Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen.
|
|
- Arttu Melasniemi
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 261 Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. Pitää osoittaa siis, että A mp SAT mielivaltaisella A NP Ainoa, mitä A:sta tiedetään on, että sillä on polynomisessa ajassa toimiva epädeterministinen tunnistaja N Palautusfunktio muuntaa koneen N mahdollisen syötteen w lausekalkyylin kaavaksi w, joka kuvaa N:n mahdollisia laskentoja syötteellä w w on toteutuva joss w L(N) = A Kutakin N:n mahdollista laskentaa vastaa yksi w :n muuttujien totuusarvoasetus Kaava w muodostetaan ilmaisemaan ne ehdot, joilla annettu totuusarvoasetus vastaa N:n hyväksyvää laskentaa 262 Kertaus 1. Luokan P ongelmat ovat käytännössä ratkeavia 2. P NP. Lisäksi NP:ssä on ongelmia, joille ei tunneta polynomista ratkaisualgoritmia 3. Kaikki luokan NP ongelmat voidaan palauttaa NP-täydelliseen ongelmaan polynomisesti. Jos jokin NP-täydellinen ongelma kuuluu P:hen, niin P = NP. 4. Ongelman A NP todistaminen NP-täydelliseksi: a) Valitse samankaltainen tunnetusti NP-täydellinen ongelma B b) Muodosta polynominen palautus f: B mp A; lemman 7.36 perusteella myös A on NP-täydellinen 1
2 263 Seuraus: CSAT, 3SAT ja VC ovat NP-täydellisiä ongelmia. Riippumaton joukko, IS: Annettuna suuntaamaton verkko G ja luonnollinen luku k. Onko G:ssä vähintään k solmua, joiden välillä ei kulje yhtään kaarta? Seuraavan lemman perusteella on helppo muodostaa palautukset VC mp IS ja IS mp KLIKKI Lemma Olkoon G = (V, E) suuntaamaton verkko ja V V. Tällöin seuraavat ehdot ovat ekvivalentit: 1.V'on G:n solmupeite, 2.V\V'on riippumaton solmujoukko ja 3.V\V'on klikki G:n komplementtiverkossa = (V, (V V) \ E) 264 VC mp IS: Valitaan kuvaus f: f( G, k ) = G, V - k. Selvästi tämä muunnos voidaan laskea polynomisessa ajassa. Nyt edellisen lemman perusteella G, k VC G, V - k IS. Täten f: VC mp IS. IS mp KLIKKI: Valitaan kuvaus f: f( G, k ) =, k. Kuvaus voidaan laskea polynomisessa ajassa. Edellisen lemman perusteella G, k IS, k KLIKKI. Täten f: IS mp KLIKKI. 2
3 265 SAT / CSAT 3SAT Osajoukkosumma VC Hamiltonin polku IS TSP KLIKKI Tilavaativuus Standardimallisen Turingin koneen M = (Q,,,, q 0,accept,reject) laskennan tilavaativuus syötteellä w on space M (w) = max{ uav : q 0 w M u q av, q Q, u, a, v * } Epädeterministisen Turingin koneen N = (Q,,,, q 0,accept,reject) laskennan tilavaativuus: space N (w) = eniten tilaa vievän laskennan q 0 w N vaatimien nauhapaikkojen määrä 3
4 267 Olkoon s: + mv. funktio Formaalien kielten deterministinen tilavaativuusluokka on: DSPACE(s) = { A A voidaan tunnistaa tilassa s } Epädeterministinen tilavaativuusluokka puolestaan on NSPACE(s) = { A A voidaan tunnistaa epädet. tilassa s } Tilaa voidaan uudelleenkäyttää, kun taas aikaa ei Esim. SAT:in tapauksen ratkaiseminen vaatii vain lineaarisen tilan, vaikka se luultavasti ei NP-täydellisenä ongelmana ole polynomisen ajan puitteissa ratkaistavissa 268 Tilavaativuuden yhdisteluokat ovat PSPACE = { DSPACE(s) s on polynomi } = k 0 DSPACE(n k ) EXPSPACE = k 0 DSPACE(2 nk ) NPSPACE = k 0 NSPACE(n k ) NEXPSPACE = k 0 NSPACE(2 nk ) 4
5 269 Lemma Kaikilla t(n), s(n) n: 1. DTIME(t(n)) DSPACE(t(n)) ja 2. DSPACE(s(n)) k 0 DTIME(k s(n) ) Todistus. 1.t(n):ssä askelessa Turingin kone voi kirjoittaa korkeintaan t(n) merkkiä työnauhalleen. 2. Koneella, joka toimii tilassa s(n), on n:n merkin syötteellä enintään k s(n) mahdollista tilannetta (k vakio). Antamalla laskennan jatkua korkeintaan k s(n) askelta, saadaan kone toimimaan aina ajassa k s(n). Seuraus: P PSPACE EXPTIME EXPSPACE 270 Savitchin lause Lause 8.5 Olkoon f: + mv. funktio s.e. f(n) n. Tällöin NSPACE(f(n)) DSPACE(f 2 (n)). Todistus. Epädeterminististä konetta on siis simuloitava deterministisellä. Suoraviivaisin tapa on käydä kukin laskentapuun haara kerrallaan läpi. Haara, joka käyttää f(n) tilan voi kuitenkin sisältää 2 O(f(n)) askelta ja kussakin askelessa voi olla epädeterministinen valinta. Jotta seuraava haara voidaan saavuttaa, on vaihtoehdoista pidettävä kirjaa. Vaaditaan siis pahimmillaan 2 O(f(n)) tila, joten tämä menetelmä ei käy. Tarkastellaankin johtamisongelmaa: voiko epädeterministinen kone N päästä tilanteesta c 1 tilanteeseen c 2 askelten määrällä t. 5
6 271 Asettamalla c 1 N:n alkutilanteeksi ja c 2 sen hyväksyväksi lopputilaksi, ja ratkaisemalla ongelma deterministisesti käyttämättä liikaa tilaa, voidaan todeta lauseen pätevän. Etsitään N:n keskimmäinen tilanne c m s.e. 1. c 1 johtaa tilanteeseen c m askelten määrällä t/2 ja 2. c m johtaa tilanteeseen c 2 askelten määrällä t/2. Rekursiivisten kutsujen vaatima tila voidaan uudelleenkäyttää. Rekursiopinon tallettamiseen tarvitaan tilaa. Joka tasolla käytetään O(f(n)) tila tilanteen tallettamiseen. Rekursiopinon maksimikorkeus on logaritminen epädeterministisen koneen pisimmän laskentapolun pituuden suhteen, eli log(2 O(f(n)) ) = O(f(n)). Deterministinen simulointi vaatii siis O(f 2 (n)) tilan. 272 Seuraus 1. NPSPACE = PSPACE 2. NEXPSPACE = EXPSPACE Nyt tiedämme yhdistevaativuusluokista lineaarisen järjestyksen PSPACE P NP EXPTIME NPSPACE EXPSPACE NEXPTIME NEXPSPACE 6
7 273 Lause 1. P EXPTIME 2. PSPACE EXPSPACE Eksponentiaalisen etäällä'' toisistaan olevat vaativuusluokat tiedetään toisistaan eroaviksi P EXPTIME, NP NEXPTIME ja PSPACE EXPSPACE Sen sijaan ei tiedetä pätevätkö P NP, NP PSPACE, PSPACE EXPTIME, Uskotaan, että kaikki nämä epäyhtälöt ovat tosia, mutta tuloksia ei osata todistaa Voidaan osoittaa, että ei ole olemassa vaikeinta rekursiivista kieltä 274 Lause 1. Jos A REC, niin on olemassa rekursiivinen funktio t(n), jolla A DTIME(t(n)). 2. Kaikilla rekursiivisilla funktioilla t(n) on olemassa kieli A REC \ DTIME(t(n)). Funktio f(n) = f'(n, n) on rekursiivinen f'(0, n) = } n kpl f'(m+1, n) = } f'(m, n) kpl f(0) = 1, f(1) = 4, f(2) = } kpl Ed. lause: A REC \ DTIME(f(n)) Siis on olemassa ''ratkeavia'' ongelmia, jotka n merkin syötteillä vaativat enemmän aikaa kuin funktion f(n) verran. 7
8 PSPACE-täydellisyys Kieli B on PSPACE-täydellinen, jos 1.B PSPACE ja 2.A mp Bkaikilla A PSPACE Jos B täyttää vain ehdon 2, niin sitä nimitetään PSPACEkovaksi Täysin kvantifioidussa Boolen kaavassa kaikki muuttujat ovat jonkin kvanttorin vaikutuspiirissä, esim. = x y[(x y) ( x y)] TQBF on tosien täysin kvantifioitujen Boolen kaavojen kieli Lause 8.9 TQBF on PSPACE-täydellinen. 276 Mv. A PSPACE pitää palauttaa polynomisesti TQBF:en lähtien liikkeelle A:n polynomisessa tilassa toimivasta tunnistajakoneesta M Cook-Levin lauseen tapainen todistus ei kuitenkaan tule kyseeseen, koska kone M voi edelleen vaatia eksponentiaalisen ajan Tarvitaan Savitchin lauseen todistustekniikan kaltainen lähestyminen Syöte w kuvataan kvantifioiduksi kaavaksi, joka on tosi jos ja vain jos M hyväksyy w:n Muuttujajoukot c 1 ja c 2 kuvaavat tilanteita 8
9 277 Muodostetaan kaava (c 1, c 2, t), joka on tosi jos ja vain jos (joss) M voi siirtyä c 1 :stä c 2 :een korkeintaan t > 0 askelella Palautus tapahtuu kun muodostetaan kaava (c start, c accept, h), missä h = 2 df(n) d on siten valittu vakio, että M:llä ei ole n:n mittaisella syötteellä mahdollisia tilanteita kuin korkeintaan 2 df(n) f(n) = n k Kaavan tulee koodata koneen M työnauhan sisältö Jokaiseen nauhan soluun liittyy useita muuttujia, yksi jokaista nauha-aakkoston merkkiä kohden ja yksi jokaista M:n tilaa vastaten 278 Koska tilanteessa on n k solua, niin on muuttujiakin O(n k ) Kun t = 1, niin Joko c 1 = c 2 tai c 2 seuraa c 1 :stä yhdessä M:n siirtymäaskelessa Kaavan (c 1, c 2, t) muodostaminen on helppoa Kunkin c 1 :tä kuvaavan muuttujan arvo on sama kuin vastaavan c 2 :ta kuvaavan muuttujan arvo (Kuten Cook-Levin lauseen todistuksessa) kirjoittamalla lauseet, jotka varmistavat, että c 1 :n kuvauksen kolmikot voivat johtaa suoraan vastaaviin c 2 :n kuvauksen kolmikoihin 9
10 279 Kun t >1, niin (c 1, c 2, t) muodostetaan rekursiivisesti Suoraviivainen ratkaisu olisi määritellä (c 1, c 2, t) = m 1 [ (c 1, m 1, t/2) (m 1, c 2, t/2) ], missä m 1 on M:n tilanne Tarkkaan ottaen m 1 tarkoittaa x 1,, x l, missä l = O(n k ) ja x 1,, x l ovat tilanteen m 1 koodaavat muuttujat (c 1, c 2, t) on oikea kaava, sen arvo on tosi kun M voi päästä c 1 :stä c 2 :een t:ssä askelessa Sen pituus kuitenkin kasvaa rekursion myötä liian pitkäksi (eksponentiaaliseksi) 280 Kaavan (c 1, c 2, t) pituuden lyhentämiseksi muutetaan se muotoon m 1 (c 3, c 4 ) { (c 1, m 1 ), (m 1, c 2 ) }: [ (c 3, c 4, t/2) ] Selvästikin tämä kaava ilmaisee saman ehdon kuin aiemminkin, mutta nyt yhdellä rekursiivisella kaavalla Kaavan syntaktisesti korrektiin muotoon muuttamiseksi x { y, z }: [ ] voidaan korvata ekvivalentilla x [ (x = y x = z) ] Kukin rekursiotaso kasvattaa kaavan pituutta O(f(n)):n verran Rekursiotasoja on log(2 df(n) ) = O(f(n)), joten kaikkiaan muodostuvan kaavan pituus on O(f 2 (n)) 10
11 281 Kirjassa esitetään kahden "keinotekoisen" pelin PSPACEtäydellisyys Niille ei siis ole polynomiaikaista algoritmia, jollei P = PSPACE 8 8 -laudalla pelattava shakki ei kuitenkaan suoraan taivu samanlaiseen todistustekniikkaan Tilanteita on "vain" äärellinen määrä Periaatteessa voitaisiin siis tabuloida kaikki mahdolliset tilanteet ja paras siirto kussakin tilanteessa Täten Turingin koneen (tai äärellisen automaatin) kontrolliin voi tallettaa vastaavan tiedon ja koneella voi pelata optimaalisesti lineaarisessa ajassa 282 Taulukon koko vain valitettavasti on linnunrataamme suurempi Kiinteän kokoisten ongelmien vaativuutta ei voi käsitellä esitetyillä tekniikoilla Ne pätevät vain vaativuuden kasvunopeudelle ongelman tapauksen pituuden kasvaessa Yleistämällä pelit n n -laudoille, voidaan niiden optimaalisen pelaamisen vaativuutta tarkastella asymptoottisin keinoin Mm. shakki ja GO on osoitettu ainakin PSPACE-koviksi tässä katsantokannassa 11
C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:
Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia
= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko
238 7.2 Luokka NP Luokka NP on: NP = { NTIME(t) t on polynomi } = k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko P NP Luokan NP ongelmista
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,
Muita vaativuusluokkia
Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):
3SAT-ongelman NP-täydellisyys [HMU ]
3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta
10. Satunnaisalgoritmit
316 10. Satunnaisalgoritmit Probabilistic algorithms, randomized algorithms Toinen tapa liiallisen laskennallisen vaativuuden kanssa toimeen tulemiseksi ovat satunnaisalgoritmit Jotkin ongelmat, joissa
7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy
212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
Säännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
Esimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan
Turingin koneen laajennuksia
Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät
Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }
135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren
on rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
6.1 Rekursiiviset palautukset
6.1 Rekursiiviset palautukset Olk. = (Q, Σ, Γ, δ, q 0, q acc, q rej ) mv. standardimallinen Turingin kone ääritellään koneen laskema osittaisfunktio f : Σ Γ seur. u, jos q 0 w u q av, f (w) = q { q acc,
Algoritmit 2. Luento 14 To Timo Männikkö
Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit
M = (Q, Σ, Γ, δ, q 0, q acc, q rej )
6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.
δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.
42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen
5.3 Ratkeavia ongelmia
153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa Siirrymme tarkastelemaan, mitä laskennallisia ongelmia voidaan ratkaista tehokkaalla algoritmilla [HMU luku 10]. Tämän luvun jälkeen opiskelija tuntee laskennallisen vaativuuden
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM
Kurssi tähän asti: säännölliset yhteydettömät ratkeavat { a n } { a n b n } { a n b n c n } tunnistettavat A TM HALT TM kaikki kielet A TM HALT TM TOTAL TM TOTAL TM EQ TM EQ TM 277 5. Laskennan vaativuus
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
Täydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
SAT-ongelman rajoitetut muodot
SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w}
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = {c w pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.
Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,
Pysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut
TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).
Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja
582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko
9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ
Automaatit. Muodolliset kielet
Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten
Laskennan vaativuus ja NP-täydelliset ongelmat
Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan
Rekursiiviset palautukset [HMU 9.3.1]
Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle
Laskennanteoria: Mitä voimmelaskea tietokoneella ja kuinkatehokkaasti?
Laskennanteoria: Mitä voimmelaskea tietokoneella ja kuinkatehokkaasti? Wilhelmiina Hämäläinen Johdatus tietojenkäsittelytieteeseen 1.-2.12. 2003 Tietojenkäsittelytieteen laitos Joensuun yliopisto 1 Johdanto
Chomskyn hierarkia ja yhteysherkät kieliopit
Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien
Kertausta 1. kurssikokeeseen
Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.
6. Approksimointialgoritmit
6. Approksimointialgoritmit Tässä luvussa käsitellään lyhyesti approksimointiin liittyvät peruskäsitteet ja joitain keskeisiä approksimoituvuustuloksia. Tavoitteena on, että opiskelija näkee approksimointialgoritmien
Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?
Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
P? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta
P? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta Juha Nurmonen Matematiikan laitos Helsingin yliopisto Ajatellaanpa esimerkiksi kauppamatkustajan jokapäiväistä ongelmaa: Kauppamatkustajan
Lisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 11 Ratkaisut 1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen kahta yhdistämissääntöä. Perusfunktioita
Algoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee
Rajoittamattomat kieliopit
Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
Algoritmin määritelmä [Sipser luku 3.3]
Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:
vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters
Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
uv n, v 1, ja uv i w A kaikilla
2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko
Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja
582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun
Polynomiset palautukset ja NP-täydellisyys
Polynomiset palautukset ja NP-täydellisyys [HMU 10.1.5, 10.1.6] Polynomisen palautuksen idea on sama kuin rekursiivisen palautuksen, paitsi että liikutaan polynomisen aikavaativuuden maailmassa. Funktio
Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
3. Turingin koneet. osaa esittää yksinkertaisia algoritmeja täsmällisesti käyttäen Turingin konetta ja sen muunnelmia
3. Turingin koneet Turingin kone on alkuaan matemaattisen logiikan tarpeisiin kehitelty laskennan malli. Tarkoituksena oli vangita mahdollisimman laajasti, millaisia asioita voidaan (periaatteessa) laskea
NP-täydellisyys. Joonas Järvenpää ja Topi Talvitie. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
NP-täydellisyys Joonas Järvenpää ja Topi Talvitie Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 Sisältö 1 Johdanto 1 2 Ongelman määrittely
DFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Hahmon etsiminen syotteesta (johdatteleva esimerkki)
Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux
Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä?
Ongelman vaativuuden rajat Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä? Olisiko mahdollista löytää asymptoottisesti tehokkaampi ratkaisu, vai onko algoritmi optimaalinen? Kysymyksiin
Satunnaisalgoritmit. Antti Tanhuanpää. 25. maaliskuuta 2013
Satunnaisalgoritmit Antti Tanhuanpää 25. maaliskuuta 2013 Johdanto Satunnaisalgoritmit ovat algoritmeja, jotka hyödyntävät satunnaisuutta osana laskentaansa. Ensimmäisen tällaisen algoritmin kehitti Michael
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters
Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja
sekä muita TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton
ICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 10: Lisää ratkeamattomuudesta Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Aiheet: Pysähtymisongelma Epätyhjyysongelma Rekursiiviset
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
2. Laskettavuusteoriaa
2. Laskettavuusteoriaa Kaymme lapi ratkeamattomuuteen liittyvia ja perustuloksia ja -tekniikoita [HMU luku 9]. Taman luvun jalkeen opiskelija tuntee joukon keskeisia ratkeamattomuustuloksia osaa esittaa
Kombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Äärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé
Laskennan mallit (syksy 2010) 2. kurssikoe, ratkaisuja
582206 Laskennan mallit (syksy 2010) 2. kurssikoe, ratkaisuja Tehtävän 1 tarkasti Juha Kärkkäinen, tehtävän 2 Jyrki Kivinen ja tehtävän 3 Esa Junttila. 1. (a) (b) S 0S1 UV U 1U ε V 0V ε Tehtävässä on sallittu
2. Laskettavuusteoriaa
2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja
Rajoittamattomat kieliopit (Unrestricted Grammars)
Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä
Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,
1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset