5.3 FERMAT'N PERIAATE

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "5.3 FERMAT'N PERIAATE"

Transkriptio

1 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta voidaan johtaa geometrisen optiikan perusaksiomat. Esimerkiksi taittumislaki saadaan viereisestä kuvasta laskemalla ensin valon käyttämä aika pisteestä A pisteen O kautta pisteeseen B. Kirjoitetaan aika muuttujan x avulla ja minimoidaan se. Lasku johtaa suoraan taittumislakiin (5.2.1). Lisäkommentti: Fermat'n periaate on esimerkki variaatio-laskennasta, jossa yleisesti pyritään minimoimaan jokin määrätty integraali. Esimerkkimme tapauksessa integraali on B ds t = ò, (5.3.1) v () s missä v () s on valon nopeus radan kohdassa s. A Esimerkki: Valonsäde läpäisee kohtisuorasti L-paksuisen lasilevyn z-akselin suunnassa (kuva). Laske a) läpäisyaika t 0, kun levyn taitekerroin on vakio n 0 ja b) läpäisyaika t, kun taitekerroin kasvaa jatkuvasti z-suunnassa yhtälön n (1 3 2 = n az ) 0 + mukaan. Tässä a on positiivinen vakio.

2 120 Ratkaisu: a) Valon nopeus levyssä on vakio v 0 =c/ n 0, joten ajaksi matkalla L laskemme t 0 L n = = v c 0 0 L. b) Valon nopeus levyssä riippuu z:sta: c c v( z) = = n z n + az 3 ( ) 0(1 3 ) ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: L L L dz n0 2 n0 3 n0 2 òv( z) c ò c 0 c 0 0 t = = (1 + 3 az ) dz = ( z + az ) = L(1 + al ) = t (1 + al 2 ) KOKONAISHEIJASTUS Edellä totesimme, että valo osuessaan rajapintaan sekä heijastuu että taittuu. On kuitenkin olemassa tilanteita, joissa valo ei taitu toiseen väliaineeseen ollenkaan vaan kaikki heijastuu. Puhutaan kokonaisheijastuksesta (total internal reflection). Kun valo tulee optisesti tiheämmästä väliaineesta ja taittuu optisesti harvenpaan, ts. ni > nt (esim. vedestä ilmaan), niin taitekulma on suurempi kuin tulokulma ( q t > q i ) ja säde kääntyy poispäin normaalista

3 Kun tulokulma q = 90 t 121 q i kasvaa, saavutetaan tilanne, jossa taitekulma Tällöin tulokulma q i = q c on ns. kriittinen tulokulma, jolle pätee sin q = nt nt c sin 90 n = n. (5.4.1) i Jos tulokulma q i > q c, tapahtuu kokonaisheijastuminen. Esimerkki: Laske kokonaisheijastuksen rajakulma eli kriittinen tulokulma rajapinnoille: vesi ( n = 1.33) ilma ( n = 1.00) lasi ( n = 1.52) vesi ( n = 1.33) lasi ( n = 1.52) ilma ( n = 1.00) Ratkaisu: 1.00 vesi ilma: sinq c = = Þ q c = lasi vesi: sinq c = = Þ q c = lasi ilma: sinq c = = Þ q c = Sovellutus: Kokonaisheijastavat prismat esimerkiksi kiikarissa: q = 45 > q = 41 i Tapahtuu kokonaisheijastus kaikissa heijastuksissa ja säde ei menetä irradianssia. c i

4 122 Esimerkki: Sukellusveneen periskoopissa käytetään kahta prismaa kokonaisheijastavina komponentteina. Prismat ovat lasia, jonka taitekerroin on (a) Hahmottele kuva periskoopin toimintaperiaatteesta. (b) Periskooppiin tulee pieni vuoto ja alempi prisma peittyy veteen. Miksi periskooppi ei enää toimi? Ratkaisu: a) Molemmissa heijastuksissa tulokulma (45 astetta) on suurempi kuin kriittinen kulma (noin 41 astetta), joten tapahtuu kokonaisheijastus. b) Jos alempi prisma on vedessä, niin kriittinen tulo kulma on 61 astetta (ks. esimerkki edellä), joka on suurempi kuin säteen tulokulma 45 astetta. Kokonaisheijastusta ei tapahdu ja valo "vuotaa" hukkaan. Toinen kokonaisheijastuksen sovellutus on optinen kuitu Valo etenee kuidussa häviöttä kokonaisheijastuen kuidun seinämistä.

5 POLARISAATIO Tavallinen eli ns. luonnollinen valo on satunnaisesti polarisoitunutta. Sähkökenttävektorin Esuunta vaihtelee nopeasti ja satunnaisesti. Matemaattisesti positiivisen z-akselin suuntaan etenevä luonnollinen valo esitetään komponenteilla (ks. 81) ìex ( z, t) = E0 sin[ kz-wt] í îey ( z, t) = E0 sin[ kz- wt+ e( t)] missä siis komponenttien amplitudit ovat samat ( E0x = E0y = E0) ja vaihe-ero e () t on nyt ajasta riippuva ja se vaihtelee nopeasti ja satunnaisesti. Luonnollista valoa sanotaan myös polarisoitumattomaksi valoksi. Geometrisessa optiikassa: Luonnollinen valo voidaan muuttaa polarisoituneeksi valoksi erilaisilla polarisaattoreilla. Kuvassa alla on esitetty ns. selektiiviseen absorptioon (dichroism) perustuva filtteri (Polaroid-levy), joka tuottaa lineaarisesti polarisoitunutta valoa:

6 124 Sähkökentän "pystykomponentit" (johteiden suuntaiset) synnyttävät johteisiin virtoja ja ohmisen vastuksen kautta niiden energia häviää lämpönä ilmaan. Läpi pääsee vain vaakasuuntainen sähkökenttä ja näin valo on muuttunut lineaarisesti polarisoituneeksi. On huomattava, että polarisaattorin ns. transmissioakseli (polarizing axis) on kohtisuorassa johteita vastaan. Täydellinen (ideal) polarisaattori läpäisee 50% luonnollisen valon irradianssista riippumatta transmissioakselin suunnasta: Miten lineaarisesti polarisoitunut valo läpäisee lineaarisen polarisaattorin? Asiaa tutkitaan kuvassa alla: Ensimmäinen polarisaattori muuttaa luonnollisen valon lineaarisesti polarisoituneeksi valoksi, joka ohjataan toiseen polarisaattori eli ns. analysaattoriin. Polarisaattoreiden transmissioakseleiden välinen kulma on f, joka on myös analysaattorin transmissioakselin ja analysaattoriin saapuvan lineaarisesti polarisoituneen valon polarisaatiosuunnan välinen kulma (ks. kuva). Analysaattorin läpi mennyt valo on lineaarisesti polarisoitunutta analysaattorin transmissio-

7 125 2 akselin suunnassa ja sen irradianssille ( I µ E ) pätee ns. Malusin laki I = I 2 f, (5.5.1) max cos missä I max on läpi menneen valon maksimi-irradianssi (kun f = 0). Esimerkki: Luonnollinen valo, jonka irradianssi on I 0, läpäisee kaksi peräkkäistä lineaarista polarisaattoria, joiden transmissioakselit muodostavat kulman 30 toistensa suhteen. Laske läpi mennyt irradianssi. Ratkaisu: 1 I1 = I0 (luonnollisesta valosta puolet läpäisee) I2 I1cos 30 I æ ö = = 0ç = I0 2 è 2 ø 8 Polarisoituminen heijastuksessa Luonnollinen valo polarisoituu, joko osittain tai kokonaan, myös heijastuksessa:

8 126 Kun tulokulma on ns. polarisaatiokulma ( q i = q p ), heijastunut ja taittunut säde muodostavat keskenään 90 :een kulman ja heijastunut valo on täysin lineaarisesti polarisoitunut rajapinnan suunnassa (kohtisuorassa suunnassa tulotasoon nähden, ks. kuva). Jos qi ¹ qp, polarisoituminen on osittaista. Taittunut valo on aina vain osittain polarisoitunutta. Polarisaatiokulma q p saadaan ns. Brewsterin laista: nb tanq p =. (5.5.2) n a Esimerkki: Johda Brewsterin laki lähtien siitä tiedosta, että heijastunut ja taittunut säde muodostavat kulman 90. Ratkaisu: Kuvasta näemme qb + qp = = 90, ts. qb = 90 - qp. Tämä tulos sijoitetaan taittumislakiin: nasinqp = nbsinqb = nbsin(90 - qp) = nbcosqp ja tästä kirjoitamme sinq p nb tanq p cosq = = n p Sovellutus: Polaroid-aurinkolasit. Linssien transmissioakseli on pystysuunnassa, jolloin lasit suodattavat erityisen tehokkaasti esim. veden pinnasta heijastunutta valoa, jonka polarisaation suunta on vaakasuunta. a

9 127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan eri paikassa ja mahdollisesti eri kokoisena kuin missä se todellisuudessa on. Kuvan muodostuminen voidaan ymmärtää mallintamalla valo säteillä ja soveltamalla yksinkertaisia geometrisen optiikan peruslakeja, geometriaa ja trigonometriaa. 6.1 HEIJASTUMINEN TASOPEILISTÄ Kun valo saapuu kahden aineen rajapintaan, osa siitä heijastuu takaisin tuloväliaineeseen. Jos rajapinta on karkea (kuva b), heijastuneet säteet lähtevät satunnaisiin suuntiin eikä tapahtumaa voida hallita tarkastelemalla yksittäisiä säteitä. Kysymys on ns. diffuusista heijastumisesta. Diffuusi pinta ei pysty tuottamaan varsinaista optista kuvaa, vaikkakin kaikki esineet ympäristössämme (vaatteet, ihmiset, kirjat, yms.) ovat näkyviä juuri sen ansiosta. Tässä kappaleessa tarkastelemme heijastumista ja optisen kuvan muodostumista hyvin sileästä pinnasta (kuva a). Yhdensuuntainen sädekimppu heijastuu yhdensuuntaiseksi sädekimpuksi. Puhutaan peilimäisestä heijastuksesta (specular reflection).

10 128 Tasopeilissä esinepisteestä (object point) P lähtevät säteet heijastuvat peilistä. Jokaisen säteen heijastuskulma on sama kuin sen tulokulma peilipintaan. Heijastumisen jälkeen jokainen säde näyttää tulevan peilin takaa kuvapisteestä P (image point). Säteet itse eivät kulje kuvapisteen kautta, vaan kuvan paikka voidaan hahmotella säteiden jatkeiden avulla. Yleisesti kuvausteoriassa säteiden jatkeiden muodostamat kuvat ovat ns. valekuvia eli virtuaalisia kuvia (virtual images). Tällaisia valekuvia ei voida projisoida varjostimelle, vaan niitä on katsottava suoraan silmällä. Jos kuva muodostuu itse säteiden leikatessa toisensa, kysymyksessä on ns. todellinen kuva (real image). Tarkastellaan tarkemmin kuvan muodostumista heijastumisessa. Oleelliset säteet on piirretty kuvassa alla: s on esineen etäisyys kuvaavasta pinnasta s ' on kuvan etäisyys Geometrian avulla saadaan tasopeilin ns.kuvausyhtälö: s' = s. (6.1.1)

11 129 Tarkastellaan seuraavaksi äärellisen esineen kuvautumista tasopeilissä. Esineen (nuoli) korkeus on y. Jokainen esineen piste kuvautuu kuvapisteeksi, joista muodostuu äärellinen kuva. Tutkitaan nuolen kärjen (pisteen Q) kuvautumista. Kuvaan on piirretty kaksi pisteestä Q lähtevää sädettä, jotka heijastuttuaan jatkavat matkaa vasemmalle. Säteiden jatkeet yhtyvät pisteessä Q ', jonne kuva muodostuu. Taas heijastumislain ja yhtenevien kolmioiden avulla näemme, että kuvan korkeus y ' on sama kuin esineen korkeus y, ts. y' = y. Kuvan korkeuden y ' suhdetta esineen korkeuteen y sanotaan (poikittaiseksi) suurennukseksi m (lateral magnification), siis y ' m =. (6.1.2) y Tasopeilille laskimme edellä tuloksen y= y', joten suurennukseksi tulee yksi. Tasopeili ei siis suurenna tai pienennä. Edellisessä kuvassa kuvanuoli osoittaa samaan suuntaan kuin esinenuoli. Sanotaan, että kuva on oikein päin. Tasopeilin suurennus on aina siis m =+ 1, jossa (+)-merkki tarkoittaa oikeinpäin Esimerkki: Nainen, jonka pituus on 160 cm, näkee itsensä juuri ja juuri kokonaan seinäpeilistä. Naisen silmät ovat 150 cm:n korkeudella lattiasta. Määritä peilin korkeus ja alareunan etäisyys lattiasta.

12 Ratkaisu: 130 Peilin korkeus on 80 cm. Alareuna on 75 cm:n etäisyydellä lattiasta. Mielenkiintoinen yksityiskohta: tulokset eivät riipu peilin ja katsojan etäisyydestä s. 6.2 TAITTUMINEN TASOPINNASSA Kuva voi muodostua myös tasomaisen rajapinnan läpi taittuneilla säteillä (esim. vesi-ilma-rajapinnassa): Kulmat q ovat pieniä ja molemmat säteet menevät silmään.

13 Taittumislaki: n1sinq1 = n2sinq2. Pienillä kulmilla sinq» tanq, ja taittumislaki voidaan kirjoittaa n 131 tanq» n tanq, joka kuvan perusteella saadaan muotoon n x x» n. s s' 1 2 Tästä kirjoitamme kuvausyhtälöksi n =. (6.2.1) n 2 s' s Suurennuksen tutkimme myöhemmin taittavan pallopinnan yhteydessä. Esimerkki: Kala ui 1 m:n syvyydessä. Kuinka syvällä se näyttää uivan? Ratkaisu: Ilman taitekerroin: n 2 = 1.00 Veden taitekerroin: n 1 = 1.33» 4/ 3 Esine: s = 1.00 m n2 3 Kuva: s' = s = s = 75 cm n1 4 1

14 HEIJASTUMINEN PALLOPEILISTÄ Pallopeili on esinepisteen O suhteen joko kovera (concave) tai kupera (convex) riippuen siitä onko peilin kaarevuuskeskipiste C samalla tai vastakkaisella puolella kuin esine. Viereisessä kuvassa tarkastellaan kuperaa peiliä. O = esinepiste, I = kuvapiste, V = vertex (huippupiste), s = esineen etäisyys ja s' = kuvan etäisyys V:stä. Jana OC on systeemin ns. optinen akseli. Piste P on mielivaltainen piste pinnalla korkeudella h. Kuvaan on piirretty kaksi esinepisteestä lähtevää sädettä. Toinen, optisen akselin suuntainen säde heijastuu huippupisteestä V suoraan takaisin ja toinen pisteestä P heijastuslain mukaisesti. Heijastuneet säteet divergoivat, mutta niiden jatkeet leikkaavat muodostaen virtuaalisen kuvapisteen I. Etsimme yhtälöä, joka kytkee toisiinsa esineen etäisyyden s kuvapisteen etäisyyden s ' ja peilin kaarevuussäteen R. Kolmiosta OPC kirjoitamme ensin siis a + j+ (180 - q) = 180 ja kolmiosta OPI saamme a + a' + (180-2 q) = 180. Sieventämällä tulee q = a + j ja 2 q = a + a' ja nämä yhdistämällä tulee a - a' =- 2j. (6.3.1)

15 133 Kuvan perusteella kirjoitamme myös tulokset h h tana =, tan a' s + d = s' - d ja tan j = missä d on pieni väli VQ. h R - d, Seuraavaksi teemme tärkeän approksimaation. Jos piste P on lähellä huippupistettä V, kulmat a, a ' ja j ovat pieniä ja sarjakehitelmistä (esim. j :lle) 3 5 j j sinj = j- + -L 3! 5! 2 4 j j cosj = L 2! 4! riittää ottaa huomioon vain ensimmäiset termit. Voidaan kirjoittaa (esim. j :lle) tanj» sin j» j» h/ R. Tässä siis myös pieni väli d on approksimoitu nollaksi. Yhtälö (6.3.1) saa nyt muodon h - h =- 2 h, s s' R mistä pisteen P korkeus h supistuu pois. Kaikki etäisyydet ovat positiivisia ja tulos pätee kuperalle peilille. Vastaava tarkastelu, positiivisia suureita soveltaen johtaa samantapaiseen yhtälöön koveralle peilille. Kun sovelletaan jäljempänä esitettyjä merkkisääntöjä, yhteinen yhtälö molemmille peilityypeille on s + s' = R. (6.3.2) Tämä on ensimmäisen kertaluvun teorian mukainen kuvausyhtälö. Säteiden suunnat poikkeavat vain vähän optisesta akselista, joten puhutaan myös ns. paraksiaalisesta approksimaatiosta. Kuvausyhtälön esitti ensimmäisen kerran Gauss vuonna 1841 ja hänen mukaansa sitä sanotaan myös Gaussin kuvausyhtälöksi.

16 134 Merkkisäännöt: 1. Esineen etäisyys s > 0, kun esine on samalla puolella kuin pintaan tulevat säteet. 2. Kuvan etäisyys s ' > 0, kun kuva on samalla puolella kuin pinnasta lähtevät säteet. 3. kaarevuussäde R > 0, kun kaarevuuskeskipiste C on samalla puolella kuin pinnasta lähtevät säteet. - kovera peili R > 0 - kupera peili R < 0 Yhteenvetona merkkisäännöistä voidaan todeta, että positiiviset kuvan ja esineen etäisyydet muodostuvat todellisilla säteillä ja vastaavat siten todellisia esineitä ja kuvia. Negatiiviset etäisyydet muodostuvat säteiden jatkeilla ja vastaavat virtuaalisia (vale-) esineitä ja kuvia. Pallopeilistä saadaan tasopeili asettamalla R. Kuvausyhtälö (6.3.2) antaa tällöin s' =- s, joka on tuloksen (6.1.1) yleisempi muoto. Negatiivinen merkki tarkoittaa, että kuva on virtuaalinen kuva, joka siis muodostuu säteiden jatkeiden avulla. Polttoväli f Jos esine on äärettömän kaukana ( s = ), säteet tulevat peiliin optisen akselin suuntaisina ja fokusoituvat polttopisteeseen F kuvausyhtälön (6.3.2) mukaan etäisyydelle s' = R/2.

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: 10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)

Lisätiedot

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3. 135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n 141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

34. Geometrista optiikkaa

34. Geometrista optiikkaa 34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

34 GEOMETRINEN OPTIIKKA (Geometric Optics)

34 GEOMETRINEN OPTIIKKA (Geometric Optics) 90 34 GEOMETRINEN OPTIIKKA (Geometric Optics) Omat kasvot kylpyhuoneen peilissä, kuu kaukoputken läpi katsottuna, kaleidoskoopin kuviot. Kaikki nämä ovat esimerkkejä optisista kuvista (images). Kuva muodostuu,

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6 FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta

Lisätiedot

Valo, valonsäde, väri

Valo, valonsäde, väri Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon,

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

2 paq / l = p, josta suuntakulma q voidaan ratkaista

2 paq / l = p, josta suuntakulma q voidaan ratkaista 33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5 5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t. Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä

Lisätiedot

8.3 KAMERAT Neulanreikäkamera

8.3 KAMERAT Neulanreikäkamera 88 Analysoitava valo tulee vasemmalta. Se okusoidaan kapeaan rakoon S (tulorako), josta se kollimoidaan linssillä L yhdensuuntaiseksi sädekimpuksi. Rako S on siis linssin polttovälin päässä linssistä.

Lisätiedot

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50:

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: 173 ------------------------------------------------Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: Kaarevuussäteet R1 3 cm ja R. Systeemimatriisi on M R T R1,

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

oppilaitos: ARKADIAN YHTEISL YSEO

oppilaitos: ARKADIAN YHTEISL YSEO ,/ VALO-OPPI oppilaitos: ARKADIAN YHTEISL YSEO kurssi FY1 tehnyt Markus Hagmal1 Jätetty syyskuun 28. päivä 1999 Tarkastaja Jari Pyy LYHENNELMÄ Tutkielma käsittelee optiikkaa eli valo-oppia Lukiessasi tätä

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta Huygensin periaate Kenttien rajapintaehdot Rajapintaehdot Fresnelin

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

e) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm.

e) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm. 98 kotitehtävä ------------------------------------------------Esimerkki: Isotrooppinen 100 :n lamppu on 2.0 m:n korkeudella lattiasta (ks. edelliset esimerkit). Sen säteilyintensiteetti on I e = 8.0 sr

Lisätiedot

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2.

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2. 766349A AALTOLIIKE JA OPTIIKKA kl 017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.. 1. Mitkä funktioista a) y( x, t) ( x t) b) y( z, t) 5sin [4 ( t z)] ja c) y( x, t) 1/( x t) etenevät muotonsa säilyttäen

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

. Lasketaan muutamia pisteitä ja piirretään kuvaajat:

. Lasketaan muutamia pisteitä ja piirretään kuvaajat: RATKAISUOHJEET Harjoitus 1 1. a) Tässä paikka x ja aika t esiintyvät muodossa xv t, joten funktio etenee muotonsa säilyttäen. Nopeus on 1 m/s positiivisen x-akselin suuntaan. b) Tässä paikka z ja aika

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Kertaustehtävien ratkaisuja

Kertaustehtävien ratkaisuja Kertaustehtävien ratkaisuja. c) Jaksonaika on 300 s T = = 0,50 s, f = = 600 T 0,50 s =,0 Hz.. b) Lasketaan ensin jousivakion suuruus ja sitten värähdysaika. k = - mg,0 kg 9,8 m/ s = = 98, N/ m x 0,0 m

Lisätiedot

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò, 9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat

Lisätiedot

HEIJASTUMINEN JA TAITTUMINEN

HEIJASTUMINEN JA TAITTUMINEN S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Suora Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..07 Ennakkotehtävät. a) Kumpaankin hintaan sisältyy perusmaksu ja minuuttikohtainen maksu. Hintojen erotus on kokonaan minuuttikohtaista

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet 197 Lausu logaritmeja käyttämättä jaksollisen desimaaliluvun (kymmenysluvun) 0,578703703 kuutiojuuri jaksollisena desimaalilukuna. [S3, pitempi kurssi] Ratkaisut 1917 197 1917 Tarkastelemme kolmiota ABC,

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo)

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Fysiikan kotityöt Fy 3. (4.03.006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Pieni kevennys tähän alkuun: Kuvalähteet: http://www.hotquanta.com/twinrgb.jpg http://www.visi.com/~reuteler/vinci/world.jpg

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot