Loogiset konnektiivit

Koko: px
Aloita esitys sivulta:

Download "Loogiset konnektiivit"

Transkriptio

1 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi osoittamaan konnektiivien soveltamisen järjestys. JYM, Kesä /225

2 Esimerkiksi tarkoittaa eri asiaa kuin A (B C) (A B) C. Tässä A, B ja C symboloivat ns. propositiolauseita. JYM, Kesä /225

3 Propositiolauseet Propositiolauseet ovat abstrakteja vastineita väitelauseille. väitelause ei väitelause 10 > < 3 < 4 ( 3) 2 > 16 2 Z sin π N Väitelauseen voidaan ajatella olevan totta tai epätotta. JYM, Kesä /225

4 Negaation totuustaulu Määritelmä Negaatiolla on seuraava totuustaulu: A A Huom. Yllä 1 tarkoittaa tosi ja 0 epätosi. Jos propositiolause A on tosi, niin A on epätosi. Jos propositiolause A on epätosi, niin A on tosi. JYM, Kesä /225

5 Konjunktion totuustaulu Määritelmä Konjunktiolla on seuraava totuustaulu: Huom. A B A B Propositiolause A B on tosi, jos ja vain jos propositiolauseet A ja B ovat molemmat tosia. Määritelmä vastaa konnektiivin ja intuitiivista merkitystä. JYM, Kesä /225

6 Disjunktion totuustaulu Määritelmä Disjunktiolla on seuraava totuustaulu: Huom. A B A B Propositiolause A B on epätosi, jos ja vain jos propositiolauseet A ja B ovat molemmat epätosia. Määritelmä vastaa konnektiivin tai intuitiivista merkitystä siinä tapauksessa, että kysymyksessä ei ole poissulkeva tai. JYM, Kesä /225

7 Implikaation totuustaulu Määritelmä Implikaatiolla on seuraava totuustaulu: Huom. A B A B Propositiolause A B on epätosi, jos ja vain jos etujäsen A on tosi ja takajäsen B on epätosi. JYM, Kesä /225

8 Ekvivalenssin totuustaulu Määritelmä Ekvivalenssilla on seuraava totuustaulu: Huom. A B A B Propositiolause A B on tosi, jos ja vain jos propositiolauseilla A ja B on sama totuusarvo. JYM, Kesä /225

9 Looginen ekvivalenssi Propositiolausetta, joka on aina tosi, sanotaan tautologiaksi. Esimerkiksi propositiolause A A on tautologia, mikä nähdään seuraavasta totuustaulusta: Määritelmä A A A A Propositiolauseet A ja B ovat loogisesti ekvivalentteja, jos ekvivalenssi A B on tautologia, ts. jos ekvivalenssin A B totuusarvo on aina 1. JYM, Kesä /225

10 Esimerkki 16 Olkoon A, B ja C propositiolauseita. Määritetään propositiolauseiden (A B) B ja (A B) C totuustaulut. Esimerkki 17 Tässä esimerkissä P tarkoittaa "Puhun"ja K "Kuuntelen". Mitä suomenkielen lauseita seuraavat propositiolauseet ilmaisevat? P K P K (P K) Määritetään lauseiden totuustaulut. Mitä huomaamme? JYM, Kesä /225

11 Kvanttorit Väite, jossa esiintyy ns. vapaa muuttuja, voi olla jollakin muuttujan arvolla tosi ja jollakin epätosi. Tarkastellaan esimerkiksi väitettä x 2 2x + 1 = 0. Jos x = 5, tämä väite on epätosi, sillä = 16. Jos x = 1, tämä väite on tosi, sillä = 0. JYM, Kesä /225

12 Kvanttorit Tällaisten väitteiden tapauksessa ollaan usein kiinnostuneita siitä, onko väite tosi kaikilla muuttujan arvoilla tai ainakin yhdellä muuttujan arvolla. Nämä asiat voidaan ilmaista kvanttoreiden avulla: kaikilla on olemassa JYM, Kesä /225

13 Esimerkki 18 Kvanttorit Tulkitse seuraavat reaalilukuja koskevat lauseet suomen kielelle ja päättele, ovatko ne tosia vai epätosia. (a) x(x 2 0) Kaikilla reaaliluvuilla x pätee, että x 2 0. Väite on tosi. (b) x(x 2 2x + 3 = 0) Yhtälöllä x 2 2x + 3 = 0 on ainakin yksi ratkaisu reaalilukujen joukossa. Väite on epätosi, sillä 2. asteen yhtälön ratkaisukaavassa neliöjuuren alle tuleva lauseke eli yhtälön ns. diskriminantti = 4 12 = 8 < 0 eikä yhtälöllä sen vuoksi ole ratkaisuja reaalilukujen joukossa. JYM, Kesä /225

14 (c) x(x < 2 x 2 < 4) Kaikilla reaaliluvuilla x pätee, että jos x < 2, niin x 2 < 4. Väite on epätosi, sillä esimerkiksi 5 < 2 mutta kuitenkin ( 5) 2 = (d) x(3x 12 = 3) On olemassa reaaliluku, joka toteuttaa yhtälön 3x 12 = 3. Väite on tosi, sillä = = 3. JYM, Kesä /225

15 Kvanttorit Esimerkki 19 Kirjoita seuraavat joukkoja A, B, C ja D koskevat väitteet logiikan symbolien avulla: (a) A B. x(x A x B) (b) B C. x(x B x C) (c) A B B C. x ( (x A x B) (x B x C) ) (d) A B = C D. x ( (x A x B) (x C x D) ) JYM, Kesä /225

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa

Lisätiedot

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi: 1 Logiikan paja, kevät 2011 Ratkaisut viikolle I Thomas Vikberg Merkitään propopositiosymboleilla p i seuraavia atomilauseita: p 0 : vettä sataa p 1 : tänään on perjantai p 2 : olen myöhässä Valitaan konnektiiveiksi,

Lisätiedot

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Olkoot A, B ja C propositiolauseita. Näytä, että A (B C) (A B) (A C). Ratkaisu: Yksi tapa

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Lauselogiikka Tautologia

Lauselogiikka Tautologia Lauselogiikka Tautologia Hannu Lehto Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

LOGIIKKA johdantoa

LOGIIKKA johdantoa LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt

Lisätiedot

Johdatus yliopistomatematiikkaan

Johdatus yliopistomatematiikkaan Johdatus yliopistomatematiikkaan Lotta Oinonen 1. maaliskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Perusasioita joukoista................................ 1 1.1 Merkintöjä..................................

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

1 Logiikkaa. 1.1 Logiikan symbolit

1 Logiikkaa. 1.1 Logiikan symbolit 1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

Pikapaketti logiikkaan

Pikapaketti logiikkaan Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös

Lisätiedot

Logiikka 1/5 Sisältö ESITIEDOT:

Logiikka 1/5 Sisältö ESITIEDOT: Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/144

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/144 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/144 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei

Lisätiedot

Testaa taitosi 1: Lauseen totuusarvo

Testaa taitosi 1: Lauseen totuusarvo Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja

Lisätiedot

LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,

Lisätiedot

Johdatus logiikkaan I Harjoitus 4 Vihjeet

Johdatus logiikkaan I Harjoitus 4 Vihjeet Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6) Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa

Lisätiedot

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 811120P 3. 5 op Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 ja laskenta tarkastelemme terveeseen järkeen perustuvaa päättelyä formaalina järjestelmänä logiikkaa sovelletaan

Lisätiedot

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos. TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Predikaattilogiikkaa

Predikaattilogiikkaa Predikaattilogiikkaa UKUTEORIA JA TO- DISTAMINEN, MAA11 Kertausta ogiikan tehtävä: ogiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset 1. Päättele resoluutiolla seuraavista klausuulijoukoista: (a) {{p 0 }, {p 1 }, { p 0, p 2 },

Lisätiedot

13. Loogiset operaatiot 13.1

13. Loogiset operaatiot 13.1 13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation

Lisätiedot

Logiikka. Kurt Gödel ( )

Logiikka. Kurt Gödel ( ) Logiikka Tutustumme seuraavaksi propositio- eli lauselogiikkaan, jossa tarkastellaan formaalien lauseiden ominaisuuksia, ennenkaikkea niiden totuusarvoja. Formalisoimalla luonnollisen kielen lauseet propositiologiikan

Lisätiedot

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Perusaksioomat: Laki 1: Kukin totuusfunktio antaa kullekin propositiolle totuusarvoksi joko toden T tai epätoden

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R): Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka ) T-79.3001 Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka 2.1 3.4) 5.2. 9.2. 2009 Ratkaisuja demotehtäviin Tehtävä 2.1 Merkitään lausetta φ:llä, ja valitaan atomilauseiden

Lisätiedot

FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:

FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: LOGIIKKA 1 Mitä logiikka on? päättelyn tiede o oppi muodollisesti pätevästä päättelystä 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: sisältö, merkitys: onko jokin premissi

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 1

Tekijä Pitkä Matematiikka 11 ratkaisut luku 1 Tekijä Pitkä matematiikka 11 16.2.2017 1 a) Yhdistetään ja-sanalla lauseet A ja B. A B: Järvi on tyyni ja lähden vesihiihtämään. b) Muodostetaan lauseiden A ja B negaatiot. A : järvi ei ole tyyni B : en

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.

Lisätiedot

13. Loogiset operaatiot 13.1

13. Loogiset operaatiot 13.1 13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.

Lisätiedot

Logiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3

Logiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3 Φ Logiikka I Kaarlo Reipas 17. huhtikuuta 2012 Ψ Tämä materiaali on vielä keskeneräinen. Sisältö 1 Johdanto 3 1.1 Mitä logiikka on?.............................. 3 2 ropositiologiikka 4 2.1 Lauseet...................................

Lisätiedot

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15 JosAjaA B ovat tosia, niin välttämättä myösb on tosi (A (A B)) B on tautologia eli (A (A B)) B. 1 / 15 JosAjaA B ovat tosia, niin välttämättä

Lisätiedot

Induktio kaavan pituuden suhteen

Induktio kaavan pituuden suhteen Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos

Lisätiedot

Totuusjakaumat. Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B.

Totuusjakaumat. Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B. Totuusjakaumat Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B. Totuusjakauma v voidaan aina laajentaa kuvaukseksi V : {A A on L kaava}

Lisätiedot

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C.

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C. T-79.3001 Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka 6.1 7.2) 27. 29.2.2008 Ratkaisuja demotehtäviin Tehtävä 6.1 a) A (B C) Poistetaan lauseesta ensin implikaatiot.

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.

Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa. Johdanto Lauselogiikassa tutkitaan sekä syntaktisella että semanttisella tasolla loogisia konnektiiveja ja niiden avulla muodostettuja kaavoja sekä myös formaalia päättelyä. Tarkastelemme aluksi klassisen

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan

Lisätiedot

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg.

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Olkoon L = {Lontoo, P ariisi, P raha, Rooma, Y hteys(x, y)}. Kuvan 3.1. kaupunkiverkko vastaa seuraavaa L-mallia

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Vastaoletuksen muodostaminen

Vastaoletuksen muodostaminen Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

Insidenssifunktioiden teoriaa

Insidenssifunktioiden teoriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Rauno Soppi Insidenssifunktioiden teoriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2011 2 Tampereen yliopisto Informaatiotieteiden yksikkö SOPPI, RAUNO:

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 15. syyskuuta 2015 Alkulause Much more important than specific mathematical results are the habits of mind used by the people who create those results. Cuoco, Goldenberg

Lisätiedot

Johdatus logiikkaan 1

Johdatus logiikkaan 1 Johdatus logiikkaan 1 Åsa Hirvonen Kevät 2016 Sisältö 1 ropositiolauseet 3 2 Rekursiiviset määritelmät ja induktio rakenteen suhteen 7 3 Totuusjakaumat ja totuustaulut 12 3.0.1 Negaatio..........................

Lisätiedot

5.1 Semanttisten puiden muodostaminen

5.1 Semanttisten puiden muodostaminen Luku 5 SEMNTTISET PUUT 51 Semanttisten puiden muodostaminen Esimerkki 80 Tarkastellaan kysymystä, onko kaava = (( p 0 p 1 ) (p 1 p 2 )) toteutuva Tätä voidaan tutkia päättelemällä semanttisesti seuraavaan

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 5 Mikko Salo 5.9.2017 The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable.... It came

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

3. Predikaattilogiikka

3. Predikaattilogiikka 3. Predikaattilogiikka Muuttuja mukana lauseessa. Ei yksikäsitteistä totuusarvoa. Muuttujan kiinnittäminen määrän ilmaisulla voi antaa yksikäsitteisen totuusarvon. Esimerkki. Lauseella x 3 8 = 0 ei ole

Lisätiedot

T Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

T Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet ) T-79.144 Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 2 5.11.2005 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R A

Lisätiedot

Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010

Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010 Ensimmäisen viikon luennot Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010 Perustuu osittain kirjan Poole: Linear Algebra lukuihin Appendix A ja Appendix B ja Trench in verkkokirjaan,

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

Tehtäväalue ulottuu kohdan 1.15 paikkeille (hiukan edemmäs, jos haluaa).

Tehtäväalue ulottuu kohdan 1.15 paikkeille (hiukan edemmäs, jos haluaa). HY / Matematiikan ja tilastotieteen laitos Matemaattinen analyysi I Harjoitus 1 / Ratkaisut Tämän harjoituksen pääaihe on käsite implikaatio ja myös sen merkitseminen kaksoisnuolella. Muistutamme erityisesti

Lisätiedot

JOHDATUS MATEMATIIKKAAN

JOHDATUS MATEMATIIKKAAN JOHDATUS MATEMATIIKKAAN Toitteko minulle ihmisen, joka ei osaa laskea sormiaan? Kuolleiden kirja JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Alkusanat Tämä tiivistelmä on allekirjoittaneen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,

Lisätiedot

Rakenteiset päättelyketjut ja avoin lähdekoodi

Rakenteiset päättelyketjut ja avoin lähdekoodi Rakenteiset päättelyketjut ja avoin lähdekoodi Mia Peltomäki Kupittaan lukio ja Turun yliopiston IT-laitos http://crest.abo.fi /Imped Virtuaalikoulupäivät 24. marraskuuta 2009 1 Taustaa Todistukset muodostavat

Lisätiedot

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}? HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan II, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Mitkä muuttujat esiintyvät vapaina kaavassa x 2 ( x 0 R 0 (x 1, x 2 ) ( x 3 R 0 (x 3, x 0

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

Johdatus logiikkaan (Fte170)

Johdatus logiikkaan (Fte170) Johdatus logiikkaan (Fte170) Teoreettinen filosofia, 5 op, periodit I ja II, 2010 Markus Pantsar 1. Johdanto 1.1 Filosofinen logiikka Logiikkaa tutkitaan pääasiallisesti kolmen tieteen piirissä: filosofian,

Lisätiedot

Aaro rakastaa Inkaa tai Ullaa

Aaro rakastaa Inkaa tai Ullaa VIHJELAPPUSET C.2 I O U I O U A I O B U O O U (U O) (O U) C D I: Aaro rakastaa Inkaa. O: Aaro rakastaa Outia. U: Aaro rakastaa Ullaa. A: I U B: ( I O) U C: ((U O) (O U)) D: O Aaro rakastaa Inkaa tai Ullaa

Lisätiedot

Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a ( )

Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a ( ) Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a (23.1.2010) 1. Merkitään P := Elokuva on kiinnostava., Q := Käyn katsomassa elokuvan., R := Elokuvassa on avaruusolioita.. Kirjoita seuraavat

Lisätiedot

Monisteen Rantala & Virtanen, Logiikkaa: teoriaa ja sovelluksia harjoitustehtävät.

Monisteen Rantala & Virtanen, Logiikkaa: teoriaa ja sovelluksia harjoitustehtävät. Monisteen Rantala & Virtanen, Logiikkaa: teoriaa ja sovelluksia harjoitustehtävät. Tehtäviä on osittain muokattu, jotta ne vastaisivat paremmin kokeilumonistetta Rantala & Virtanen, Logiikan peruskurssi.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

LOGIIKKA, TIETÄMYS JA PÄÄTTELY

LOGIIKKA, TIETÄMYS JA PÄÄTTELY 36 LOGIIKKA, TIETÄMYS JA PÄÄTTELY Ryhdymme nyt tarkastelemaan tietämyskannan (knowledge base, KB omaavia agentteja KB:n avulla agentti pyrkii pitämään yllä tietoa vain osittain havainnoimastaan maailmasta

Lisätiedot

Opintomoniste logiikan ja joukko-opin perusteista

Opintomoniste logiikan ja joukko-opin perusteista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Lammi Opintomoniste logiikan ja joukko-opin perusteista Luonnontieteiden tiedekunta Matematiikka Toukokuu 2018 2 Tampereen yliopisto Luonnontieteiden tiedekunta

Lisätiedot

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat 16. 6 Predikaattilogiikkaa 31. 8 Relaatiot 42.

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat 16. 6 Predikaattilogiikkaa 31. 8 Relaatiot 42. Diskreetit rakenteet, syksy 2015 Itä-Suomen yliopisto, Tietojenkäsittelytieteen laitos Ville Heikkinen 14.12.2015 15:18 Sisältö 1 Johdanto, Tavoitteet 2 2 Lähteitä 2 3 Propositiologiikkaa 2 4 Karnaugh'n

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2017-2018 Yhteenveto Yleistä kurssista Kurssin laajuus 5 op Luentoja 30h Harjoituksia 21h Itsenäistä työskentelyä n. 80h 811120P Diskreetit rakenteet, Yhteenveto 2 Kurssin

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 7. toukokuuta 04 Sisältö Joukko-oppia 4. Joukko-opin peruskäsitteitä ja merkintöjä........... 4 Todistamisen ja matemaattisen päättelyn alkeita 3. Alkupala..............................

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

(mod 71), 2 1(mod 71) (3 ) 3 (2 ) 2

(mod 71), 2 1(mod 71) (3 ) 3 (2 ) 2 46. Väite: Luku 3 1 704 71 on jaollinen luvulla 71. Todistus: 1704 71 70 4+ 4 70 3+ 31 70 4 4 70 3 31 70 70 3 3 3 1(mod 71), 1(mod 71) 1 3 4 4 1 3 3 31 4 31 (3 ) 3 ( ) 36 40 67(mod 71) Luku 3 1 704 71

Lisätiedot

Ilpo Halonen 2005. 1.3 Päätelmistä ja niiden pätevyydestä. Luonnehdintoja logiikasta 1. Johdatus logiikkaan. Luonnehdintoja logiikasta 2

Ilpo Halonen 2005. 1.3 Päätelmistä ja niiden pätevyydestä. Luonnehdintoja logiikasta 1. Johdatus logiikkaan. Luonnehdintoja logiikasta 2 uonnehdintoja logiikasta 1 Johdatus logiikkaan Ilpo Halonen Syksy 2005 ilpo.halonen@helsinki.fi Filosofian laitos Humanistinen tiedekunta "ogiikka on itse asiassa tiede, johon sisältyy runsaasti mielenkiintoisia

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Agentin toiminnan arviointi

Agentin toiminnan arviointi 35 1.1 ÄLYKKÄÄ AGNI Agentti havainnoi toimintaympäristöään sensorein ja vaikuttaa siihen aktuaattorein Ihmisen sensoreita ovat mm. silmät, korvat ja nenä sekä aktuaattoreita esim. kädet ja jalat Robotin

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Tietotekniikka ja diskreetti matematiikka

Tietotekniikka ja diskreetti matematiikka Tietotekniikka ja diskreetti matematiikka Tietotekniikassa Epäjatkuvan matematiikan (diskreetin matematiikan) välineitä. Ongelmien ja ratkaisujen kuvaus. Tavoite: Perehdytään tavanomaisimpiin käytetyistä

Lisätiedot