Edellä olevan mukasest nmttäjän ntegraalssa ( H/ p) 1 = p/ E, jollon saadan de = dλ ( p/ λ) dq, (7.119) dt dt ( p/ E) dq mkä vodaan saattaa muotoon ( p de E dt + p λ ) dλ dq = 0. (7.120) dt Sulkulauseke on p:n keskarvon akadervaatta, joten ntegraal on muotoa dj/dt = 0, (7.121) mssä J = p dq. (7.122) Olemme ss osottaneet, että J on vako, kun λ:aa muutetaan htaast el adabaattnen nvarantt. Nyt J on systeemn energan funkto. Dervodaan stä E:n suhteen J p E = dq = T, (7.123) E josta seuraa E J = ν. (7.124) Palataan stten takasn Lorentzn ja Enstenn helurn. Kyseessä on yksulottenen systeem, jonka lke vodaan kuvata kaksulottesessa faasavaruudessa (q, p). Perodsen systeemn rata faasavaruudessa on suljettu käyrä. Integraal J = p dq laskettuna käyrän ympär on sen ssään jäävä pnta-ala. Adabaattselle nvarantlle tämä pnta-ala on vako. Lorentzn ja Enstenn helurn Hamltonn funkto on H = p2 2m mω2 q 2, mssä ω on oskllaattorn omnastaajuus, mkä kutenkn tässä tapauksessa on htaast muuttuvan varren ptuuden funkto. Oskllaattorn radan faasavaruudessa määrää yhtälö H(p, q) = E. Rata on ellps, jonka puolakselt ovat 2mE ja 2E/mω 2. Ellpsn pnta-alaks tulee sllon J = E/ν, joka on nyt sälyvä suure el energa on verrannollnen taajuuteen, kuten Ensten ovals.

28 LUKU 7. HAMILTONIN MEKANIIKKA 139 Tämä esmerkk osottaa, että kunhan lke on rttävän lkperodsta, nn adabaattnen nvarantt on han okeast sälyvä suure ekä jokn lkarvo. Nyt energa e ole sälyvä suure, mutta koska energa on verrannollnen taajuuteen, nden suhde sälyy. Tämä on puolestaan juur adabaattnen nvarantt. Syy mks adabaattset nvarantt lmestyvät fyskkaan juur kvanttteoran kehttelyn alkuvahessa johtu stä, että rttävän htaat muutokset atomen ympärstössä, esm. sähkömagneettsssa kentssä evät aheuttaneet srtymä kvantttlojen välllä. Sten tällasssa muutoksssa sälyven adabaattsten nvarantten löytymnen ol tervetullutta. Nykypävän fyskassa adabaattsa nvarantteja hyödynnetään ertoten tutkttaessa varattujen hukkasten lkettä magneettkentssä kentssä kuten maapallon lähavaruus (esm. van Allenn sätelyvyöt), fuusolatteet, hukkaskhdyttmet, jne. Jos magneettkenttä muuttuu paljon htaammn kun hukkasen pyörmslke magneettkentän ympär, hukkasen magneettnen momentt on adabaattnen nvarantt. Tästä on suurta hyötyä esmerkks konstruotaessa varatusta hukkassta muodostuvan plasman koossaptolatteta, jotka ovat välttämättömä fuusoenergan tuottamseks.

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

Lagrangen mekaniikka. Luku Systeemin vapausasteet ja sidokset

Lagrangen mekaniikka. Luku Systeemin vapausasteet ja sidokset Luku 3 Lagrangen mekankka Lähdetään stten opskelemaan abstraktmpaa mutta samalla tehokkaampaa mekankan formalsma, jonka taustalla on kaks suurta matemaatkkoa Joseph- Lous Lagrange (1736 1813) ja Sr Wllam

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

5. KVANTTIMEKANIIKKAA

5. KVANTTIMEKANIIKKAA 5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Hamiltonin formalismia

Hamiltonin formalismia Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta Matt A Aaltoylopsto Perusteteden korkeakoulu Matematkan ja systeemanalyysn latos PL 1100, 02015 Espoo matt.ranta@tkk.f 1 JOHDANTO Putkkellot kuuluvat lyömäsotnten ryhmään. Putkkellot koostuvat erptussta

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

9. Muuttuva hiukkasluku

9. Muuttuva hiukkasluku Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Statistinen mekaniikka 1

Statistinen mekaniikka 1 Statstnen mekankka 1 Kevät 2017 Luennotsja Aleks Vuornen (aleks.vuornen@helsnk.f, A322) Laskuharjotusasstentt: Francesco Montanar (francesco.montanar@helsnk.f, A321) Tuomas Tenkanen (tuomas.tenkanen@helsnk.f,

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL :

Venymälle isotermisessä tilanmuutoksessa saadaan dl = α LdT + df = df AE AE Ulkoisen voiman tekemä työ saadaan integroimalla δ W = FdL : S-11435, Fyskka III (ES) Tentt 194 1 Setsemän tunnstettavssa olevaa hukkasta on jakautunut kahdelle energatasolle Ylem taso on degenerotumaton ja sen energa on 1, mev korkeam kun alemman tason, joka uolestaan

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol. LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Kertausta: Vapausasteet

