Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.
|
|
- Johannes Halonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Johdanto Lauselogiikassa tutkitaan sekä syntaktisella että semanttisella tasolla loogisia konnektiiveja ja niiden avulla muodostettuja kaavoja sekä myös formaalia päättelyä. Tarkastelemme aluksi klassisen lauselogiikan formaalia määrittelyä ja semanttisia kysymyksiä. Kurssin loppupuolella tarkastelemme lauselogiikan todistusteoriaa. On huomattava, että on olemassa lauselogiikoita, joissa syntaktiset tai semanttiset asiat on määritelty eri tavalla kuin klassisessa logiikassa.
2 Konnektiivit Loogiset konnektiivit vastaavat tiettyjä luonnollisen kielen ilmaisuja, jotka ovat tärkeitä myös ei-formaalissa matemaattisessa kielessä. Lauselogiikassa konnektiiveille annetaan täsmälliset semanttiset merkitykset. On siis huomattava, että merkitykset ovat sopimusluonteisia, joskin pyritään noudattelemaan luonnollisen kielen merkityksiä. Ne kuitenkin poikkeavat osittain vastaavista luonnollisen kielen ilmaisujen merkityksistä jo senkin takia, että jälkimmäiset eivät ole täysin yksikäsitteisiä. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.
3 Konnektiivit Klassisen lauselogiikan konnektiivit ovat seuraavat: vastine merkintä luonnollisessa nimitys (vaihtoehtoinen) kielessä negaatio (, ) ei (ole niin, että... ) konjunktio (&) ja disjunktio tai implikaatio (, ) jos..., niin... ekvivalenssi (, ) jos ja vain jos
4 Kaavat Konnektiivien avulla muodostetaan kaavoista A ja B yhdistettyjä kaavoja seuraavasti: yhd. kaava luetaan nimitys A ei A A:n negaatio A B A ja B A:n ja B:n konjunktio A B A tai B A:n ja B:n disjunktio A B jos A, niin B A:n ja B:n implikaatio A B A, jos ja vain jos B A:n ja B:n ekvivalenssi.
5 Totuusfunktionaalisuus Käytämme usein kaavalle samaa nimitystä kuin sen ns. pääkonnektiiville ja puhumme esimerkiksi konjunktiosta A B, disjunktiosta A B, implikaatiosta A B jne. Loogiset konnektiivit ovat totuusfunktionaalisia, joka tarkoittaa, että kunkin yhdistetyn kaavan totuusarvo määräytyy yksikäsitteisesti sen osakaavojen totuusarvoista (edellinen on siis jälkimmäisten funktio). Tarkastelemme tarkemmin totuusfunktion käsitettä, kun olemme määritelleet täsmällisesti käyttämämme lauselogiikan kielen syntaksin.
6 Totuustaulut Totuusarvojen 1 (tosi) ja 0 (epätosi) määräytyminen voidaan esittää totuustaulujen avulla seuraavasti: Negaatio Konjunktio Disjunktio Implikaatio Ekvivalenssi A B A B A B A B A B A B A B A B A A Oletamme, että tämän kaltaiset totuustaulut ovat lukijalle tuttuja ja että hän osaa myös muodostaa monimutkaisempien yhdistettyjen kaavojen totuustauluja.
7 Formalisointi Logiikassa pyritään määrittelemään täysin yksikäsitteisesti tarvittavat syntaktiset ja semanttiset käsitteet. Tähän päästään esimerkiksi formalisoimalla tarkasteltavan logiikan syntaksi ja määrittelemällä semanttiset käsitteet käyttäen joukko-opillista ja muuta matemaattista kieltä. Tutkimme nyt, miten lauselogiikan syntaksi formalisoidaan. Tarkoituksena on antaa sellainen määritelmä kaavalle, että periaatteessa voidaan annetusta merkkijonosta mekaanisesti todeta, onko se lauselogiikan kaava vai ei. Tämä edellyttää ensiksikin, että sovitaan, mitkä ovat ne syntaktiset merkit, joita saadaan käyttää, ja toiseksi, miten näitä merkkejä voidaan yhdistellä.
8 Peruskonnektiivit Sekä syntaktiset että semanttiset tarkastelut yksinkertaistuvat usein, jos valitaan peruskonnektiivit, joiden avulla muut konnektiivit voidaan määritellä. Peruskonnektiiveiksi voidaan ottaa negaatio yhdessä disjunktion, konjunktion tai implikaation kanssa. On myös mahdollista ottaa käyttöön kokonaan uusia konnektiiveja ja määritellä tutut konnektiivit näiden avulla. Käytämme ensin peruskonnektiiveina kaikkia klassia konnektiiveja. Myöhemmin teoreettisten tarkasteluiden yhteydessä valitsemme peruskonnektiiveiksi vain negaation ja konjunktion.
9 Perussymbolit Kiinnitetään nyt käytettävät perusmerkit, joista muut ilmaisut rakennetaan. Ne ovat perussymboleja (primitiivisymboleja), ja ne muodostavat aakkoston. Sovimme, että perussymbolit ovat seuraavat: p 0, p 1, p 2,... lausemuuttujat,,,, konnektiivit (, ) sulut. Lausemuuttujia kutsutaan joskus myös atomilauseiksi. Myös nimitystä propositiosymboli käytetään. Niitä on siis numeroituvasti ääretön määrä.
10 Objektikieli ja metakieli Lausemuuttujiksi voidaan valita myös jokin joukon {p 0, p 1, p 2,...} aito osajoukko. Myös konnektiiveista voidaan valita vain osa käytettäväksi, esimerkiksi negaatio ja konjunktio (joskus voidaan käyttää muitakin konnektiiveja kuin edellä esitellyt). Perussymbolit kuuluvat objektikieleen eli siihen formaalikieleen, jota tarkastelemme; samoin kohta määriteltävät kaavat. Meillä on oltava myös sopiva metakieli, jossa niihin voidaan viitata. Kirjaimet p, q, r, q 0, q 1, q 2... ovat metakieleen kuuluvia metavariaabeleita, jotka viittaavat lausemuuttujiin ja kirjaimet A, B, C,... metavariaabeleita, jotka viittaavat kaavoihin. Konnektiivit ja sulut viittaavat itseensä. Lisäksi metavariaabelit q 0, q 1, q 2,... viittavat aina eri lausemuuttujiin eli q i q j, jos i j.
11 Kaavat Seuraavaksi määritellään, mitä tarkoitetaan kaavalla. Tämä tapahtuu ns. kaavanmuodostussääntöjen avulla. Kaavat määritellään rekursiivisesti eli sopivalla tavalla askeleittain. Kukin määritelmän askel, paitsi ensimmäinen, määrittelee kaavan yksinkertaisempien kaavojen avulla. Olkoon L = (P, K), missä P {p 0, p 1, p 2,...} ja K on käytössä olevien konnektiivien joukko. Tässä oletamme, että K = {,,,, }. Kutsumme L-kaavaksi merkkijonoa, joka on muodostettu lausemuuttujista p i P, negaatiosta ja kaksipaikkaisista konnektiiveista seuraavien sääntöjen mukaisesti:
12 L-kaavat Kaavanmuodostussäännöt: 1. Lausemuuttujat p i P ovat L-kaavoja. 2. Jos A on L-kaava, niin A on L-kaava. 3. Jos A ja B ovat L-kaavoja ja {,,, }, niin (A B) on L-kaava. 4. Muita L-kaavoja ei ole. Jos P = {p 0, p 1, p 2,...}, niin kutsumme L-kaavaa yksinkertaisesti vain kaavaksi. Yleisestikin voimme käyttää L-kaavalle nimitystä kaava, jos tästä ei aiheudu väärinkäsityksen vaaraa.
13 Esimerkkejä Kaavassa A (huomaa, ettei tässä käytetä sulkeita) negaation ala on kaava A. Negaation alaan kuuluu siis sitä välittömästi seuraava lausemuuttuja tai sulkeiden sisällä oleva kaava. Esimerkki. Merkkijono ((p 1 p 2 ) p 5 ) on kaava. Tämä nähdään osoittamalla, miten se muodostetaan vaiheittain: p 1 ja p 2 ovat lausemuuttujina kaavoja, joten (p 1 p 2 ) on kaava. Samoin p 5 on kaava. Täten p 5 on kaava. Koska siis (p 1 p 2 ) ja p 5 ovat kaavoja, niin ((p 1 p 2 ) p 5 ) on kaava. Esimerkki. Merkkijono p 1 p 3 ei selvästikään ole kaava. Tämän täsmällinen todistaminen edellyttää ns. induktiotodistusta. Tarkasti ottaen myöskään merkkijonot p 1 p 2 ja p 1 p 2 p 3 eivät ole kaavoja (miksi?).
14 Pääkonnektiivi Rakennettaessa vaiheittain kaavaa lausemuuttujista lähtien jokaisessa vaiheessa käytetään yhtä konnektiivia. Viimeiseksi käytettyä konnektiivia kutsutaan kaavan pääkonnektiiviksi. Usein kaavoja käsiteltäessä on ensin löydettävä pääkonnektiivi. Esimerkki. Kaavan ((p 1 p 2 ) p 5 ) pääkonnektiivi on ekvivalenssi, kaavan (p 1 p 2 ) implikaatio ja kaavan p 5 pääkonnektiivi on negaatio.
15 Sulkujen poistaminen Kaavojen uloimmat sulut voidaan jättää pois. Sulkeiden määrää vähennetään myös sopimalla, mikä on kunkin konnektiivin (vaikutus)ala. Tämä on analogista aritmetiikassa määriteltävän oikean laskujärjestyksen kanssa. Sovitaan, että 1. negaatiolla on pienin (vaikutus)ala; 2. konjunktiolla ja disjunktiolla on pienempi ala kuin implikaatiolla ja ekvivalenssilla. Uloimpien sulkujen lisäksi jätetään pois sellaiset sulut, jotka eivät vaikuta konnektiivien alaan, kun eri konnektiivien aloilla on se keskinäinen järjestys joka on edellä esitetty.
16 Esimerkkejä Esimerkki. (( A B) C) lyhentyy muotoon A B C, koska disjunktion ala on suppeampi kuin implikaation. Esimerkki. ( A (B C)) lyhentyy muotoon A (B C). Jäljellä olevaa sulkuparia ei voi poistaa. Esimerkki. ((A B) C) lyhentyy muotoon (A B) C. Jäljellä olevaa sulkuparia ei voi poistaa, koska disjunktio ja konjunktio ovat samanarvoisia. Esimerkki. Kaavassa (A B C) olevaa sulkuparia ei voi poistaa, koska negaation ala on sitä välittömästi seuraava kaava.
17 Huomautus Kun on sovittu metavariaabelien käytöstä ja tarpeettomien sulkujen poistamisesta, niin voimme sanoa ilman sekaannusta, että kaikki näin saatavat ilmaisut ovat kaavoja, vaikka ne tarkasti ottaen vain viittaavat kaavoihin (siis tiettyihin objektikielen merkkijonoihin). Ne eivät itse asiassa ole kaavoja, koska ne eivät kuulu objektikieleen. Esim. metakielen ilmaisu p q r viittaa objektikielen kaavoihin, jotka ovat muotoa ((p q) r), ts. jotka saadaan tästä sijoittamalla p:n, q:n ja r:n paikalle mielivaltaisia lausemuuttujia. Analoginen sopimus vallitsee esimerkiksi matematiikassa, kun käytetään kirjaimia viittaamaan lukuihin, mutta kuitenkin sanotaan näistä kirjaimista, että ne ovat lukuja.
18 Induktio kaavan rakenteen suhteen Lauselogiikan kielen rekursiivinen määritelmä mahdollistaa kaavoja koskevien väitteiden todistamisen induktiolla kaavan rakenteen suhteen. Jos tehtävänä on todistaa, että jokaisella kaavalla A on ominaisuus O eli niin menetellään seuraavasti: O(A) aina, kun A on kaava, 1. Osoitetaan ensin, että O(p i ), kun i = 0, 1, 2, Tehdään induktio-oletus (lyhenne IO), että O(B) ja O(C) ja todistetaan induktioaskeleessa, että O( B), O(B C), O(B C), O(B C) ja O(B C).
19 Esimerkki Todistamme induktiolla, että jokaisessa lauselogiikan kaavassa A esiintyy yhtä monta sulkuparia (...) kuin kaksipaikkaista konnektiivia,,, tai. Kun A on lausemuuttuja p i, siinä ei esiinny yhtään konnektiivia eikä sulkua, joten väite on tällöin voimassa. Teemme seuraavaksi induktio-oletuksen, että lauselogiikan kaavoissa B ja C esiintyy yhtä monta sulkuparia kuin kaksipaikkaista konnektiivia. Olkoon A = B. Tällöin kaavassa A on yhtä monta sulkuparia kuin kaavassa B. Samoin kaavassa A on yhtä monta kaksipaikkaista konnektiivia kuin kaavassa B. Induktio-oletuksen mukaan kaavassa B sulkuparien ja kaksipaikkaisten konnektiivien lukumäärät ovat samat, joten myös kaavassa A esiintyy yhtä monta sulkuparia kuin kaksipaikkaista konnektiivia.
20 Esimerkki; jatkoa Olkoon A = (B C). Olkoon kaavassa B m ja kaavassa C n sulkuparia. Induktio-oletuksen mukaan tällöin kaavassa B esiintyy m ja kaavassa n kaksipaikkaista konnektiivia. Kaavassa (B C) esiintyy nyt yksi sulkupari enemmän kuin mitä kaavoissa B ja C on yhteensä eli m + n + 1 sulkuparia. Kaavojen B ja C kaksipaikkaisten konnektiivien lisäksi kaavassa (B C) esiintyy vielä konjunktio, joten yhteensä kaksipaikkaisia konnektiiveja on m + n + 1. Täten kaavassa A = (B C) esiintyy yhtä monta sulkuparia kuin kaksipaikkaista konnektiivia. Tapaukset A = (B C), A = (B C) ja A = (B C) käsitellään vastaavasti.
21 Edellä olevan esimerkin tuloksen perusteella näemme, että merkkijonot p 1 p 3, (p 1 p 3 ) ja ((p 1 p 2 )) eivät ole kaavoja. Selvästikään myöskään merkkijono ((p 1 p 3 )) ei ole lauselogiikan kaava. Yksi tapa todistaa tämä on osoittaa induktiolla, että missään kaavassa ei esiinny kahta peräkkäistä kaksipaikkaista konnektiivia. Induktioaskeleessa tulee kuitenkin ongelma: tapauksessa A = (B C) pitää tietää, että kaava B ei voi päättyä konnektiiviin eikä kaava C alkaa konnektiivilla (paitsi mahdollisesti negaatiolla). Induktioväitteeksi kannattaakin valita väite mikään kaava ei pääty eikä ala kaksipaikkaisella konnektiivilla eikä sisällä kahta peräkkäistä kaksipaikkaista konnektiivia, joka on helppo todistaa induktiolla oikeaksi.
22 Edellä olevan esimerkin induktiotodistus on hieman epätäsmällinen johtuen siitä, että käsiteparia sulkuparien lukumäärä ja kaksipaikkaisten konnektiivien lukumäärä ei määritelty täsmällisesti. Sen lisäksi, että kielen rekursiivinen määrittely oikeuttaa induktiolla tapahtuvat todistukset, se myös mahdollistaa monien kaavoja koskevien käsitteiden rekursiivisen (eli induktiivisen) määrittelemisen. Perehdymme seuraavaksi tällaisiin määritelmiin ja annamme lisää esimerkkejä induktiotodistuksista.
23 Rekursiivisia määritelmiä Käytämme tässä symbolia edustamaan mitä tahansa konnektiivia,,, tai. Määrittelemme lauselogiikan kaavan vasemmanpuoleisten (lp) ja oikeanpuoleisten (rp) sulkujen ja konnektiivien (ml. negaatio) k lukumäärät rekursiolla seuraavasti: lp(p i ) = rp(p i ) = k(p i ) = 0, lp( B) = lp(b), rp( B) = rp(b), k( B) = k(b) + 1, lp(b C) = lp(b) + lp(c) + 1, rp(b C) = rp(b) + rp(c) + 1, k(b C) = k(b) + k(c) + 1,
24 Esimerkki Koska vasemman- ja oikeanpuoleisten sulkujen lukumäärä on määritelty samalla tavalla, niin selvästi lp(a) = rp(a). Todistamme nyt induktiolla, että aina kun A on kaava, niin lp(a) k(a). ( ) Kun A = p i, niin lp(a) = k(a) = 0, ja väite on voimassa. Teemme induktio-oletuksen, että lp(b) k(b) ja lp(c) k(c). Tarkastelemme tapausta A = B. Tällöin lp( B) = lp(b) IO k(b) < k(b) + 1 = k( B). Tapauksessa A = (B C) nähdään, että lp(b C) = lp(b) + lp(c) + 1 IO k(b) + k(c) + 1 = k(b C). Induktioperiaatteen perusteella väite ( ) on voimassa.
25 Rakennepuu ja alikaavat Kaavan A rakennepuu T (A) määritellään seuraavasti: T (p i ) = p i, T ( B) = B T (B), T (B C) = (B C). T (B) T (C) Esimerkki. (( A B) C) ( A ( B C) ) /\ /\ ( A B) C A (B C) /\ /\ A B A B C A
26 Esimerkkejä Esimerkki. (( A B ) C) ( A B ) /\ (A B) C (A B) /\ /\ A B A B Esimerkki. Kaavan ((p 1 p 2 ) p 5 ) rakennepuu on: (( p 1 p 2 ) p 5 ) /\ (p 1 p 2 ) p 5 /\ p 1 p 2 p 5 p 5
27 Alikaavat Kaavan A rakennepuussa esiintyviä kaavoja kutsutaan kaavan A alikaavoiksi. Kaavan A alikaavojen joukko sub(a) voidaan rekursiivisesti määritellä seuraavasti: sub(p i ) = {p i }, sub( A) = { A} sub(a), sub(a B) = {(A B)} sub(a) sub(b). Tehtäessä rakennepuita ja lueteltaessa alikaavoja sulkuja voidaan jättää pois tekemämme sopimuksen mukaisesti.
28 Esimerkki Esimerkki. Kaavan (p (q r)) rakennepuu on p q r p q r q r r Sen alikaavojen joukko on {p q r, p, q r, q, r, r}.
29 Sijoitus Sijoituksella A[B/p] tarkoitetaan kaavaa, joka saadaan kaavasta A korvaamalla siinä jokainen lausemuuttujan p esiintymä kaavalla B. Jos p ei esiinny kaavassa A, saadaan kaava A itse. Esimerkki. Olkoon A = p (q p). Tällöin A[r/p] = r (q r), A[p/r] = A (koska r ei esiinny kaavassa A), A[(q q)/p] = (q q) (q (q q)). Yleisesti sijoituksella A[B 1 /q 1 /, B 2 /q 2,..., B k /q k ] tarkoitetaan kaavaa, joka saadaan kaavasta A korvaamalla kaavalla B i lausemuuttujan q i esiintymä (i = 1, 2,..., k). Nämä korvaamiset on tehtävä samanaikaisesti.
30 Sijoitus Sijoitus A[B 1 /q 1 /, B 2 /q 2,..., B k /q k ] voidaan määritellä rekursiivisesti toteamalla, että yhdistetyille kaavoille pätevät säännöt ( B)[B 1 /q 1,..., B k /q k ] = B[B 1 /q 1,..., B k /q k ], (B C)[B 1 /q 1,..., B k /q k ] = B[B 1 /q 1,..., B k /q k ] C[B 1 /q 1 /,..., B k /q k ], jossa siis {,,, }, ja määrittelemällä lausemuuttujille { B i, jos i {1, 2,..., k}: q = q i, q[b 1 /q 1, B 2 /q 2,..., B k /q k ] = q muulloin.
31 Sijoitus Esimerkki. Olkoon A = p (q p), missä p q. Tällöin A[B/p, C/q] = B (C B), A[B/p, B/q] = B (B B). Voidaan myös määritellä sijoitus, jossa lausemuuttuujien sijasta korvataan yhdistettyjä kaavoja toisilla kaavoilla. Tällöin määritelmän alkuaskel olisi { Bi jos D = C D[B 1 /C 1,..., B k /C k ] = i, D jos C 1, C 2,..., C k eivät esiinny kaavassa D.
Johdatus logiikkaan 1
Johdatus logiikkaan 1 28. elokuuta 2014 Tämän tekstin lähtökohtana on ollut moniste Veikko Rantala - Ari Virtanen: Logiikan peruskurssi, joka on saatavilla netistä http://www.sis.uta.fi/matematiikka/ modaalilogiikka/logpk2003.pdf.
LisätiedotRatkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa
LisätiedotLAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,
LisätiedotLuonnollisen päättelyn luotettavuus
Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä
Lisätiedot-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
LisätiedotRatkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Olkoot A, B ja C propositiolauseita. Näytä, että A (B C) (A B) (A C). Ratkaisu: Yksi tapa
LisätiedotInduktio kaavan pituuden suhteen
Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos
LisätiedotLOGIIKAN PERUSKURSSI. Veikko Rantala Ari Virtanen
LOGIIKAN PERUSKURSSI Veikko Rantala Ari Virtanen Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Kokeilumoniste, elokuu 2003 ESIPUHE Tämä kokeilumoniste perustuu Tampereen yliopistossa
LisätiedotKirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:
1 Logiikan paja, kevät 2011 Ratkaisut viikolle I Thomas Vikberg Merkitään propopositiosymboleilla p i seuraavia atomilauseita: p 0 : vettä sataa p 1 : tänään on perjantai p 2 : olen myöhässä Valitaan konnektiiveiksi,
LisätiedotLogiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.
TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste
LisätiedotRekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
LisätiedotVaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
LisätiedotLoogiset konnektiivit
Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi
LisätiedotLOGIIKKA johdantoa
LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt
LisätiedotHY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset 1. Päättele resoluutiolla seuraavista klausuulijoukoista: (a) {{p 0 }, {p 1 }, { p 0, p 2 },
LisätiedotPikapaketti logiikkaan
Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös
Lisätiedot4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
LisätiedotTehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)
Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p
LisätiedotHY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa
LisätiedotTodistusteoriaa. Kun kielen syntaksi on tarkasti määritelty, voidaan myös määritellä täsmällisesti, mitä pätevällä päättelyllä tarkoitetaan.
Todistusteoriaa Kun kielen syntaksi on tarkasti määritelty, voidaan myös määritellä täsmällisesti, mitä pätevällä päättelyllä tarkoitetaan. Todistusteoriassa annetaan joukko aksioomia ja päättely- sääntöjä,
LisätiedotTotuusjakaumat. Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B.
Totuusjakaumat Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B. Totuusjakauma v voidaan aina laajentaa kuvaukseksi V : {A A on L kaava}
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
LisätiedotPropositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.
Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Perusaksioomat: Laki 1: Kukin totuusfunktio antaa kullekin propositiolle totuusarvoksi joko toden T tai epätoden
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Luukkonen Sahlqvistin kaavat Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö LUUKKONEN, HEIDI: Sahlqvistin
LisätiedotInduktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
LisätiedotLisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
LisätiedotNimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...
2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen
LisätiedotOpintomoniste logiikan ja joukko-opin perusteista
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Lammi Opintomoniste logiikan ja joukko-opin perusteista Luonnontieteiden tiedekunta Matematiikka Toukokuu 2018 2 Tampereen yliopisto Luonnontieteiden tiedekunta
LisätiedotJohdatus modaalilogiikkaan. Veikko Rantala Ari Virtanen
Johdatus modaalilogiikkaan Veikko Rantala Ari Virtanen 1 Sisältö 1 Johdanto 4 1.1 Modaalioperaattoreita............................. 4 1.2 Mahdollisen maailman käsitteestä....................... 6 1.3
LisätiedotLogiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3
Φ Logiikka I Kaarlo Reipas 17. huhtikuuta 2012 Ψ Tämä materiaali on vielä keskeneräinen. Sisältö 1 Johdanto 3 1.1 Mitä logiikka on?.............................. 3 2 ropositiologiikka 4 2.1 Lauseet...................................
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
Lisätiedot1 Logiikkaa. 1.1 Logiikan symbolit
1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
LisätiedotTehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
LisätiedotEnsimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
LisätiedotIlpo Halonen 2005. 1.3 Päätelmistä ja niiden pätevyydestä. Luonnehdintoja logiikasta 1. Johdatus logiikkaan. Luonnehdintoja logiikasta 2
uonnehdintoja logiikasta 1 Johdatus logiikkaan Ilpo Halonen Syksy 2005 ilpo.halonen@helsinki.fi Filosofian laitos Humanistinen tiedekunta "ogiikka on itse asiassa tiede, johon sisältyy runsaasti mielenkiintoisia
LisätiedotMatematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
LisätiedotEnsimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
LisätiedotÄärellisen mallin ominaisuus filtraation kautta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Johanna Savolainen Äärellisen mallin ominaisuus filtraation kautta Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2012 Tampereen yliopisto Informaatiotieteiden
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
LisätiedotJohdatus logiikkaan I Harjoitus 4 Vihjeet
Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
LisätiedotT Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
LisätiedotJohdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
LisätiedotKesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset
Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa
Lisätiedot(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LisätiedotTodistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
Lisätiedot4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
LisätiedotModaalilogiikan ja predikaattilogiikan kaavojen vastaavuus
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sanna Kari Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Toukokuu 2002 Sisältö 1 Johdanto
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotFI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:
LOGIIKKA 1 Mitä logiikka on? päättelyn tiede o oppi muodollisesti pätevästä päättelystä 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: sisältö, merkitys: onko jokin premissi
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
Lisätiedot5.1 Semanttisten puiden muodostaminen
Luku 5 SEMNTTISET PUUT 51 Semanttisten puiden muodostaminen Esimerkki 80 Tarkastellaan kysymystä, onko kaava = (( p 0 p 1 ) (p 1 p 2 )) toteutuva Tätä voidaan tutkia päättelemällä semanttisesti seuraavaan
LisätiedotLogiikka 1/5 Sisältö ESITIEDOT:
Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi
LisätiedotLauselogiikka Tautologia
Lauselogiikka Tautologia Hannu Lehto Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden
LisätiedotJohdatus logiikkaan 1
Johdatus logiikkaan 1 Åsa Hirvonen Kevät 2016 Sisältö 1 ropositiolauseet 3 2 Rekursiiviset määritelmät ja induktio rakenteen suhteen 7 3 Totuusjakaumat ja totuustaulut 12 3.0.1 Negaatio..........................
Lisätiedot8. Kieliopit ja kielet
8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti
LisätiedotLause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
LisätiedotMatematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
LisätiedotPredikaattilogiikkaa
Predikaattilogiikkaa UKUTEORIA JA TO- DISTAMINEN, MAA11 Kertausta ogiikan tehtävä: ogiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
LisätiedotDiskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1
811120P 3. 5 op Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 ja laskenta tarkastelemme terveeseen järkeen perustuvaa päättelyä formaalina järjestelmänä logiikkaa sovelletaan
LisätiedotÄärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
LisätiedotJokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
Lisätiedot13. Loogiset operaatiot 13.1
13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.
LisätiedotSAT-ongelman rajoitetut muodot
SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotJuuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
LisätiedotT Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C.
T-79.3001 Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka 6.1 7.2) 27. 29.2.2008 Ratkaisuja demotehtäviin Tehtävä 6.1 a) A (B C) Poistetaan lauseesta ensin implikaatiot.
Lisätiedot1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
LisätiedotModaalilogiikan täydellisyyslauseesta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Teemu Pitkänen Modaalilogiikan täydellisyyslauseesta Informaatiotieteiden yksikkö Matematiikka Toukokuu 2015 Sisältö 1 Johdanto 3 2 Peruskäsitteistö ja semantiikka
LisätiedotMatematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010
Ensimmäisen viikon luennot Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010 Perustuu osittain kirjan Poole: Linear Algebra lukuihin Appendix A ja Appendix B ja Trench in verkkokirjaan,
Lisätiedotb) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
Lisätiedot2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan II, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Mitkä muuttujat esiintyvät vapaina kaavassa x 2 ( x 0 R 0 (x 1, x 2 ) ( x 3 R 0 (x 3, x 0
LisätiedotVastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
LisätiedotMatematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
Lisätiedot2 Sanoja järjestävän funktion ohjelmoiminen
1 Tämän dokumentin tarkoitus Tämä dokumentti ei kuulu millään tavoin tenttialueeseen, enkä ota vastuuta sen lukemisen aiheuttamista vahingoista. Tässä dokumentissa esitetään esimerkin kautta, miten matematiikan
LisätiedotInsinöörimatematiikka A
Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan
LisätiedotT Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )
T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen
LisätiedotDiskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
LisätiedotLUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
LisätiedotVastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
LisätiedotDFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
Lisätiedot1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
LisätiedotMiten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
LisätiedotDiskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
LisätiedotJohdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotPredikaattilogiikan malli-teoreettinen semantiikka
Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
Lisätiedot