Valo, valonsäde, väri

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Valo, valonsäde, väri"

Transkriptio

1 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon, joka osuu silmään ja saa aikaan näköaistimuksen. Jotta esineen voisi nähdä, sen täytyy lähettää valoa. Jotkut esineet, kuten aurinko, lamput ja kynttilät, tuottavat itse valoa. Tällaiset esineet näkyvät, vaikka muuten olisi pimeää. Useimmat esineet eivät kuitenkaan tuota valoa itse, vaan ne lähettävät edelleen niihin osuvaa valoa. Tällaiset esineet näkyvät vain, jos jostain muualta tuleva valo osuu niihin. Valo voi olla heikkoa tai voimakasta; valolla tai tarkemmin sanottuna valaistuksella on siis voimakkuus. Lampun tai muun vastaavan valonlähteen aikaansaaman valaistuksen voimakkuus riippuu siitä, kuinka kaukana valonlähde on. Laserosoittimen valo on punaista. Liikennevalot näyttävät vuorotellen punaista, keltaista ja vihreää. Tietokoneen kuvaruutu voi lähettää hyvin monen väristä valoa, riippuen siitä mitä ruudulla esitetään. Valolla on siis väri, joka on valon toinen havaittava ominaisuus voimakkuuden lisäksi. Esineilläkin on väri. Kuitenkin esine voi valaistuksen väristä riippuen näyttää eri väriseltä. Vihreä metsä näyttää oranssilta, kun siihen osuu laskevan auringon oranssi valo. Teatterin tai rock-yhtyeen värivaloilla saadaan esimerkiksi ihmiskasvot näyttämään melkein minkä värisiltä tahansa. Esineen todellisena värinä pidetään yleensä sitä, miltä esine näyttää keskipäivän auringonvalossa, tai auringonvaloa muistuttavien lamppujen valossa.

2 Heijastuminen, valon sädemalli Valo heijastuu esimerkiksi sileistä metalli- ja lasipinnoista ja veden pinnasta. Heijastuksessa valo selvästi muuttaa suuntaa. Tätä voidaan tutkia tarkemmin valonlähteellä, josta saadaan yksi tai useampia kapeita "valoviiruja" eli valonsäteitä. Optiikan opetusvälinesarjoihin kuuluu yleensä jonkinlainen "sädelaatikko", jonka säteet saadaan näkyviin pöydän pinnalla. Myös laserosoitinta voi käyttää, mutta sen säde on niin kapea että se ei oikein näy pöydällä. Kokeilemalla heijastusta sileästä peilipinnasta havaitaan, että valonsäteen heijastuskulma on yhtä suuri kuin säteen tulokulma (kuvat 1 ja 2). Jos heijastava pinta on rosoinen, heijastunut valonsäde hajoaa, joten silloin heijastuskulmaa ei voi mitata. kuva 1. kuva 2. Taittuminen Kokeillaan heijastumista läpinäkyvästä muovikappaleesta. Havaitaan että nytkin osa valosta heijastuu, mutta osa valosta menee läpi pinnasta kappaleen sisään (kuva 3). Havaitaan myös että valonsäde muuttaa suuntaansa myös läpäistessään rajapinnan. Tätä ilmiötä sanotaan valon taittumiseksi. Havaitaan myös että valo taittuu uudelleen tullessaan muovista ulos. Kun tulokulmaa muutellaan, havaitaan että valon tullessa ilmasta muoviin taitekulma on aina pienempi kuin tulokulma. Valon tullessa muovista ilmaan, taitekulma on aina suurempi kuin tulokulma. Lasi ja vesi taittavat valoa samalla tavalla kuin muovi. kuva 3. Missä suunnassa esine näkyy? Edellä olevissa kokeissa on havaittu, että ellei valonsäde heijastu tai taitu jossain pinnassa, säde kulkee suoraviivaisesti. Toisaalta näkeminen perustuu valoon; esineestä lähtevät valonsäteet osuvat silmään. Jos valonsäde ei muuta suuntaansa matkallaan esineestä silmään, esine näkyy siinä

3 suunnassa missä esine todellisuudessakin on. Mutta jos valonsäteen suunta muuttuu, esinekin näyttää olevan eri suunnassa kuin todellisuudessa. Peilin avulla voidaan nähdä kulman taakse. Esine näyttää olevan peilin takana (kuva 4). Vinosti veden pinnan läpi katsottaessa vesi näyttää todellista matalammalta, ja veden alla olevat kivet näyttävät olevan lähempänä pintaa kuin ne todellisuudessa ovat (kuva 5). kuva 4. kuva 5. Valon hajottaminen väreihin Aikaisemmin on todettu värin olevan valon yksi havaittava ominaisuus. Tarkastellaan seuraavassa värejä tarkemmin. Jos valkoinen valo, kuten auringon tai hehkulampun valo, johdetaan poikkileikkaukseltaan kolmion muotoisen lasikappleen läpi, valo taittuu sekä mennessään lasiin että tullessaan lasista pois. Paitsi että valonsäteen suunta muuttuu, tapahtuu muutakin: valonsäde muuttuu eriväristen valojen viuhkaksi, eli spektriksi. (Todellisuudessa eri värien rajat eivät ole jyrkkiä kuten kuvassa 6, vaan värit muuttuvat toisikseen liukuvasti.) kuva 6. Kokeillaan, mitä laserosoittimen valolle tapahtuu prismassa. Havaitaan, että tämä valo ei muuta prismassa väriään. Voidaan myös erottaa valkoisesta valosta saadusta spektristä kapea, mahdollisimman yksivärinen osa, ja johtaa se toisen prisman läpi. Havaitaan että tämäkään valo ei muuta enää väriään. Ilmiössä ei siis ilmeisesti ole kyse siitä, että prisma jotenkin värjäisi valoa, koska kaikki valot eivät muuta väriään. Parempi selitys on, että valkoinen valo sisältää kaikki ne värit jotka spektrissä näkyvät, ja taittuminen prismassa erottelee nämä värit toisistaan. Valo, jota ei voida hajottaa väreihin (kuten laservalo) sisältää vain yhtä väriä.

4 Prisman lisäksi on toinenkin laite, hila, joka hajottaa valkoisen valon väreiksi. Hilassa on tiheässä kapeita rakoja, joista valo joko pääsee läpi (läpäisyhila) tai heijastuu (heijastushila). Tavallinen CDlevy toimii heijastushilana; tästä syystä CD-levyn pinnasta heijastuneessa valossa näkyy spektrin värejä. Linssit, peilit ja kuvat Linssin läpi näkyvä kuva Silmälaseissa on linssit, suurennuslasissa on linssi, samoin kamerassa, piirtoheittimessä ja diaprojektorissa. Silmälasien ja suurennuslasin linssien läpi katsellaan, ja on selvää että linssi vaikuttaa siihen miltä ympäristö linssin näyttää linssin läpi katseltuna. Suurennuslasi näyttää lähellä olevat esineet suurennettuna, kaukana olevat esineet taas näkyvät ylösalaisin. Joillain silmän, linssin ja esineen etäisyyksillä suurennuslasin antama kuva on epäterävä. Likinäköisen henkilön silmälasit näyttävät kaiken pienennettynä. Suurennuslasin linssi on keskeltä paksumpi kuin reunoilta. Se on kupera linssi. Likinäköisen silmälasin linssit ovat keskeltä ohuemmat kuin reunalta, tosin tämä voi olla vaikea havaita jos silmälasit eivät ole kovin vahvat. Keskeltä ohuempi linssi on kovera linssi. Linssin kyky suurentaa, pienentää tai kääntää ympäri lävitseen näkyvä kuva on ymmärrettävissä valon taittumisen avulla. Tarkastellaan kuperan linssin "viipaletta" sädelaatikon avulla. Todetaan, että linssi taittaa valonsäteitä reunoilta keskelle päin, ja sitä enemmän mitä kauempaa linssin keskustasta säde kulkee. Kuvan tapauksessa linssiiin tulevat säteet ovat yhdensuuntaisia, linssin läpi kuljettuaan säteet leikkaavat samassa pisteessä. Säteiden taittuminen tällä tavalla on ymmärrettävissä, kun huomataan linssin viipaleen olevan ikään kuin pino prismoja, jotka keskeltä reunolle mentäessä muuttuvat enemmän taittaviksi. Linssin keskipisteen läpi menevä säde ei muuta suuntaansa lainkaan. kuva 1. kuva 2. Tarkastellaan vielä sädelaatikon avulla.koveran linssin "viipaletta". Todetaan, että tämä linssi taittaa valonsäteitä keskeltä reunoille päin. Linssin läpi kulkeneet säteet eivät leikkaa.

5 kuva 3. Alla oleva kuva selittää suurennuslasin toimintaa. Esineen jokainen piste lähettää valoa, joka taittuu linssissä. Linssin läpi katsottaessa säteet näyttävät tulevan esineen kuvasta, joka on suurempi kuin todellinen esine. Peilissä näkyvä kuva kuva 4. Tavallisessa tasopeilissä näkyvä esineen kuva on samoin päin ja saman kokoinen kuin esine.. Keskeltä "kuopalla" olevasta koverasta peilistä esineen kuva on joko suurennettu ja oikein päin, jos esine on lähellä. Kaukana olevan esineen kuva on ylösalaisin. Keskeltä koholla olevasta kuperasta peilistä näkyvä kuva on aina pienennetty ja oikein päin. Peili voi olla yhteen suuntaan suora ja toiseen suuntaan kupera tai kovera. Esimerkiksi kiiltävän metalliputken pinta on sylinteripeili. Jos sylinteripeili on pystyssä, sen näyttämä kuva on pystysuunnassa esineen kokoinen, mutta vaakasuunnassa voimakkaasti pienennetty. Tällainen peili siis näyttää laihduttavan!

6 Varjostimelle syntyvä kuva Pidetään kuperaa linssiä jonkun matkan päässä tasaisesta, vaalesta pinnasta niin, että linssiin lankeaa ikkunasta, lampusta tms. tuleva valo. Kun muutetaan linssin ja varjostimen etäisyyttä. havaitaan että tietyllä etäisyydellä varjostimella näkyy valonlähteen ylösalaisin oleva kuva. Tällä periaatteella toimii myös ihmisen silmä (jossa kuva syntyy valonherkälle verkkokalvolle) ja kamera (jossa kuva syntyy filmille, tai digi- ja videokameroiden tapauksessa kuvakennolle). Kuvan muodostuminen varjostimelle on ymmärrettävissä kuvan 4 pohjalta: kun esine on tarpeeksi kaukana, sen tietystä pisteestä lähtevät valonsäteet taittuvat kaikki yhteen pisteeseen. Jos tämä piste on varjostimella, siinä näkyy tuon esineen pisteen kuva. kuva 5a. kuva 5b. Kokeiltaessa edelleen havaitaan, että erilaisia kuperia linssejä on pidettävä eri etäisyydellä varjostimesta, jotta kuva syntyisi. Tällöin myös saadaan eri kokoisia kuvia. Vielä havaitaan, että lähellä ja kukana eri etäisyyksillä olevista valonlähteistä ei saada yhtä aikaa terävää kuvaa, vaan lähellä olevan valonlähteen kuvaa varten linssiä on siirrettävä kauemmaksi varjostimesta. Tätä säätämista kutsutaan tarkentamiseksi. Ihmisen silmäkään ei näe terävänä yhtä aikaa hyvin lähellä ja kaukana olevia esineitä, vaan silmä tarkentuu kohteen etäisyydelle. Samoin kamera on tarkennettava kuvan ottoa varten, että filmille syntyvä kuva olisi terävä. Monet nykykamerat tekevät tämän automaattisesti (autofokus). Kuperan linssin polttoväli on se linssin ja varjostimen etäisyys, jolla linssi muodostaa terävän kuvan "äärettömän" kaukana olevasta esineestä. Edellisissä esimerkeissä esine on kuvaa kauempana, ja kuva on esinettä pienempi. Mutta yhtä hyvin voi olla toisinpäin: esine on lähempänä linssiä kuin kuva, ja kuva on esinettä suurempi. Näin tapahtuu esimerkiksi diaprojektorissa, jossa diakuva on esine. Kokeillaan, saadaanko koveralla linssillä syntymään kuvaa varjostimelle. Se ei onnistu. Tämä selittyy sillä, että kovera linssi ei kokoa esineen pisteestä lähteneitä, linssin läpi kulkeneita säteitä yhteen pisteeseen, vaan säteet hajoavat.

7 Neulanreikäkamera Monelle kurssilaiselle lienee koulussa opetettu menetelmä, jolla linssin tai peilin muodostaman kuvan paikka, suurennus ja laatu (todellinen varjostimella syntyvä kuva, vai pelkästään silmällä näkyvä valekuva) voidaan selvittää piirtämällä, kun tunnetaan esineen etäisyys ja polttoväli. Esineeksi piirretään nuoli, jonka pyrstö on pääakselililla. Piirretään vähintään kaksi kolmesta nuolen kärjestä lähtevästä säteestä, jotka esimerkiksi kuperan linssin tapauksessa ovat: - pääakselin suuntainen säde, joka taittuu linssin takana olevan polttopisteen kautta - linssin keskipisteen läpi kulkeva säde, joka ei muuta suuntaansa - linssin edessä olevan polttopisteen kautta kulkeva säde, joka taittuu pääakselin suuntaiseksi kuva 6. Jos todelliset säteet linssin/peilin kautta kuljettuaan leikkaavat jossain pisteessä, siihen pisteeseen tulee todellinen kuva, jonka saa varjostimelle. Jos taas säteet linssin/peilin kautta kuljettuaan hajaantuvat, ja vain niiden jatkeet leikkaavat, tuossa leikkauspisteessä on valekuva, jota voi katsoa silmällä mutta jota ei saa varjostimelle. Menetelmä on kovin kaavamainen, eikä sellaisenaan edistä kvalitatatiivista ymmärrystä siitä miten kuvanmuodostus todella tapahtuu. Mutta jos ymmärrys on olemassa, silloin menetelmää tietysti voidaan käyttää. Sen soveltamiseen on olemassa mainio javakielellä toteutettu simulaatio. Neulanreikäkamera voidaan valmistaa mistä tahansa valontiiviistä purkista, jonka toiseen päähän tehdään pieni pyöreä reikä, ja toinen pää varustetaan läpinäkyvällä varjostimella (muovikassin kalvoa, leivinpaperia...). Huoneessa, jossa on yksi voimakas valonlähde, nähdään valonlähteen kuva varjostimella. Kuva 7 selittää neulanreikäkameran toiminnan: tietyn esineen pisteen säteilemästä valosta pääsee purkin sisään vain se säde, joka kulkee reiän kautta. Varjostimella näkyvä kuva on sangen himmeä, koska valoa pääsee reiän läpi hyvin vähän. Jos reikää suurennetaan, kuva kirkastuu, mutta muuttuu samalla epäterävämmäksi.

8 kuva 7. Teleskooppi Katsotaan peräkkäin kahdesta kuperasta linssistä. Silmää lähellä olevan linssin eli okulaarin pitää olla lyhytpolttovälinen, kauempana olevan linssin eli objektiivin pitää olla pitkäpolttovälinen. Linssien välimatkan täytyy olla hieman pitempi kuin niiden polttovälien summa. Tällöin linssien läpi nähdään kohteen ylösalaisin oleva kuva. Se on sitä suurempi, mitä suurempi on objektiivin polttovälin suhde okulaarin polttoväliin. Objektiivi muodostaa kohteesta kuvan okulaarin eteen, joka toimii kuin suurennuslasi. kuva 8.

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

34. Geometrista optiikkaa

34. Geometrista optiikkaa 34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä

Lisätiedot

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Kestomagneetit. Sähköä ja magneetteja. Lasten fysiikan viikko Erilaiset navat vetävät toisiaan puoleensa, samanlaiset navat hylkivät toisiaan.

Kestomagneetit. Sähköä ja magneetteja. Lasten fysiikan viikko Erilaiset navat vetävät toisiaan puoleensa, samanlaiset navat hylkivät toisiaan. Sähköä ja magneetteja S1 Kestomagneetit Kokeile, tarttuuko magneetti muovilusikkaan, alumiinifolioon, kuparilankaan, lasiputkeen, rautanaulaan, pyyhekumiin, teräksiseen ruuvimeisseliin. Mihin aineisiin

Lisätiedot

oppilaitos: ARKADIAN YHTEISL YSEO

oppilaitos: ARKADIAN YHTEISL YSEO ,/ VALO-OPPI oppilaitos: ARKADIAN YHTEISL YSEO kurssi FY1 tehnyt Markus Hagmal1 Jätetty syyskuun 28. päivä 1999 Tarkastaja Jari Pyy LYHENNELMÄ Tutkielma käsittelee optiikkaa eli valo-oppia Lukiessasi tätä

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6 FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3. 135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.

Lisätiedot

8.3 KAMERAT Neulanreikäkamera

8.3 KAMERAT Neulanreikäkamera 88 Analysoitava valo tulee vasemmalta. Se okusoidaan kapeaan rakoon S (tulorako), josta se kollimoidaan linssillä L yhdensuuntaiseksi sädekimpuksi. Rako S on siis linssin polttovälin päässä linssistä.

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat

Lisätiedot

5.3 FERMAT'N PERIAATE

5.3 FERMAT'N PERIAATE 119 5.3 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta

Lisätiedot

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n 141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

34 GEOMETRINEN OPTIIKKA (Geometric Optics)

34 GEOMETRINEN OPTIIKKA (Geometric Optics) 90 34 GEOMETRINEN OPTIIKKA (Geometric Optics) Omat kasvot kylpyhuoneen peilissä, kuu kaukoputken läpi katsottuna, kaleidoskoopin kuviot. Kaikki nämä ovat esimerkkejä optisista kuvista (images). Kuva muodostuu,

Lisätiedot

Valo, laser ja optiikka -havaintovälineistö

Valo, laser ja optiikka -havaintovälineistö Valo, laser ja optiikka -havaintovälineistö Pakkauksen sisältö 1 punainen laservalorasia, 635 nm,

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta

Lisätiedot

Tarvikeluettelo Optiikka-jakson kokeita varten

Tarvikeluettelo Optiikka-jakson kokeita varten Optiikka Tarvikeluettelo Optiikka-jakson kokeita varten Tarvikeluettelo glyseriiniä (apteekista) heijastimia kampa kolikoita kyniä kynänpätkiä lankaa laseja liimaa pesuvati tai tarjotin punaista ja vihreää

Lisätiedot

Mitataan yleismittarilla langan resistanssi, metrimitalla pituus, mikrometrillä langan halkaisija. 1p

Mitataan yleismittarilla langan resistanssi, metrimitalla pituus, mikrometrillä langan halkaisija. 1p avoimen sarjan ratkaisut 011 LUKION FYSIIKKAKILPAILU 8.11.011 AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5 5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka

Lisätiedot

Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12

Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Sirpa Pöyhönen ja Taisto Herlevi Ryhmä E4 Ohj. Ari Hämäläinen HY 30.11.2001 1 Sisällysluettelo 1. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...3

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Sädeoptiikka Taittuminen ja kuvanmuodostus

Sädeoptiikka Taittuminen ja kuvanmuodostus Sädeoptiikka Taittuminen ja kuvanmuodostus Oiva Utriainen Raportti 5 Didaktisen fysiikan opintokokonaisuus DFCL3 26.11.2001 Ohjaaja Ari Hämäläinen Fysikaalisten tieteiden laitos Helsingin yliopisto 2 1

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

VALONTAITTOMITTARIN KÄYTTÖ

VALONTAITTOMITTARIN KÄYTTÖ VALONTAITTOMITTARIN KÄYTTÖ MERKITSE KUVAAN VALONTAITTOMITTARIN OSAT. 1. Okulaarin säätörengas 2. Asteikkorengas 3. Käyttökatkaisin 4. Linssipitimen vapautin 5. Linssialusta 6. Linssipidin 7. Linssipöytä

Lisätiedot

6. Etäisyydenmittari 14.

6. Etäisyydenmittari 14. 97 ilmeisessä käsirysyssä vihollisen kanssa. Yleensä etäiyyden ollessa 50 m. pienempi voi sen käyttämisestä odottaa varmaa menestystä; paras etäisyys on 25 m. tai sitä pienempi. Sillä missä tilanahtaus

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

MATEMATIIKKA JA TAIDE I

MATEMATIIKKA JA TAIDE I 1 MATEMATIIKKA JA TAIDE I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I VI. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä:

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen

Lisätiedot

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma 1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma Pisteen, suoran ja tason avulla lähdetään muodostamaan uusia geometrian käsitteitä. Jos suora sahataan (keskeltä!!) poikki ja heitetään toinen puoli pois,

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

MATEMATIIKKA JA TAIDE II

MATEMATIIKKA JA TAIDE II 1 MATEMATIIKKA JA TAIDE II Aihepiirejä: Hienomotoriikkaa harjoittavia kaksi- ja kolmiulotteisia väritys-, piirtämis- ja askartelutehtäviä, myös sellaisia, joissa kuvio jatkuu loputtomasti, ja sellaisia,

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo)

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Fysiikan kotityöt Fy 3. (4.03.006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Pieni kevennys tähän alkuun: Kuvalähteet: http://www.hotquanta.com/twinrgb.jpg http://www.visi.com/~reuteler/vinci/world.jpg

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Fysiikan perusteet 3 Optiikka

Fysiikan perusteet 3 Optiikka Fysiikan perusteet 3 Optiikka Petri Välisuo petri.valisuo@uva.fi 27. tammikuuta 2014 1 FYSI.1040 Fysiikan perusteet III / Optiikka 2 / 37 Sisältö 1 Heijastuminen ja taittuminen 4 1.1 Joitain hyödyllisiä

Lisätiedot

Tiedostomuodon valitseminen kuville

Tiedostomuodon valitseminen kuville Kuvan lisääminen sivulle Valitse työkaluriviltä Lisää Kuva tiedostosta painike 1. Ruudulle aukeaa sekä Kuva-ikkuna että Valitse tiedosto ikkuna 2. Selaa Valitse tiedosto ikkunassa esiin se kuva, jonka

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

AURINKOENERGIA. Auringon kierto ja korkeus taivaalla

AURINKOENERGIA. Auringon kierto ja korkeus taivaalla AURINKOENERGIA Auringon kierto ja korkeus taivaalla Maapallo kiertää aurinkoa hieman ellipsin muotoista rataa pitkin, jonka toisessa polttopisteessä maapallo sijaitsee. Maapallo on lähinnä aurinkoa tammikuussa

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä.

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä. 3-D ANAGLYFIKUVIEN TUOTTAMINEN Fotogrammetrian ja kaukokartoituksen laboratorio Teknillinen korkeakoulu Petri Rönnholm Perustyövaiheet: A. Ota stereokuvapari B. Poista vasemmasta kuvasta vihreä ja sininen

Lisätiedot

LÄPINÄKYVYYS JA HEIJASTUMINEN MALLINNUKSESSA

LÄPINÄKYVYYS JA HEIJASTUMINEN MALLINNUKSESSA LÄPINÄKYVYYS JA HEIJASTUMINEN MALLINNUKSESSA LAHDEN AMMATTIKORKEAKOULU Mediatekniikan koulutusohjelma Teknisen visualisoinnin suuntautumisvaihtoehto Opinnäytetyö 9.5.2006 Ville Helppi Lahden ammattikorkeakoulu

Lisätiedot

THE FORCE OF OPTICS. .fi

THE FORCE OF OPTICS. .fi .fi Diamondback kiikarit Diamondback kiikareissa yhdistyvät huippuluokan laatu ja erinomainen metsästyskiikari hämmästyttävän huokeaan hintaan. Etsitkö kiikaria, jossa on luokkansa laajin näkökenttä ja

Lisätiedot

Kertaustehtävien ratkaisuja

Kertaustehtävien ratkaisuja Kertaustehtävien ratkaisuja. c) Jaksonaika on 300 s T = = 0,50 s, f = = 600 T 0,50 s =,0 Hz.. b) Lasketaan ensin jousivakion suuruus ja sitten värähdysaika. k = - mg,0 kg 9,8 m/ s = = 98, N/ m x 0,0 m

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50:

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: 173 ------------------------------------------------Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: Kaarevuussäteet R1 3 cm ja R. Systeemimatriisi on M R T R1,

Lisätiedot

PERCIFAL RAKENNETUN TILAN VISUAALINEN ARVIOINTI

PERCIFAL RAKENNETUN TILAN VISUAALINEN ARVIOINTI PERCIFAL RAKENNETUN TILAN VISUAALINEN ARVIOINTI Arvioijan nimi: Päivämäärä ja kellonaika: Arvioitava tila: Sijainti tilassa: Vastaa kysymyksiin annetussa järjestyksessä! Antaessasi vastauksesi asteikkomuodossa,

Lisätiedot

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen!

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen! Kasvihuoneongelma Valon ja aineen vuorovaikutus Herra Brown päätti rakentaa puutarhaansa uuden kasvihuoneen. Liian tavallinen! Hänen vaimonsa oli innostunut ideasta. Hän halusi uuden kasvihuoneen olevan

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

Kehät ja väripilvet. Ilmiöistä ja synnystä

Kehät ja väripilvet. Ilmiöistä ja synnystä Kehät ja väripilvet Ilmiöistä ja synnystä Kehät - yleistä Yksi yleisimmistä ilmakehän optisista valoilmiöistä Värireunainen valokiekko Auringon, Kuun tai muun valolähteen ympärillä Maallikoilla ja riviharrastajilla

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

SIMULAATIOIDEN KÄYTÖSTÄ LUKION FYSIKAALISESSA JA GEOMETRISESSA OPTIIKASSA

SIMULAATIOIDEN KÄYTÖSTÄ LUKION FYSIKAALISESSA JA GEOMETRISESSA OPTIIKASSA SIMULAATIOIDEN KÄYTÖSTÄ LUKION FYSIKAALISESSA JA GEOMETRISESSA OPTIIKASSA Saana Uljas Pro gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 10.5.2017 Ohjaajat: Juha Merikoski ja Jan Sarén TIIVISTELMÄ

Lisätiedot

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

a ' ExW:n halkaisija/2 5/ 2 3

a ' ExW:n halkaisija/2 5/ 2 3 79 ------------------------------------------------- Esimerkki: Sama systeemi kuin edellä. a) Määritä kenttäkaihdin sekä tulo- ja lähtöikkunat. b) Piirrä äärimmäisten pääsäteiden kartio systeemin läpi.

Lisätiedot

Pyhäjoen kunta ja Raahen kaupunki Maanahkiaisen merituulivoimapuiston osayleiskaava

Pyhäjoen kunta ja Raahen kaupunki Maanahkiaisen merituulivoimapuiston osayleiskaava 82127096 Pyhäjoen kunta ja Raahen kaupunki Maanahkiaisen merituulivoimapuiston osayleiskaava Kaavaehdotus 20.11.2012 Tuulivoimalamuodostelmien esteettiset ominaisuudet Tuulivoimaloiden keskittäminen usean

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

Hans Pihlajamäki Fysiikan kotitutkimus

Hans Pihlajamäki Fysiikan kotitutkimus Fysiikan kotitutkimus Fysiikan 1. kurssi, Rauman Lyseon lukio Johdanto 1. Saaristo- ja rannikkonavigoinnissa on tärkeää kyetä havainnoimaan väyliä osoittavia väylämerkkejä. Pimeän aikaan liikuttaessa tehokkaalla

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Kokeile kuvasuunnistusta. 3D:nä

Kokeile kuvasuunnistusta. 3D:nä Kokeile kuvasuunnistusta 3D:nä Oheinen 3D-kuvasuunnistus on julkaistu Suunnistaja-lehdessä 1/13. Tämä kuvasuunnistus on toteutettu tarkkuussuunnistuksen aikarastitehtävän mukaisesti. Aikarastilla kartta

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

Seuraa huolellisesti annettuja ohjeita. Tee taitokset tarkkaan,

Seuraa huolellisesti annettuja ohjeita. Tee taitokset tarkkaan, Origami on perinteinen japanilainen paperitaittelumuoto, joka kuuluu olennaisena osana japanilaiseen kulttuuriin. Länsimaissa origami on kuitenkin suhteellisen uusi asia. Se tuli yleiseen tietoisuuteen

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite 2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite Tämän päivän lukiogeometrian sisältöjä on melkoisesti supistettu siitä, mitä ne olivat joku vuosikymmen sitten. Sisällöistä ei enää kasata sellaista rakennelmaa,

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 2 visuaalinen prosessointi Treismanin FIT Kuva 1. Kuvassa on Treismanin kokeen ensimmäinen osio, jossa piti etsiä vihreätä T kirjainta.

Lisätiedot

LightWorks. 1 Renderoijan perussäädöt. 1.1 Sisältö. 1.2 LightWorksin käytön aloitus

LightWorks. 1 Renderoijan perussäädöt. 1.1 Sisältö. 1.2 LightWorksin käytön aloitus 1.9.2009 ArchiCAD 13 VI. - 1 LightWorks 1 Renderoijan perussäädöt 1.1 Sisältö Tässä luvussa käsitellään LightWorks-renderoijan käyttöönottoa ja säätöjä erilaisissa renderointitilanteissa. Lightworks-renderoija

Lisätiedot

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 36 Diffraktio PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Ääni kuuluu helposti nurkan taakse Myös valo voi taipua

Lisätiedot

a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.

a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. Tekijä MAA3 Geometria 14.8.2016 1 a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. b) Pirttiniemenkatu ja Tenholankatu eivät ole yhdensuuntaisia. Väite ei siis pidä paikkaansa.

Lisätiedot

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö Toisen asteen kärät 1/7 Sisältö ESITIEDOT: kärä, kartio ja lieriö Hakemisto KATSO MYÖS: mprä, toisen asteen pinnat Toisen asteen kärä Toisen asteen käräksi kutsutaan kärää, jonka htälö -ssa on muuttujien

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot