Havaitsevan tähtitieteen peruskurssi I
|
|
- Tuula Heikkinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto
2 Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka Ei huomioi, että valo on aaltoliikettä Ei selitä difraktiota ja interferenssiä Oletus: kaikki havaintolaitteen mitat >> λ Oletus: valo koostuu hiukkasista Hiukkaset etenevät säteinä Homogeeninen väliaine Säteet suoria Väliaineiden pinnalla Suunnan muutos Väliaineen taitekerroin n 1 v = c/n, c = nopeus tyhjiössä, jolle n = n 0 = 1 λ 1 > λ 2 n(λ 1 ) < n(λ 2 ) dispersio Pierre de Fermat (Ranska, ): Valo noudattaa aina reittiä, jota pitkin matkaan kuluva aika on lyhin mahdollinen. Heijastuslaki: Tulokulma = Heijastuskulma = Θ 1, Snellin laki: n 1 sin Θ 1 = n 2 sin Θ 2 n 1 > n 2 Kokonaisheijastuksen (Θ 2 = 90 o ) rajakulma Θ 1 = Θ r = asin (n 2 /n 1 ) Θ 1 >Θ r Täydellinen heijastus Pätee heijastuslaki (mm. optiset kuidut) www
3 Geometrinen optiikka Geometrinen optiikka Peilit Paraboloidi: www z/c = x 2 /a 2 + y 2 /b 2 Paraboloidinen peili: a = b z = Ax 2, missä A = vakio Paraabelin määritelmä: Etäisyys johtosuorasta ja polttopisteestä sama Polttopiste=F = (0, z=p) z = x 2 /(4p) Esimerkki 3.1: Kaikki optisen akselin suuntaiset säteet päätyvät polttopisteeseen. Kuvan geometrinen ratkaisu x = p = johtosuora x = y 2 /(4p) = paraabeli QD = (x + p) 2 = x 2 + 2xp + p 2 QF = (x p) 2 + y 2 = x 2 + 2px + p 2 y 2 = 4px 2yy = 4p y = 2p/y = m 1 DF m 2 = y/(2p) m 1 m 2 = 1 Tasakylkinen! Kolme kulmaa samat joka optisen akselin suuntaiselle säteelle
4 Geometrinen optiikka Geometrinen optiikka Linssit Valo taittuu kahdesti: ilma lasi ilma Kupera linssi 1 a + 1 b = 1 f a = kohteen etäisyys linssistä b = kuvan etäisyys linssistä f = linssin polttoväli Tähtitieteessä a b = f Väriaberraatio Kovera linssi: ei kuvaa
5 Aalto-optiikka Aalto-optiikka Valon esteiden koko lähellä λ Geometrinen optiikka ei päde Aalto-optiikka Sähkömagneettinen säteily: E = Sähkökenttä B = Magneettikenttä E B ja värähtelevät toisiaan vastaan kotisuorissa tasoissa Paikassa r sähkökenttä on E = E 0 exp[i(k r ωt)] k = etenemissuuntaan osoittava yksikkövektori ω = 2πf värähtelyn kulmanopeus f = frekvenssi Kaksi kuvaa liikkuvan aallon E ja B värähtelystä www
6 Aalto-optiikka Aalto-optiikka Aalto-optiikka Havaitseva tähtitiede) Yksinkertaistus: säteily kohti havaitsijaa pitkin z-akselia k z E z E z = 0 Sähkökentällä seuraavat komponentit xy-tasossa: E x = E 1 cos (ωt) E y = E 2 cos (ωt + δ) a) Elliptinen polarisaatio b) Ympyrä polarisaatio c) Lineaarinen polarisaatio Graafinen video esitys vaihtoehdoista a, b ja c www
7 Stokesin parametrit Stokesin parametrit Stokesin parametrit Havaitseva tähtitiede ) I = valon kokonaisintenstiteetti I(1 P E ) = polarisoitumaton valon komponentti IP E = täysin elliptisesti polarisoitunut komponentti 0 P E 1 = polarisaatioaste E kiertää taivaalla ellipsiä: a = iso- ja b = pikkuakseli θ = positiokulma = isoakselin ja pohjoisen välinen kulma Polarisoitunutta valoa kuvataan Stokesin parametreillä: I = intensiteetti Q = IP E cos 2β cos 2θ = IP cos 2θ U = IP E cos 2β sin 2θ = IP sin 2θ V = IP E sin 2β = IP V P=P E cos 2β =lineaarinen polarisaatioaste, P V =P E sin β =ympyräpolarisaatioaste P V > 0 = oikeakätinen ja P V < 0 = vasenkätinen ympyräpolarisaatio β = 45 Täysin ympyräpolarisoitunut: P = 0, Q = U = 0 (Video: 3 ja 4 tapaus) β = 0 Täysin lineaarisesti polarisoitunut: P V = 0, V = 0 (Video: 5 tapaus)
8 Stokesin parametrit Stokesin parametrit Stokesin parametrit Havaitseva tähtitiede ) Stokesin parametrit kuvaavat osittain polarisoituneen kohteen säteilyä Stokesin parametrien määritelmä IP E = (Q 2 + U 2 + V 2 ) 1/2 P = P E cos 2β = [(Q 2 + U 2 ) 1/2 ]/I = lineaarinen polarisaatioaste θ = [atan(u/q)]/2 = positiokulma P V = V/I = ympyräpolariasaatioaste Täysin lineaarisesti polarisoituneelle kohteelle käytetään P x = Q/I = P cos 2θ P y = U/I = P sin 2θ Stokesin vektori on S = [I, Q, U, V] Kahden kohteen S 1 ja S 2 voidaan summata (kaksoistähti) Stokesin vektorit eivät huomioi säteilyn vaihetta Säteilyn vaiheet satunnaisia Stokesin formalismi toimii Säteilyn vaiheet koherentteja Stokesin formalismi ei toimi Optisen elementin aiheuttama S muutos (Mullerin matriisit yms.)
9 Stokesin parametrit Fresnelin kaavat Fresnelin kaavat Havaitseva tähtitiede ) Aalto-optiikka Intensiteetin I jakautuminen väliaineen pinnalla Θ 1 ja Θ 2 = Saapuvan ja taittuvan säteilyn kulmat n 1 ja n 2 = Väliaineiden taitekertoimet E = [E, E ] = saapuvan säteilyn sähkökenttä E = sen pinnan suuntainen komponentti E = sen pintaa vastaan kohtisuora komponentti E = [E, E ] = heijastuvan säteilyn sähkökenttä E = sen pinnan suuntainen komponentti E = sen pintaa vastaan kohtisuora komponentti E = [E, E ] = taittuvan säteilyn sähkökenttä E = sen pinnan suuntainen komponentti E = sen pintaa vastaan kohtisuora komponentti Saapuvan säteilyn E tunnettu Ratkaisu E ja E arvoille Fresnelin kertoimilla
10 Stokesin parametrit Fresnelin kaavat Fresnelin kaavat Havaitseva tähtitiede ) Fresnelin heijastuskertoimet (Reflection: R ja R ) E =E R, missä R = n 2 cos θ 1 n 1 cos θ 2 n 1 cos θ 2 +n 2 cos θ 1 ja E =E R, missä R = n 1 cos θ 1 n 2 cos θ 2 n 1 cos θ 1 +n 2 cos θ 2 Fresnelin transmissiokertoimet (Transmission: T ja T ) E =E T, missä T = 2n 1 cos θ 1 ja E n 1 cos θ 2 +n 2 cos θ =E T, missä T = 2n 1 cos θ 1 1 n 1 cos θ 1 +n 2 cos θ 2 Intensiteetit: I =(E ) 2 +(E ) 2 saapuu, I =(E )2 +(E )2 heijastuu, I =(E ) 2 +(E ) 2 taittuu Tapauksessa E = E saapuva säteily polarisoitumatonta I = 2(E ) 2 ja I = (E )2 +(E )2 = (E R ) 2 +(E R ) 2 = (E ) 2 (R 2 +R2 ) I /I = (R 2 +R2 )/2 Snellin lain: sin θ 1 = n sin θ 2, missä n = n 2 /n 1, avulla voidaan kaikissa tapauksissa eliminoida taittumissuunnan, termin cos(θ 2 ), vaikutus cos θ 2 = [1 (sin θ 2 ) 2 ] 1/2 = [1 (sin θ 1 /n) 2 ] 1/2 = (1/n)[n 2 (sin θ 1 ) 2 ] 1/2
11 Stokesin parametrit Fresnelin kaavat Fresnelin kaavat ) Brewsterin kulma (θ B ): heijastunut säteily täysin polarisoitunut eli R = 0 R :n osoittaja on nolla n 2 cos θ 1 = n 1 cos θ 2 cos 2 θ 2 = ( n 2 n 1 ) 2 cos 2 θ 1 Snellin lain toteuduttava n 1 sin θ 1 = n 2 sin θ 2 sin 2 θ 2 = ( n 1 n 2 ) 2 sin 2 θ 1 sin 2 θ 2 + cos 2 θ 2 = 1 = sin 2 θ 1 + cos 2 θ 1 = ( n 1 n 2 ) 2 sin 2 θ 1 + ( n 2 n 1 ) 2 cos 2 θ 1 sin 2 θ 1 [ n2 2 n2 1 n 2 ] = cos 2 θ 1 [ n2 2 n2 1 2 n 2 ] tan 2 θ 1 = ( n 2 ) n 2 θ B = θ 1 = atan n 1 1 Oppikirja: Heijastunut säteily on aina polarisoitunutta Edellinen sivu: Jos E = E Heijastuneen säteilyn intensiteetti on I /I = (R 2 + R2 )/2 Kuva: R 2 (katkoviiva) suurempi kuin R2 (jatkuva viiva) kaikilla θ 1. Brewsterin kulma θ B on merkitty pystysuoralla katkoviivalla Kuva: θ 1 90 o kaikki säteily heijastuu taittuva säteily I =0 Vastaavanlaisia tapauksia laskettavissa www
12 Interferenssi Interferenssi ) Sähkövektori E kuvaa valoa Kahden valosäteen vuorovaikutus E = E 1 + E 2 Vaihe-ero muuttuu hitaasti Interferenssi havaittavissa Useita atomeja Vaiheet satunnaisia Ei havaittavissa Saman kohteen valo jaetaan osiin Annetaan vuorovaikuttaa Vaihe-ero vakio Interferenssi havaitaan Interferenssi Animaatio www Interferometria: kurssin lopussa
13 Diffraktio Diffraktio Diffraktio Valo kaukoputken kautta detektoriin Ääretön määrä reittejä Valosäteillä eri vaiheet Vahvistavat tai heikentävät toisiaan Lopputulos missä tahansa detektorin pisteessä = Eri reittejä saapuneen säteilyn amplitudien summa Yleinen tapaus: Fresnelin diffraktio Ratkaisut monimutkaisia ja työläitä Erikoistapaus: Fraunhoferin diffraktio Kohde kaukana Eri reittien pituudet lähes samat Ratkaisut edelleen työläitä Fourier muunnoksia www kompleksi-avaruudessa Lisäksi tarvitaan numeerisia ratkaisuja Kuvat: Kapean raon ja pyöreän aukon diffraktio
14 Diffraktio Diffraktio Pyöreän aukon diffraktio Intensiteetti I(θ) [(π 2 R 4 )/m][j 1 (2m)] 2 = C [J 1 (2m)] 2 C = [(π 2 R 4 )/m] = Vakio aallonpituudella λ R = Pyöreän aukon säde m = (πr sin θ)/λ J 1 (x) = J 1 (2m) on Besselin funktio www Sarjakehitelmän numeerinen ratkaisu J 1 (x) = 0 Tulos on x 3.83, 7.02, www Ensimmäinen minimi x = 2m = (2πR sin θ)/λ 3.83 sin θ = (3.83 λ)/(2πr) 1.22λ/D Kulma θ on pieni θ sin θ 1.22λ/D Toinen minimi: x = 7.02 θ 2.23λ/D Kolmas minimi: x = θ 3.24λ/D
15 Kaukoputken optiikan perussuureet Kaukoputken optiikan perussuureet Käsitteitä tähtitiede) Objektiivi (Peili tai Linssi) kerää valon D = Halkaisija, f = Polttoväli Usean linssin/peilin yhdistelmä f = Koko yhdistelmän polttoväli f /D = Aukkosuhde Konventio f /n tarkoittaa n = f /D u = Kulma jossa kohde näkyy s = f tan u = Kohteen kuvan korkeus, Pieni kulma: tan u u, f kasvaa Kuva kasvaa Visuaalihavainnot: f = okularaarin polttoväli ω = u /u = f /f = Suurennos = Kohteen kulmaläpimitan suhteellinen kasvu L = (f /f )D = D/ω = Lähtöpupilli = Okulaarin muodostama kuva objektiivista = Kaikki koottu valo kulkee lähtöpupillin läpi Minimisuurennos: Lähtöpupilli L pienempi kuin silmän pupillin läpimitta d 6 mm ω min D/d Kaikki koottu valo silmään
16 Kaukoputken optiikan perussuureet Kaukoputken optiikan perussuureet Erotuskyky = Miten läheisiä kohteita voidaan erottaa erillisinä. Määritelmä: Toisen kohteen keskipiste on toisen kohteen ensimmäisen pimeän diffraktio vyöhykkeen kohdalla θ sin θ = 1.22λ/D Käytännössä θ λ/d, missä [θ] = rad Keltaiselle valolle λ = m saadaan metrin, D = 1m, teleskoopilla erotuskyky θ = λ/d = rad = 0.11 Suuremmilla putkilla θ pienempi Seeing parhaimmissakin observatorioissa määrää todellisen erotuskyvyn rajan Visuaalihavainnot: Silmän erotuskyky e = 2 = rad sopiva Maksimisuurennos = ω max = u /u = e/θ = ed/λ Keltaiselle valolle λ = m saadaan metrin, D = 1m, teleskoopilla saadaan ω max = ed/λ 1000
17 Kuvausvirheet Kuvausvirheet Ideaalimailma: pistemäisten kohteiden kuvat pisteitä kaikkialla polttotasossa Aaltoliikettä Diffraktio raja θ λ/d Aberraatio: Mainittu aiemmin: Linssin polttoväli riippuu aallonpituudesta Palloaberraatio: Peilin tai linssin polttoväli muuttuu eri etäisyyksillä optisesta akselista Ei ongelma paraboloidi peileissä. Ongelma kaikissa linsseissä Täydellistä linssiä etsimässä www
18 Kuvausvirheet Kuvausvirheet @ Koma: Ei optisen akselin suuntaiset säteet heijastuvat (peilit) tai taittuvat (linssit) eri alueille K = 3/16(D/f ) 2 β (Ross 1935, ApJ 81,156) Koman voimakkuus (D/f ) 2 Vähentyy: f kasvaa tai D pienenee (ei järkevää) Koman voimakkuus β, Missä β etäisyys optiselta akselilta Paras kuva lähellä optista akselia Laaja kuvakenttä Käytetään korjauslinssejä
19 Kuvausvirheet Kuvausvirheet @en.wikipedia.org) Astigmaattisuus: Linssi tai peili epäsymmetrinen optisen akselin suhteen Pystysuoran ja vaakasuoran tason säteilyn komponenttien polttopisteet poikkeavat Kuvan muoto erilainen eri etäisyyksillä (Objektiivin huono tuenta, sylinterin muotoinen) Kuvakentän kaarevuus: Petzvalin pinta www Alla Kepler satelliitin sensorien pinta Muita kuvausvirheitä kuvattu oppikirjassa
20 Kuvausvirheet Optiikan suunnittelu Optiikan suunnittelu Linssit: eri materiaalien yhdistelmät Peilit: pallo, paraboloidi hyperpoloidi,... jokin muu valittu mielivaltainen muoto Valittu D/f : Kuvavirheiden minimointi Esimerkiksi: K (D/f ) 2 D/f pienenee K pienenee Optisten elementtien määrä ja yhdistelmät Kaukoputket: osa virhelähteistä redusoitavissa jälkikäteen & rajattu kaista (pieni värivirhe) Suuret peilit: hinta, paino, valmistettavuus, kestävyys, lämpölaajeneminen,... Tietokoneet: Ennen valmistuksen aloittamista Säteen jäljitys (engl. Ray-tracing) Esimerkiksi: Hunajakenno (engl. honeycomb) rakenteen optiikka? www Esimerkiksi: Mitä maassa (D suurempi)? Mitä satelliitissa (D pienempi)?
3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5
5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka
Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen
Optiikkaa. () 10. syyskuuta 2008 1 / 66
Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria
9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1
9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit
Aaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4.
Teoreettisia perusteita I
Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran
Havaitsevan tähtitieteen peruskurssi I
4. Teleskoopit ja observatoriot Lauri Jetsu Fysiikan laitos Helsingin yliopisto (kuva: @garyseronik.com) Tavoite: Kuvata, kuinka teleskooppi rakennetaan aiemmin kuvatuista optisista elementeistä Teleskoopin
4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).
P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.
Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste
Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
XFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
Polarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu
Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:
LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen
Aaltojen heijastuminen ja taittuminen
Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan
OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:
Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat
25 INTERFEROMETRI 25.1 Johdanto
5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan
Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen
Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?
Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.
Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Havaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
Scanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.
FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin
Havaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
RATKAISUT: 16. Peilit ja linssit
Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,
34. Geometrista optiikkaa
34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen
jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.
71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin
Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo
Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio
5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys
5. Kaukoputket ja observatoriot
5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys 4. Fokus 5. Kuvan laatuun vaikuttavia tekijöitä 6. Observatorion sijoituspaikka 5.1 Teleskooppia kuvaavat
5.3 FERMAT'N PERIAATE
119 5.3 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta
Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n
141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta
Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
6 GEOMETRISTA OPTIIKKAA
127 6 GEOMETISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan
Valo-oppia. Haarto & Karhunen. www.turkuamk.fi
Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)
7 VALON DIFFRAKTIO JA POLARISAATIO
7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä
d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden
Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.
135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.
6 GEOMETRISTA OPTIIKKAA
127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan
ja siis myös n= nk ( ). Tällöin dk l l
Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät
FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi
Kaukoputket ja observatoriot
Kaukoputket ja observatoriot Helsingin yliopisto, Fysiikan laitos kevät 2013 7. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia
FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn
11.1 MICHELSONIN INTERFEROMETRI
47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.
eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0
PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys
9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
6. Kaukoputket ja observatoriot
6. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 23.2.2012 Kalvot: Jyri Näränen ja Thomas Hackman HTTPKI, kevät 2011, luento 4 1 6. Kaukoputket ja observatoriot Perussuureet
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
FY9 Fysiikan kokonaiskuva
FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin
Luento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Työ 2324B 4h. VALON KULKU AINEESSA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada
Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4.
Yleistä kurssiasiaa! Ekskursio 11.4.! Tentti 12.5. klo 10-14! Laskarit alkavat tulevaisuudessa 15.45, myös ensi tiistaina vaikka silloin ei ole luentoa! Laskaripisteet tulevat verkkoon (opiskelijanumerolla
Pro-gradu tutkielma. Ympyräpolarisoidun synkrotronisäteilyn tuotto. Aleksi Änäkkälä Oulun yliopisto Fysiikan laitos 2012
Pro-gradu tutkielma Ympyräpolarisoidun synkrotronisäteilyn tuotto Aleksi Änäkkälä Oulun yliopisto Fysiikan laitos 2012 Sisältö 1 Johdanto 1 2 Sähkömagneettisen säteilyn polarisaatio 2 2.1 Polarisaatio............................
Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008
Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA
VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Faktaa ja fiktiota Suomi-asteroideista
Aurinkokuntatapaaminen 2019 Faktaa ja fiktiota Suomi-asteroideista Hannu Määttänen Yrjö Väisälä 1891 1971 Kuva: Turun yliopisto Kuva: Turun yliopisto Akateemikko Yrjö Väisälä ja observaattori Liisi Oterma
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun
Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 9 Valon luonne ja eteneminen (YF 33) Valon
e =tyhjiön permittiivisyys
75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen
SPEKTROMETRI, HILA JA PRISMA
FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.
1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.
Polarimetria Tekijät: Immonen Antti, Nieminen Anni, Partti Jussi, Pylkkänen Kaisa ja Viljakainen Antton Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.
BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2
Teleskoopit ja observatoriot
Teleskoopit ja observatoriot Teleskoopin ensisijainen tehtävä on kerätä mahdollisimman paljon valoa (fotoneja) siihen liitettyyn instrumenttiin (kuten valokuvauslevy tai CCD-kamera). Kaukoputkea kuvaavat