Kertausta: Vapausasteet Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

( ) ( ) Tällöin. = 1 ja voimme laskea energiatason i. = P n missä

( ) ( ) Tällöin. = 1 ja voimme laskea energiatason i. = P n missä S-445 FYSIIKKA III (Sf) Sysy 4, LH Ratasut LHSf-* ohesen uvan esttämää systeemä Systeemssä on 5 huasta joden yhtenen energa on U = 6ε Kunn energatason degeneraatotejä on Olettaen, että systeem noudattaa

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

0 Matemaattisia apuneuvoja

0 Matemaattisia apuneuvoja 0 Matemaattsa apuneuvoja 0.1 Kokonasdfferentaal Tarkastellaan kahden muuttujan funktota f(x, y), joka on määrtelty xy-tasossa. llon jokaseen tason psteeseen (x, y) lttyy funkton arvo z = f(x, y). Jos funkto

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN

38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN TURUN AMMATTIKORKEAKOULU TYÖOHJE (7) FYSIIKAN LABORATORIO V 2..2 38C. MEKAANISEN VÄRÄHTELYN TUTKIMINEN. Työn tavote 2. Teoraa Työssä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa

Lisätiedot

Tilastollinen mekaniikka. Peruskäsitteitä Mikro- ja makrotilat Maxwell-Boltzmann jakauma Bose-Einstein jakauma Fermi-Dirac jakauma Jakaumafunktiot

Tilastollinen mekaniikka. Peruskäsitteitä Mikro- ja makrotilat Maxwell-Boltzmann jakauma Bose-Einstein jakauma Fermi-Dirac jakauma Jakaumafunktiot Tlastollnen mekankka Peruskästtetä Mkro- ja makrotlat Maxwell-Boltzmann jakauma Bose-Ensten jakauma Ferm-Drac jakauma Jakaumafunktot Tlastollnen mekankka Teora on stä vakuttavamp, mtä yksnkertasemmat ovat

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Hamiltonin-Jacobin teoriaa

Hamiltonin-Jacobin teoriaa Perjantai 10.10.2014 1/21 Hamiltonin-Jacobin teoriaa Tällä viimeisellä luennolla käsittelemme vielä uuden näkökulman klassiseen mekaniikkaan, joka kulkee nimellä Hamiltonin-Jacobin teoria. Aloitetaan Hamiltonin

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike Luku 6 Jäykän kappaleen lke Tähän mennessä mekankkaa on tarkasteltu lähnnä yksttästen massapsteden näkökulmasta. Okeat mekaanset systeemt muodostuvat kutenkn usen äärellsen kokossta kappalesta, joden er

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala Pro gradu -tutkelma Whtneyn upotuslause Teemu Saksala Helsngn ylopsto Matematkan ja tlastoteteen latos 5. maalskuuta 2013 0.1 Johdanto Topologset monstot ovat melenkntosa, koska ne ovat määrtelmänsä nojalla

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

MALLIVASTAUKSET S Fysiikka III (EST) (6 op) 1. välikoe

MALLIVASTAUKSET S Fysiikka III (EST) (6 op) 1. välikoe MALLIVASTAUKSET S-4.7 Fysa III (EST) (6 op). väloe 7..7. Astassa on, µmol vetyä ( ) ja, µg typpeä ( ). Seosen lämpötla on K ja pane, Pa. Lase a) astan tlavuus, b) vedyn ja typen osapaneet ja c) moleyylen

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

Äärellisten ryhmien hajotelmat suoriksi tuloiksi

Äärellisten ryhmien hajotelmat suoriksi tuloiksi TAMPEREEN YLIOPISTO Pro gradu -tutkelma Vel-Matt Nemnen Äärellsten ryhmen hajotelmat suorks tuloks Informaatoteteden ykskkö Matematkka Kesäkuu 2016 Tampereen ylopsto Informaatoteteden ykskkö NIEMINEN,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1 / VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

3.3 Hajontaluvuista. MAB5: Tunnusluvut

3.3 Hajontaluvuista. MAB5: Tunnusluvut MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2009

MAOL-Pisteitysohjeet Fysiikka kevät 2009 MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET N:o 979 3731 te 2 AINEIDEN OMINAISUUKSIIN ERUSTUVA SEOSTEN UOKITUS JA VAARAA OSOITTAVAT AUSEKKEET JOHDANTO Vaarallsa aneta ssältävä seoksa luokteltaessa ja merkntöjä valttaessa aneden ptosuuksen perusteella

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2014

Palkanlaskennan vuodenvaihdemuistio 2014 Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

III KLASSINEN TILASTOLLINEN MEKANIIKKA... 48

III KLASSINEN TILASTOLLINEN MEKANIIKKA... 48 III KLASSINEN TILASTOLLINEN MEKANIIKKA... 48 3.1 Johdanto...48 3. Tlastollsen mekankan kästtetä...49 3.3 Maxwell - Boltzmann jakauman johtamnen...51 3.4 Energatlan ssänen vapausaste...54 3.5 Tasapanotlaa

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 1 761121P

FYSIIKAN LABORATORIOTYÖT 1 761121P FYSIIKAN LABORATORIOTYÖT 76P Espuhe Fyskassa pyrtään löytämään luonnosta lanalasuuksa, jota vodaan mtata kokeellsest ja kuvata matemaattsest. Tässä kurssssa tutustutaan yksnkertasten mttausvälneden käyttöön

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot