Algoritmit 2. Luento 13 Ti Timo Männikkö

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Algoritmit 2. Luento 13 Ti Timo Männikkö"

Transkriptio

1 Algoritmit 2 Luento 13 Ti Timo Männikkö

2 Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Algoritmit 2 Kevät 2017 Luento 13 Ti /35

3 Merkkijonon sovitus Merkkijono taulukossa T, pituus n Yksittäinen merkki T [i], missä 0 i n 1 Alimerkkijono T [i..j], missä 0 i j n 1 Mallimerkkijono P, pituus m Tehtävä: Löytyykö P merkkijonosta T Toisin sanoen: Onko jollain i T [i.. i + m 1] = P[0.. m 1] Algoritmit 2 Kevät 2017 Luento 13 Ti /35

4 Merkkijonon sovitus Raa an voiman menetelmä: Etsitään P:tä merkki kerrallaan T :n ensimmäisestä merkistä alkaen Ellei löydy, etsitään T :n toisesta merkistä alkaen Jne. Pahimman tapauksen aikavaativuus Θ(nm) Algoritmit 2 Kevät 2017 Luento 13 Ti /35

5 Merkkijonon sovitus sovitus(t, p) { for (i = 0; i < n-m+1; i++) { j = 0; while ( j < m && t[i+j] == p[j]) j++; if (j == m) return i; } return -1; // ei löytynyt } Algoritmit 2 Kevät 2017 Luento 13 Ti /35

6 Merkkijonon sovitus Tehokkaampia menetelmiä: Esikäsitellään mallimerkkijono Kerätty tieto tallennetaan aputaulukkoon Aputaulukon tietoa käytetään hyväksi varsinaisessa sovitusvaiheessa Esimerkiksi: Horspoolin algoritmi Algoritmit 2 Kevät 2017 Luento 13 Ti /35

7 Horspoolin algoritmi Mallimerkkijono P asetetaan merkkijonon T alkuun Tarkastellaan P:tä lopusta alkaen Jos kaikki merkit täsmäävät, P löytyi Muuten P:tä siirretään eteenpäin (oikealle) Siirto voi olla useampia askeleita Jatketaan kunnes P löytyy tai kunnes tullaan T :n loppuun Algoritmit 2 Kevät 2017 Luento 13 Ti /35

8 Horspoolin algoritmi Mallimerkkijonon siirto: Siirto tehdään mahdollisimman pitkälle siten, että mahdollista sopivaa alimerkkijonoa ei kuitenkaan ohiteta Siirron suuruus päätetään siitä T :n merkistä, jota sovitettiin P:n viimeiseen merkkiin Useita eri tapauksia Algoritmit 2 Kevät 2017 Luento 13 Ti /35

9 Horspoolin algoritmi Tapaus: Mallimerkkijonossa ei ole lainkaan sovitettavaa merkkiä (tässä esimerkissä d): a b c a c b d x x x x x a c a c c Siirretään koko P:n pituuden verran: a b c a c b d x x x x x a c a c c Algoritmit 2 Kevät 2017 Luento 13 Ti /35

10 Horspoolin algoritmi Tapaus: Mallimerkkijonossa on sovitettava merkki, mutta ei viimeisen merkin kohdalla: a b c a c b d x x x x x a c d c c Siirretään vastaava oikeanpuoleisin merkki viimeisen merkin kohdalle (kaksi askelta): a b c a c b d x x x x x a c d c c Algoritmit 2 Kevät 2017 Luento 13 Ti /35

11 Horspoolin algoritmi Tapaus: Vain osa merkeistä täsmää, ja viimeistä merkkiä ei esiinny P:ssä muualla: a b c a c b d x x x x x a c a b d Siirretään koko P:n pituuden verran: a b c a c b d x x x x x a c a b d Algoritmit 2 Kevät 2017 Luento 13 Ti /35

12 Horspoolin algoritmi Tapaus: Vain osa merkeistä täsmää, ja viimeinen merkki esiintyy P:ssä muualla: a b c a c b d x x x x x a c d b d Oikeanpuoleisin merkki (P:n viimeistä merkkiä huomioimatta) viimeisen merkin kohdalle: a b c a c b d x x x x x a c d b d Algoritmit 2 Kevät 2017 Luento 13 Ti /35

13 Horspoolin algoritmi Siirtymät lasketaan etukäteen taulukkoon Taulukko indeksoidaan kaikilla mahdollisilla tekstissä ja mallissa esiintyvillä merkeillä Merkin c siirtymä: s(c) = mallimerkkijonon pituus m, jos c ei esiinny mallin (m 1):n ensimmäisen merkin joukossa s(c) = oikeanpuoleisimman merkin c etäisyys mallin viimeiseen merkkiin, jos c on (m 1):n ensimmäisen merkin joukossa Algoritmit 2 Kevät 2017 Luento 13 Ti /35

14 Esimerkki Mallimerkkijono: a c a b d Pituus m = 5, merkkien lukumäärä k = 4 Siirtymätaulukko: a b c d s Algoritmit 2 Kevät 2017 Luento 13 Ti /35

15 Horspoolin algoritmi 1. Muodostetaan siirtymätaulukko 2. Mallimerkkijono tekstin alkua vasten 3. Toistetaan kunnes haettu merkkijono löytyy tai malli siirtyy tekstin lopun ohi: Alkaen mallin viimeisestä merkistä verrataan mallin ja tekstin merkkejä Jos eri merkit, haetaan siirtymätaulukosta vastaava siirtymä Siirtymän määrää tekstissä mallin viimeisen merkin kohdalla oleva merkki Siirretään mallia oikealle siirtymän verran Algoritmit 2 Kevät 2017 Luento 13 Ti /35

16 Esimerkki Merkkijono: a a b b a a b a b Mallimerkkijono: a b a b Siirtymätaulukko: a b s 1 2 Algoritmit 2 Kevät 2017 Luento 13 Ti /35

17 Esimerkki jatkuu a a b b a a b a b a b a b a a b b a a b a b a b a b a a b b a a b a b a b a b a a b b a a b a b a b a b Algoritmit 2 Kevät 2017 Luento 13 Ti /35

18 Horspoolin algoritmi Merkkijono t, pituus n Mallimerkkijono p, pituus m Merkistön merkkien lukumäärä k Siirtymätaulukko s, pituus k Siirtymätaulukon muodostaminen: for (i = 0; i < k; i++) s[i] = m; for (j = 0; j < m-1; j++) s[p[j]] = m j; Algoritmit 2 Kevät 2017 Luento 13 Ti /35

19 Horspoolin algoritmi Mallimerkkijonon sovitus: i = m - 1; while (i < n) { j = 0; while (j < m && p[m-1-j] == t[i-j]) j = j + 1; if (j == m) return i-m+1; else i = i + s[t[i]]; } return -1; Algoritmit 2 Kevät 2017 Luento 13 Ti /35

20 Horspoolin algoritmi Pahimman tapauksen aikavaativuus Θ(nm) Satunnaisella tekstillä huomattavasti nopeampi kuin raa an voiman algoritmi Käytännössä lähes Θ(n) Algoritmit 2 Kevät 2017 Luento 13 Ti /35

21 Kauppamatkustajan ongelma Tehtävä: Etsi lyhin reitti, joka käy täsmälleen kerran jokaisessa n:ssä kaupungissa Triviaaliratkaisu: Tutkitaan kaikki reitit Mutta: Mahdollisten reittien lukumäärä kertaluokkaa n! Käytännössä tehtävä voidaan ratkaista näin vain pienellä n Tietokoneiden tehon kasvattaminen ei auta, sillä lukumäärä kasvaa ylieksponentiaalisesti Kombinatorinen räjähdys Algoritmit 2 Kevät 2017 Luento 13 Ti /35

22 Laskennallinen vaativuus Algoritmi ratkaisee ongelman polynomisessa ajassa, jos pahimman tapauksen aikavaativuus on Θ(p(n)), missä p polynomi Ratkeava ongelma: Voidaan ratkaista polynomisessa ajassa Ratkeamaton ongelma: Ei voida ratkaista polynomisessa ajassa Kauppamatkustajan ongelmalle ei tunneta polynomisia algoritmeja Onko sellaisia olemassa? Algoritmit 2 Kevät 2017 Luento 13 Ti /35

23 Päätösongelmat Joukon S päätösongelma: Kuuluuko annettu syöttötieto x joukkoon S Vastaus joko kyllä tai ei (joko 1 tai 0) Yleisesti x ja S:n alkiot voidaan esittää bittijonoina Algoritmit 2 Kevät 2017 Luento 13 Ti /35

24 Päätösongelmat Esimerkkejä: Onko annettu binääriluku parillinen: S = {parillisten lukujen binääriesitykset} Onko annettu binääriluku alkuluku: S = {alkulukujen binääriesitykset} Sisältääkö annettu verkko Hamiltonin kehän (= verkon silmukka, joka kulkee täsmälleen kerran jokaisen solmun kautta): S = {Hamiltonin kehän sisältävien verkkojen binääriesitykset} Algoritmit 2 Kevät 2017 Luento 13 Ti /35

25 Aikavaativuus Aikavaativuusfunktiot: time A (x) = Algoritmin A syötteellä x suorittamien laskenta-askelten lukumäärä time A (n) = max{time A (x) : x = n} ( x syöttötiedon koko tai pituus) Polynominen algoritmi: Aikavaativuutta time A (n) rajoittaa jokin n:n polynomi Vaativuusluokka P: P = { päätösongelmat, jotka voidaan ratkaista polynomisella algoritmilla } Algoritmit 2 Kevät 2017 Luento 13 Ti /35

26 Epädeterministinen algoritmi Vaikka ongelman ratkaiseminen on vaikeaa, voi annetun ratkaisun tarkistaminen olla helppoa Esimerkkejä: Hamiltonin kehä -ongelma: Verkon solmuille arvataan oikea järjestys Helppo tarkistaa, että muodostuu Hamiltonin kehä Yhdistettyjen lukujen tunnistamisongelma: Luvun x tekijät y ja z arvataan Helppo tarkistaa, että x = yz Algoritmit 2 Kevät 2017 Luento 13 Ti /35

27 Epädeterministinen algoritmi Epädeterministinen arvausvaihe : Muodostetaan päätösongelman esiintymälle ratkaisuehdotus Deterministinen tarkistusvaihe : Tarkistetaan deterministisellä algoritmilla, onko ratkaisuehdotus esiintymän ratkaisu Algoritmit 2 Kevät 2017 Luento 13 Ti /35

28 Epädeterministinen algoritmi Epädeterministinen algoritmi ratkaisee päätösongelman Ongelman jokaiselle kyllä-esiintymälle se palauttaa vastauksen kyllä jollakin suorituksella Epädeterministinen algoritmi on epädeterministinen polynominen algoritmi, jos tarkistusvaihe toimii polynomiajassa Vaativuusluokka NP: NP = { päätösongelmat, jotka voidaan ratkaista epädeterministisellä polynomisella algoritmilla } Algoritmit 2 Kevät 2017 Luento 13 Ti /35

29 NP-luokan ongelmia Propositiologiikan toteutuvuusongelma (SAT): Onko proposiotiolause toteutuva, ts. onko olemassa sellaista totuusjakaumaa joka tekee lauseesta toden Kauppamatkustajan päätösongelma (TSP): Sisältääkö verkko Hamiltonin kehän, jonka pituus on enintään k Kauppamatkustajan ongelma: Etsi Hamiltonin kehä, jonka pituus on minimaalinen Tämä ei ole päätösongelma, vaan optimointiongelma Algoritmit 2 Kevät 2017 Luento 13 Ti /35

30 NP-luokan ongelmia Solmupeiteongelma (VC): Sisältääkö verkko enintään k:n solmun solmupeitteen (solmujoukko, joka peittää jokaisesta kaaresta ainakin toisen päätesolmun) Riippumaton joukko -ongelma (IS): Sisältääkö verkko vähintään k riippumatonta solmua (solmujoukko, jonka solmujen välillä ei ole yhtään kaarta) Klikkiongelma (CLIQUE): Sisältääkö verkko vähintään k:n solmun muodostaman klikin (solmujoukko, jonka kaikkien solmuparien välillä on kaari) Algoritmit 2 Kevät 2017 Luento 13 Ti /35

31 Vaativuusluokat Selvästi P NP On olemassa NP-ongelmia, joille ei tunneta polynomisia algoritmeja On olemassa myös ongelmia, jotka eivät kuulu joukkoon NP Onko P = NP? Algoritmit 2 Kevät 2017 Luento 13 Ti /35

32 Polynominen palautus Päätösongelma T 1 on polynomisesti muunnettavissa päätösongelmaksi T 2, jos on olemassa funktio f, joka muuntaa T 1 :n esiintymän T 2 :n esiintymäksi siten, että f kuvaa T 1 :n jokaisen kyllä-esiintymän T 2 :n kyllä-esiintymäksi ja jokaisen T 1 :n ei-esiintymän T 2 :n ei-esiintymäksi f on laskettavissa polynomisessa ajassa Tällöin merkitään T 1 p T 2 Algoritmit 2 Kevät 2017 Luento 13 Ti /35

33 Polynominen palautus T 1 p T 2 Palautusfunktio f muuntaa ongelman T 1 syötetapaukset x ongelman T 2 vastaaviksi tapauksiksi f (x) T 1 on yksinkertaisempi kuin T 2 Jos T 2 voidaan ratkaista polynomisessa ajassa, myös T 1 voidaan ratkaista polynomisessa ajassa Esimerkiksi: VC p IS p CLIQUE Algoritmit 2 Kevät 2017 Luento 13 Ti /35

34 NP-täydellisyys Määritelmä: Ongelma T on NP-täydellinen, jos T NP S p T kaikilla S NP Lemma: Ongelma T on NP-täydellinen, jos T NP S p T jollakin NP-täydellisellä S Kaikki edellä esitetyt ongelmat (SAT, TSP, VC, IS, CLIQUE) ovat NP-täydellisiä Algoritmit 2 Kevät 2017 Luento 13 Ti /35

35 NP-täydelliset ongelmat Luokan NP vaikeimmat ongelmat Jos jokin niistä pystytään ratkaisemaan polynomisessa ajassa, kaikki NP-luokan ongelmat pystytään ratkaisemaan polynomisessa ajassa Jos ongelman koko ei ole suuri, voidaan käydä läpi kaikki ratkaisuvaihtoehdot Muuten käytetään esim. heuristisia algoritmeja ja tyydytään tarpeeksi hyvään ratkaisuun Algoritmit 2 Kevät 2017 Luento 13 Ti /35

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko 238 7.2 Luokka NP Luokka NP on: NP = { NTIME(t) t on polynomi } = k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko P NP Luokan NP ongelmista

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva: Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy 212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa

Lisätiedot

3SAT-ongelman NP-täydellisyys [HMU ]

3SAT-ongelman NP-täydellisyys [HMU ] 3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta

Lisätiedot

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen.

Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. 261 Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. Pitää osoittaa siis, että A mp SAT mielivaltaisella A NP Ainoa, mitä A:sta tiedetään on, että sillä on polynomisessa

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

6. Approksimointialgoritmit

6. Approksimointialgoritmit 6. Approksimointialgoritmit Tässä luvussa käsitellään lyhyesti approksimointiin liittyvät peruskäsitteet ja joitain keskeisiä approksimoituvuustuloksia. Tavoitteena on, että opiskelija näkee approksimointialgoritmien

Lisätiedot

Muita vaativuusluokkia

Muita vaativuusluokkia Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM

kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM Kurssi tähän asti: säännölliset yhteydettömät ratkeavat { a n } { a n b n } { a n b n c n } tunnistettavat A TM HALT TM kaikki kielet A TM HALT TM TOTAL TM TOTAL TM EQ TM EQ TM 277 5. Laskennan vaativuus

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen. Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

6.1 Rekursiiviset palautukset

6.1 Rekursiiviset palautukset 6.1 Rekursiiviset palautukset Olk. = (Q, Σ, Γ, δ, q 0, q acc, q rej ) mv. standardimallinen Turingin kone ääritellään koneen laskema osittaisfunktio f : Σ Γ seur. u, jos q 0 w u q av, f (w) = q { q acc,

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa Siirrymme tarkastelemaan, mitä laskennallisia ongelmia voidaan ratkaista tehokkaalla algoritmilla [HMU luku 10]. Tämän luvun jälkeen opiskelija tuntee laskennallisen vaativuuden

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

10. Satunnaisalgoritmit

10. Satunnaisalgoritmit 316 10. Satunnaisalgoritmit Probabilistic algorithms, randomized algorithms Toinen tapa liiallisen laskennallisen vaativuuden kanssa toimeen tulemiseksi ovat satunnaisalgoritmit Jotkin ongelmat, joissa

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja 582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun

Lisätiedot

NP-täydellisyys. Joonas Järvenpää ja Topi Talvitie. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

NP-täydellisyys. Joonas Järvenpää ja Topi Talvitie. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos NP-täydellisyys Joonas Järvenpää ja Topi Talvitie Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 Sisältö 1 Johdanto 1 2 Ongelman määrittely

Lisätiedot

Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä?

Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä? Ongelman vaativuuden rajat Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä? Olisiko mahdollista löytää asymptoottisesti tehokkaampi ratkaisu, vai onko algoritmi optimaalinen? Kysymyksiin

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

SAT-ongelman rajoitetut muodot

SAT-ongelman rajoitetut muodot SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

Satunnaisalgoritmit. Antti Tanhuanpää. 25. maaliskuuta 2013

Satunnaisalgoritmit. Antti Tanhuanpää. 25. maaliskuuta 2013 Satunnaisalgoritmit Antti Tanhuanpää 25. maaliskuuta 2013 Johdanto Satunnaisalgoritmit ovat algoritmeja, jotka hyödyntävät satunnaisuutta osana laskentaansa. Ensimmäisen tällaisen algoritmin kehitti Michael

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1

1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1 Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 11 Ratkaisut 1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen kahta yhdistämissääntöä. Perusfunktioita

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}. 42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Polynomiset palautukset ja NP-täydellisyys

Polynomiset palautukset ja NP-täydellisyys Polynomiset palautukset ja NP-täydellisyys [HMU 10.1.5, 10.1.6] Polynomisen palautuksen idea on sama kuin rekursiivisen palautuksen, paitsi että liikutaan polynomisen aikavaativuuden maailmassa. Funktio

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

P? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta

P? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta P? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta Juha Nurmonen Matematiikan laitos Helsingin yliopisto Ajatellaanpa esimerkiksi kauppamatkustajan jokapäiväistä ongelmaa: Kauppamatkustajan

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters

Lisätiedot

Säännöllisen kielen tunnistavat Turingin koneet

Säännöllisen kielen tunnistavat Turingin koneet 186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen

Lisätiedot

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6) Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

Seminaari: Hajautetut algoritmit syksy 2009

Seminaari: Hajautetut algoritmit syksy 2009 Seminaari: Hajautetut algoritmit syksy 2009 http://www.cs.helsinki.fi/u/josuomel/sem-2009s/ Jukka Suomela 10.9.2009 Seminaari: Hajautetut algoritmit syksy 2009 Seminaarin työmuodot 2 / 38 Aikataulu ja

Lisätiedot

Kuva 1: Kauppamatkustajan reitti Suomen 15 suurimmalle kaupungille (2002).

Kuva 1: Kauppamatkustajan reitti Suomen 15 suurimmalle kaupungille (2002). P = NP -ongelma ja laskennan vaativuusteoria Pekka Orponen Teknillinen korkeakoulu Tietojenkäsittelyteorian laboratorio pekka.orponen@tkk.fi Johdanto: miljoonan dollarin ongelma Amerikkalainen Clay Mathematics

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Kauppamatkustajan ongelman approksimointialgoritmin suunnittelu, toteutus ja kokeellinen tutkimus. Aaro Tuomisto

Kauppamatkustajan ongelman approksimointialgoritmin suunnittelu, toteutus ja kokeellinen tutkimus. Aaro Tuomisto Kauppamatkustajan ongelman approksimointialgoritmin suunnittelu, toteutus ja kokeellinen tutkimus Aaro Tuomisto Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Pro gradu -tutkielma

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Laskennanteoria: Mitä voimmelaskea tietokoneella ja kuinkatehokkaasti?

Laskennanteoria: Mitä voimmelaskea tietokoneella ja kuinkatehokkaasti? Laskennanteoria: Mitä voimmelaskea tietokoneella ja kuinkatehokkaasti? Wilhelmiina Hämäläinen Johdatus tietojenkäsittelytieteeseen 1.-2.12. 2003 Tietojenkäsittelytieteen laitos Joensuun yliopisto 1 Johdanto

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Turingin koneen laajennuksia

Turingin koneen laajennuksia Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007

Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007 Jaetun muistin muuntaminen viestin välitykseksi Otto Räsänen 15. lokakuuta 2007 1 Motivaatio 2 Valtuuden välitys Peruskäsitteitä 3 Kolme algoritmia Valtuuden välitys käyttäen laskuria ilman ylärajaa Valtuuden

Lisätiedot