5.1 Semanttisten puiden muodostaminen

Koko: px
Aloita esitys sivulta:

Download "5.1 Semanttisten puiden muodostaminen"

Transkriptio

1 Luku 5 SEMNTTISET PUUT 51 Semanttisten puiden muodostaminen Esimerkki 80 Tarkastellaan kysymystä, onko kaava = (( p 0 p 1 ) (p 1 p 2 )) toteutuva Tätä voidaan tutkia päättelemällä semanttisesti seuraavaan tapaan: (1) Olkoon M malli Tällöin implikaation ja negaation totuusmääritelmien perusteella M = jos ja vain jos M = p 0 p 1 ja M = (p 1 p 2 ) Tilanne voidaan esittää seuraavalla kuvalla: p 0 p 1 (p 1 p 2 ) Tässä merkki kaavan vieressä viittaa siihen, että sitä ei enää tarvitse käsitellä jatkossa, vaan riittää tarkastella sen alla olevia kaavoja (2) Edelleen disjunktion totuusmääritelmän perusteella M = p 0 p 1 jos ja vain jos M = p 0 tai M = p 1 Tarkastelu voidaan siis jakaa kahteen eri tapaukseen seuraavan kuvan mukaisesti: p 0 p 1 (p 1 p 2 ) p 0 p 1 (3) Vastaavasti disjunktion ja negaation totuusmääritelmistäa seuraa, että M = (p 1 p 2 ) jos ja vain jos M = p 1 ja M = p 2 Edelläolevaa puuta voidaan siis 74

2 jatkaa seuraavasti: p 0 p 1 (p 1 p 2 ) p 0 p 1 p 1 p 1 p 2 p 2 O X (4) Yhdistämällä kohdat (1)-(3) nähdään, että M = jos ja vain jos mallissa M on totta kaikki ylläolevan puun joko vasemmanpuoleisella tai oikeanpuoleisella oksalla olevat kaavat Jälkimmäinen ei ole mahdollista, koska oikeanpuoleisella oksalla on keskenään ristiriitaiset kaavat p 1 ja p 1 ; oksan päähän on lisätty X merkiksi ristiriitaisuudesta Sen sijaan vasemmanpuoleisella oksalla olevat merkitsemättömät kaavat p 0, p 1 ja p 2 ovat tosia missä hyvänsä mallissa M =(P, T), jolla p 0,p 1,p 2 T Olemme siis löytäneet kaavalle M mallin, joten se on toteutuva Vasemmanpuoleisen oksan perään on myös lisätty merkki O, koska sillä olevia kaavoja ei voi enää palauttaa yksinkertaisemmiksi, eikä se sisällä ristiriitaa Esimerkisä 80 muodostettua puuta sanotaan kaavan semanttiseksi puuksi Semattisen puun avulla voidaan siis osoittaa, että tarkasteltava kaava on toteutuva Sillä voidaan myös todistaa, että annettu kaava ei ole toteutuva: jos nimittäin kaavalle voidaan muodostaa semanttinen puu, jonka kaikki oksat ovat ristiriitaisia, niin kyseisen kaava ei voi olla tosi missään mallissa Esimerkki 81 Osoitetaan, että kaava = (((p 0 p 1 ) p 2 ) (p 0 p 2 )) ei ole toteutuva muodostamalla sille semanttinen puu, jonka kaikki oksat ovat ristiriitaisia Koska on implikaation negaatio, saadaan aluksi seuraava puu: (p 0 p 1 ) p 2 (p 0 p 2 ) 75

3 Käsitellään seuraavaksi alimmainen kaava, joka on myös implikaation negaatio: (p 0 p 1 ) p 2 (p 0 p 2 ) p 0 p 2 Tämän jälkeen käsitellään :n alapuolella oleva implikaatio Se on tosi jos ja vain jos joko sen vasen puoli on epätosi tai sen oikea puoli on tosi; puu haarautuu siis kahteen oksaan: (p 0 p 1 ) p 2 (p 0 p 2 ) p 0 p 2 (p 0 p 1 ) p 2 Oikeanpuoleinen oksa todetaan heti ristiriitaiseksi ( p 2 ja p 2 ) Vielä pitää käsitellä vasemmalla oksalla oleva disjunktion negaatio: (p 0 p 1 ) p 2 (p 0 p 2 ) p 0 p 2 (p 0 p 1 ) p 2 p 0 X p 1 X 76

4 Nyt huomataan, että myös vasemmanpuoleinen oksa on ristiriitainen (p 0 ja p 0 ) Semanttisten puiden muodostamisessa käytetään sääntöjä, jotka perustuvat siis konnektiivien totuusmääritelmiin Listaamme seuraavaksi kaikki nämä säännät Kullakin kaksipaikkaisella konnektiivilla on kaksi sääntöä, joista toista sovelletaan negaation kanssa Negaatio on siis mukana kaikkien muiden konnektiivien säännöissä, ja lisäksi sillä on yksi oma sääntönsä Konjunktio: B ( B) B B Disjunktio: B ( B) B B Implikaatio: B ( B) B B Ekvivalenssi: B ( B) B B B B Negaatio: 77

5 Sääntöjä tulkitaan niin, että niiden tuottamat uudet kaavat on lisättävä jokaisen sellaisen oksan päähän, jolla säännön lähtökohtana oleva kaavan esiintymä on Esimerkiksi kun tilanteessa ( B) sovelletaan implikaation negaation sääntöä, päädytään puuhun C D ( B) C D B B Poikkeuksen tästä sovellusohjeesta muodostavat ristiriitaiset oksat, eli oksat, joilla on sekä jokin kaava B että sen negaatio B Tällaista oksaa ei tarvitse enää jatkaa, ja merkiksi ristiriitaisuudesta oksan loppuun voidaan lisätä merkki X Semanttisen puun oksaa sanotaan lopulliseksi, jos se on ristiriitainen tai kaikki sillä olevat käsittelemättömät (eli symbolilla merkitsemättömät) kaavat ovat literaaleja (eli lausemuuttujia tai lausemuuttujan negaatioita) Lopullinen oksa on avoin, jos se ei ole ristiriitainen; tällaisen oksan voi merkitä lisäämällä sen perään symbolin O Semanttinen puu on lopullinen, jos sen kaikki oksat ovat lopullisia Koska literaalien totuus määräytyy suoraan tarkasteltavasta mallista M, niiden totuutta ei voi enää palauttaa yksinkertaisempien kaavojen totuuteen Siksi kaavan lopullisesta semanttisesta puusta voidaan suoraan nähdä, onko kaava toteutuva vai ei: jos puun kaikki oksat ovat ristiriitaisia, niin kaava ei ole toteutuva, jos taas puussa on yksikin avoin oksa, niin kaavalla on malli Semanttisen puun avulla voidaan myös todistaa, että annettu kaava on validi: Jos nimittäin kaavalla on semanttinen puu, jonka kaikki oksat ovat ristiriitaisia, niin 78

6 ei ole toteutuva, mikä on yhtäpitävää sen kanssa, että on validi Esimerkki 81 osoittaa siis, että kaava ((p 0 p 1 ) p 2 ) (p 0 p 2 ) on validi Tämän mukaisesti määrittelemme, että kaavan semanttinen todistus on sellainen :n semanttinen puu, jonka kaikki oksat ovat ristiriitaisia Esimerkki 82 nnetaan semanttinen todistus kaavalle D =( B) ( B) Ensimmäinen vaihe: D B ( B) ( B) ( B) Käsitellään seuraavaksi konjunktio ja kaksoisnegaatio vasemmalla sekä disjunktion negaatio oikealla: D B ( B) ( B) ( B) B B B Lopuksi käsitellään disjunktio vasemmalla ja konjunktion negaatio oikealla: D B ( B) ( B) ( B) B B B B B X X X X Nyt huomataan, että kaikki saadun puun oksat ovat ristiriitaisia, joten semanttinen todistus kaavalle D on valmis 79

7 Semattisen puun avulla voidaan myös tutkia kysymystä, onko annettu kaava B kaavojen 1,, n looginen seuraus Looginen seuraus 1, n = B pätee jos ja vain jos implikaatio 1 n B on validi Riittää siis tutkia tämän implikaation negaation semanttista puuta Esimerkki 83 Olkoon = (p 0 p 1 ) ja B = p 0 p 1 Osoitetaan semanttisten puiden avulla, että = B, mutta B = Ensimmäistäa väitettä varten muodostetaan kaavan ( B) semanttinen puu (vasemmalla) ja toista varten kaavan (B ) semanttinen puu (oikealla): ( B) (B ) B B p 0 p 0 p 1 p 1 p 0 p 1 p 0 p 0 p 0 p 0 p 0 p 0 p 1 p 1 p 1 p 1 p 1 p 1 X X X p 1 X p 1 O O Vasemmanpuoleisen puun kaikki oksat ovat ristiriitaisia, joten kaava B on validi Sen sijaan kaavalle (B ) muodostettu semanttinen puu on lopullinen, ja siinä on kaksi avointa oksaa Siksi kaava (B ) on toteutuva, joten ei ole kaavan B looginen seuraus voimilta oksilta nähdään, että (B ) on tosi sellaisissa malleissa M, joilla M = p 0 ja M = p 1

8 KIRJLLISUUTT J llwood & L G ndersson & Ö Dahl, Logiikka ja kieli Yliopistopaino, Helsinki, 1988 R Bradley & N Swartz, Possible Worlds Basil Blackwell Ltd, Oxford, 1979 S Guttenplan, The Languages of Logic Basil Blackwell Ltd, Oxford, 1987 E J Lemmon, Beginning Logic Thomas Nelson (Printers) Ltd, London, 1969 J Merikoski & Virtanen & P Koivisto, Diskreetti matematiikka I Tampereen yliopisto, matemaattisten tieteiden laitos, B 42, 1994 S Miettinen, Logiikan peruskurssi 2 uudistettu painos Oy Gaudeamus b, Helsinki, 1993 W H Newton Smith, Logic Routledge & Kegan Paul, London, 1985 I Niiniluoto, Johdatus tieteenfilosofiaan Kustannusosakeyhtiö Otava, Helsinki, 1980 I Niiniluoto, Tieteellinen päättely ja selittäminen Kustannusosakeyhtiö Otava, Helsinki, 1983 V Rantala & Virtanen, Johdatus mdaalilogiikkaan Gaudeamus Kirja, Helsinki, 2004 V Rantala & Virtanen, Logiikan peruskurssi Tampereen yliopisto, matemaattisten tieteiden laitos, 208, 1989 V Rantala & Virtanen, Logiikkaa: teoriaa ja sovelluksia Tampereen yliopisto, matemaattisten tieteiden laitos, B 43, 1997 H Salminen & J Väänänen, Johdatus logiikkaan Oy Gaudeamus b, Helsinki, 1992 J Talja, Logiikan peruskurssi Supreum ry, 1981 G H von Wright, Logiikka, filosofia ja kieli Kustannusosakeyhtiö Otava, Helsinki,

1 Logiikkaa. 1.1 Logiikan symbolit

1 Logiikkaa. 1.1 Logiikan symbolit 1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Roosa Niemi Riippuvuuslogiikkaa Informaatiotieteiden yksikkö Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö ROOSA NIEMI: Riippuvuuslogiikkaa

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Luukkonen Sahlqvistin kaavat Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö LUUKKONEN, HEIDI: Sahlqvistin

Lisätiedot

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 811120P 3. 5 op Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 ja laskenta tarkastelemme terveeseen järkeen perustuvaa päättelyä formaalina järjestelmänä logiikkaa sovelletaan

Lisätiedot

LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

Lauselogiikka Tautologia

Lauselogiikka Tautologia Lauselogiikka Tautologia Hannu Lehto Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015 TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

Rakenteiset päättelyketjut ja avoin lähdekoodi

Rakenteiset päättelyketjut ja avoin lähdekoodi Rakenteiset päättelyketjut ja avoin lähdekoodi Mia Peltomäki Kupittaan lukio ja Turun yliopiston IT-laitos http://crest.abo.fi /Imped Virtuaalikoulupäivät 24. marraskuuta 2009 1 Taustaa Todistukset muodostavat

Lisätiedot

Ramseyn lauseen ensimmäinen sovellus

Ramseyn lauseen ensimmäinen sovellus Ramseyn lauseen ensimmäinen sovellus Jarkko Peltomäki 30. huhtikuuta 2012 Tässä esseessä esitetään Frank Ramseyn vuonna 1929 esittämä tulos logiikassa, jonka todistamiseksi hän osoitti myöhemmin tärkeäksi

Lisätiedot

ALGORITMI- MATEMATIIKKA. Keijo Ruohonen

ALGORITMI- MATEMATIIKKA. Keijo Ruohonen ALGORITMI- MATEMATIIKKA Keijo Ruohonen 1993 Kirjallisuutta ANDERSON, I.: A First Course in Combinatorial Mathematics. Oxford University Press (1979) GRAHAM, R.L. & KNUTH, D.E. & PATASHNIK, O.: Concrete

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

11.4. Context-free kielet 1 / 17

11.4. Context-free kielet 1 / 17 11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä

Lisätiedot

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat 16. 6 Predikaattilogiikkaa 31. 8 Relaatiot 42.

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat 16. 6 Predikaattilogiikkaa 31. 8 Relaatiot 42. Diskreetit rakenteet, syksy 2015 Itä-Suomen yliopisto, Tietojenkäsittelytieteen laitos Ville Heikkinen 14.12.2015 15:18 Sisältö 1 Johdanto, Tavoitteet 2 2 Lähteitä 2 3 Propositiologiikkaa 2 4 Karnaugh'n

Lisätiedot

Agentin toiminnan arviointi

Agentin toiminnan arviointi 35 1.1 ÄLYKKÄÄ AGNI Agentti havainnoi toimintaympäristöään sensorein ja vaikuttaa siihen aktuaattorein Ihmisen sensoreita ovat mm. silmät, korvat ja nenä sekä aktuaattoreita esim. kädet ja jalat Robotin

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/

Lisätiedot

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen 1 2006

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen 1 2006 1 Joukon käsite JOUKKO-OPIN ALKEITA Veikko Rantala Ari Virtanen 1 2006 Joukon voisi yrittää määritellä kokoelmaksi olioita, mutta tämä edellyttää, että ymmärretään mitä olioilla ja kokoelmalla tarkoitetaan.

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan yliopisto / kevät 2015 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet, Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

13.11. Tulosten arviointi. tulosten arviointi. voimmeko luottaa saamiimme tuloksiin?

13.11. Tulosten arviointi. tulosten arviointi. voimmeko luottaa saamiimme tuloksiin? 13.11. tulosten arviointi Tulosten arviointi voimmeko luottaa saamiimme tuloksiin? onko osa saaduista tuloksista sattumanvaraisia? mitkä OSAT puusta ovat luotettavimpia? 1 KONSENSUSDIAGRAMMI Useita yhtä

Lisätiedot

Ehrenfeuchtin ja Fraïssén peli

Ehrenfeuchtin ja Fraïssén peli TAMPEREEN YLIOPISTO Pro gradu -tutkielma Piia Nieminen Ehrenfeuchtin ja Fraïssén peli Matematiikan ja tilastotieteen laitos Matematiikka Marraskuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg.

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Olkoon L = {Lontoo, P ariisi, P raha, Rooma, Y hteys(x, y)}. Kuvan 3.1. kaupunkiverkko vastaa seuraavaa L-mallia

Lisätiedot

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta Pasi Raumonen, Mikko Kaasalainen ja Markku Åkerblom Tampereen teknillinen ylipisto, Matematiikan laitos

Lisätiedot

Studia Generalia syksy 2011 AINEEN ARVOITUS. Tervetuloa!

Studia Generalia syksy 2011 AINEEN ARVOITUS. Tervetuloa! Studia Generalia syksy 2011 AINEEN ARVOITUS Tervetuloa! 10.11.2011 1 Onko koko todellisuus ainetta? 10.11.2011 2 Todellisuus on se, mikä on totta. Että jos vaikka uskoo, että mörköjä on olemassa, niin

Lisätiedot

JOHDATUS MATEMATIIKKAAN

JOHDATUS MATEMATIIKKAAN JOHDATUS MATEMATIIKKAAN Toitteko minulle ihmisen, joka ei osaa laskea sormiaan? Kuolleiden kirja JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Alkusanat Tämä tiivistelmä on allekirjoittaneen

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Matematiikan johdantokurssi

Matematiikan johdantokurssi Matematiikan johdantokurssi Martti Pesonen, Pekka Smolander,... 7. joulukuuta 05 Mitä matematiikka on? Matematiikan määritteleminen lienee turhaa, kenties myös mahdotonta. Matemaatikot sanovatkin usein

Lisätiedot

OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus

OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus Puu on yksilö, lajinsa edustaja, eliöyhteisönsä jäsen, esteettinen näky ja paljon muuta. Tässä harjoituksessa lähestytään puuta monipuolisesti ja harjoitellaan

Lisätiedot

Luento 12: XML ja metatieto

Luento 12: XML ja metatieto Luento 12: XML ja metatieto AS-0.110 XML-kuvauskielten perusteet Janne Kalliola XML ja metatieto Metatieto rakenne sanasto Resource Description Framework graafikuvaus XML Semanttinen Web agentit 2 1 Metatieto

Lisätiedot

Evoluutiopuu. Aluksi. Avainsanat: biomatematiikka, päättely, kombinatoriikka, verkot. Luokkataso: 6.-9. luokka, lukio

Evoluutiopuu. Aluksi. Avainsanat: biomatematiikka, päättely, kombinatoriikka, verkot. Luokkataso: 6.-9. luokka, lukio Evoluutiopuu Avainsanat: biomatematiikka, päättely, kombinatoriikka, verkot Luokkataso: 6.-9. luokka, lukio Välineet: loogiset palat, paperia, kyniä Kuvaus: Tehtävässä tutkitaan bakteerien evoluutiota.

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

PROPOSITIOLOGIIKAN RIITTÄMÄTTÖMYYS

PROPOSITIOLOGIIKAN RIITTÄMÄTTÖMYYS 67 PROPOSITIOLOGIIKAN RIITTÄMÄTTÖMYYS Jo äärimmäisen yksinkertaisessa peliesimerkissämme propositiologiikan ilmaisuvoima osoittautuu riittämättömäksi Tietämyskannan alustamiseksi pelin säännöillä meidän

Lisätiedot

L models. Vaatimusmäärittely. Ryhmä Rajoitteiset

L models. Vaatimusmäärittely. Ryhmä Rajoitteiset Teknillinen Korkeakoulu T-76.5 Tietojenkäsittelyopin ohjelmatyö Lineaaristen rajoitteiden tyydyttämistehtävän ratkaisija L models Vaatimusmäärittely Ryhmä Rajoitteiset Versio Päivämäärä Tekijä Muutokset

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15 JosAjaA B ovat tosia, niin välttämättä myösb on tosi (A (A B)) B on tautologia eli (A (A B)) B. 1 / 15 JosAjaA B ovat tosia, niin välttämättä

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LOGIIKKAA TERMI: MUUTTUJA: A,B,C,... VAKIO: a,b,c,... PREDIKAATTI: SISÄLLÄ, ULKONA,... LAUSE: ULKONA(A) SISÄLLÄ(A) SITÄ ON JOKO ULKONA TAI SISÄLLÄ. LAUSE: ULKONA(A) SATAA

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

Matematiikan ohjelmointi. Joakim von Wright

Matematiikan ohjelmointi. Joakim von Wright Matematiikan ohjelmointi Joakim von Wright Formaali menetelmä käytännössä miten todistetaan ohjelman oikeellisuus? miltä todistus näyttn yttää? isot ohjelmat? miljoona riviä koodia nykyajan ohjelmat? rinnakkaisuus,

Lisätiedot

8. Kieliopit ja kielet 1 / 22

8. Kieliopit ja kielet 1 / 22 8. Kieliopit ja kielet 1 / 22 Luonnollinen kieli Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää

Lisätiedot

Teollisuusautomaation standardit Osio 9

Teollisuusautomaation standardit Osio 9 Teollisuusautomaation standardit Osio 9 Osio 1: SESKOn Komitea SK 65: Teollisuusprosessien ohjaus Osio 2: Toiminnallinen turvallisuus: periaatteet Osio 3: Toiminnallinen turvallisuus: standardisarja IEC

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

Farmaseuttinen etiikka

Farmaseuttinen etiikka Farmaseuttinen etiikka Etiikka, tiede ja arvot Luento 5. Farmasian tdk. 14.11. Markus Neuvonen markus.neuvonen@helsinki.fi Reduktionistisen ohjelman pyramidi: Humanistiset Yhteiskuntatieteet Psykologia

Lisätiedot

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi 1 Eri näkökulmia A Matematiikka välineenä B Matematiikka formaalina järjestelmänä C Matematiikka kulttuurina Matemaattinen ajattelu ja matematiikan

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Matematiikan mestariluokka 2010

Matematiikan mestariluokka 2010 Matematiikan mestariluokka 00 Martti E. Pesonen 3. huhtikuuta 00 Mitä matematiikka on? Matematiikan määritteleminen lienee turhaa, kenties myös mahdotonta. Matemaatikot sanovatkin usein leikillisesti,

Lisätiedot

Äärettömistä joukoista

Äärettömistä joukoista Äärettömistä joukoista Markku Halmetoja Mistä tietäisit, että sinulla on yhtä paljon sormia ja varpaita, jos et osaisi laskea niitä? Tiettyä voimisteluliikettä tehdessäsi huomaisit, että jokaista sormea

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Tommi Sottinen, tommi.sottinen@uwasa.fi

Tommi Sottinen, tommi.sottinen@uwasa.fi Päätöksiä ja Paatoksia Tommi Sottinen, tommi.sottinen@uwasa.fi 28. marraskuuta 2011 Sisältö 0 Logiikkaa ja joukko-oppia 4 0.1 Logiikka................................ 4 0.2 Joukko-oppi..............................

Lisätiedot

Prolog kielenä Periaatteet Yhteenveto. Prolog. Toni ja Laura Fadjukoff. 9. joulukuuta 2010

Prolog kielenä Periaatteet Yhteenveto. Prolog. Toni ja Laura Fadjukoff. 9. joulukuuta 2010 kielenä 9. joulukuuta 2010 Historia kielenä Historia Sovelluksia kehitettiin vuonna 1972 Kehittäjinä ranskalaiset Pääkehittäjä Alain Colmerauer Philippe Roussel programmation en logique Robert Kowalski

Lisätiedot

Kieli merkitys ja logiikka. Luento 6: Merkitys ja kieli

Kieli merkitys ja logiikka. Luento 6: Merkitys ja kieli Kieli merkitys ja logiikka Luento 6: Merkitys ja kieli Merkitys ja kieli Merkitys ja kieli Sanat ja käsitteet Kompositionaalisuus Propositiologiikka Kysymykset Merkityksen luonne Miten ihminen hahmottaa

Lisätiedot

HÄRMÄN LUKION KIRJALISTA 2015-2016

HÄRMÄN LUKION KIRJALISTA 2015-2016 HÄRMÄN LUKION KIRJALISTA 2015-2016 MAANTIETO - Lukion maantiede Ge 1, Sininen planeetta (Otava) - Lukion maantiede Ge 2, Yhteinen maailma (Otava) - Lukion maantiede 3, Ge 3, Riskien maailma (Otava) - Lukion

Lisätiedot

Ilpo Halonen 2005. Luonnehdintoja logiikasta 11. Poikkeavista logiikoista. Poikkeavista logiikoista 2. Poikkeavista logiikoista 3. Johdatus logiikkaan

Ilpo Halonen 2005. Luonnehdintoja logiikasta 11. Poikkeavista logiikoista. Poikkeavista logiikoista 2. Poikkeavista logiikoista 3. Johdatus logiikkaan Luonnehdintoja logiikasta 11 Johdatus logiikkaan Ilpo Halonen Syksy 2005 ilpo.halonen@helsinki.fi Filosofian laitos Humanistinen tiedekunta Modaalilogiikan renessanssi ja sille sukua olevien loogisten

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Kaikki 17 punavaahteraa tutkittiin silmämääräisesti tyviltä latvoihin saakka. Apuna käytettiin kiikaria ja 120 cm:n terässondia.

Kaikki 17 punavaahteraa tutkittiin silmämääräisesti tyviltä latvoihin saakka. Apuna käytettiin kiikaria ja 120 cm:n terässondia. Acer rubrum / Punavaahterat Kaikki 17 punavaahteraa tutkittiin silmämääräisesti tyviltä latvoihin saakka. Apuna käytettiin kiikaria ja 120 cm:n terässondia. Tällaisilta leikkausten tulisi näyttää Havainnot

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun

Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun Timo Honkela Kognitiivisten järjestelmien tutkimusryhmä Adaptiivisen informatiikan tutkimuskeskus Tietojenkäsittelytieteen

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Älytön ralli SiPu. Älytön ralli SiPu; rakennelma päältäpäin

Älytön ralli SiPu. Älytön ralli SiPu; rakennelma päältäpäin Älytön ralli SiPu "Kaikkien rakennelmien arv ostelussa sitä periaatetta, että muoto arv ostellaan karkeasti silloin, kun reikien läpi on työnnetty ruuv it (mutterien ei tarv itse olla paikallaan), mutta

Lisätiedot

Vapaa matikka. Lukuteoria ja logiikka (MAA11) How often have I said to you that when you have eliminated the impossible,

Vapaa matikka. Lukuteoria ja logiikka (MAA11) How often have I said to you that when you have eliminated the impossible, Vapaa matikka Lukuteoria ja logiikka (MAA11) How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth? Sherlock Holmes The Sign

Lisätiedot

Vapaa matikka. MAA11 Lukuteoria ja logiikka. How often have I said to you that when you have eliminated the

Vapaa matikka. MAA11 Lukuteoria ja logiikka. How often have I said to you that when you have eliminated the Vapaa matikka MAA11 Lukuteoria ja logiikka How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth? Sherlock Holmes The Sign of

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 Ratkaisuehdotuksia 1. (a) Päätöspuu on matala, jos mitään sattumasolmua ei välittömästi seuraa sattumasolmu eikä mitään päätössolmua

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

MOT-hanke. Metodimessut 29.10.2005 Jorma Joutsenlahti & Pia Hytti 2. MOT-hanke

MOT-hanke. Metodimessut 29.10.2005 Jorma Joutsenlahti & Pia Hytti 2. MOT-hanke Dia 1 MOT-hanke Mat ematiikan Oppimat eriaalin Tutkimuksen hanke 2005-2006 Hämeenlinnan OKL:ssa Metodimessut 29.10.2005 Jorma Joutsenlahti & Pia Hytti 1 MOT-hanke Osallistujat:13 gradun tekijää (8 gradua)

Lisätiedot

Lämpöpuiset kylpytynnyrit. Käyttöohjeet Mallit AMH 170TW, AMH 200TW, AMH 170TW+ ja AMH 200TW+

Lämpöpuiset kylpytynnyrit. Käyttöohjeet Mallit AMH 170TW, AMH 200TW, AMH 170TW+ ja AMH 200TW+ Lämpöpuiset kylpytynnyrit Käyttöohjeet Mallit AMH 170TW, AMH 200TW, AMH 170TW+ ja AMH 200TW+ Huomaa veden minimitäyttö tynnyrissä!! AMH-Puu Oy Puh. (03) 513 5569 Niemisvedentie 801 Faksi (03) 513 5561

Lisätiedot

Pystypuusta lattialankuksi

Pystypuusta lattialankuksi Pystypuusta lattialankuksi Naapuripalstallamme tehtiin eräänä talvena avohakkuu, jonka seurauksena seuraavan kesän puhurituulet kaatoivat useita suuria kuusia oman metsäpalstamme suojattomasta reunasta.

Lisätiedot

Nurmijärven golfkentän korjaussuunnitelma. Visio 2020. Tilander Golf Design Oy, 2008

Nurmijärven golfkentän korjaussuunnitelma. Visio 2020. Tilander Golf Design Oy, 2008 Nurmijärven golfkentän korjaussuunnitelma Visio 2020 Tilander Golf Design Oy, 2008 Seuraavilla sivuilla on esitetty järjestyksessä kaikki Nurmijärven Golfkeskuksen reiät ja niille tehtävät korjaus-/muutosehdotukset.

Lisätiedot

1 Johdanto 2 1.1 Esimerkkejä loogisesta päättelystä... 3

1 Johdanto 2 1.1 Esimerkkejä loogisesta päättelystä... 3 Diskreetit rakenteet, syksy 2011 Itä-Suomen yliopisto, Tietojenkäsittelytieteen laitos Simo Juvaste 13.12.2011 10:02 Sisältö 1 Johdanto 2 1.1 Esimerkkejä loogisesta päättelystä.............................

Lisätiedot

MatTaFi projektin HAKA-pilotti

MatTaFi projektin HAKA-pilotti projektin HAKA-pilotti Matti Harjula matti.harjula@hut.fi Matematiikan ja systeemianalyysin laitos Teknillinen korkeakoulu 15. tammikuuta 2008 1 2 Materiaalin tuottajat ongelmana 3 Uusien sovellusten yksinkertaisempi

Lisätiedot

Kommenttipuheenvuoro Petri Hillin esitykseen Eläkkeiden rahoituksen uudistamistarpeet. Jukka Rantala Suomen Aktuaariyhdistys 10.12.

Kommenttipuheenvuoro Petri Hillin esitykseen Eläkkeiden rahoituksen uudistamistarpeet. Jukka Rantala Suomen Aktuaariyhdistys 10.12. Kommenttipuheenvuoro Petri Hillin esitykseen Eläkkeiden rahoituksen uudistamistarpeet Jukka Rantala Suomen Aktuaariyhdistys 10.12.2012 Yleistä Hieno juttu, että työeläkkeiden rahoituskysymyksiä tutkitaan

Lisätiedot

Kiinalaiset kuvakirjaimet ( Kanjit)

Kiinalaiset kuvakirjaimet ( Kanjit) Kiinalaiset kuvakirjaimet ( Kanjit) Japanilaiset omaksuivat kiinalaiset kuvakirjaimet, eli Kanjit, 500-700 luvulla j.kr. mutta tieteiden, taiteiden, ja Buddhismin mukana niitä on omaksuttu lisää mantereelta

Lisätiedot

Kennelliiton Omakoira-jäsenpalvelu Ohje yhdistyksille ja kennelpiireille: Kurssin anominen

Kennelliiton Omakoira-jäsenpalvelu Ohje yhdistyksille ja kennelpiireille: Kurssin anominen Kennelliiton Omakoira-jäsenpalvelu Ohje yhdistyksille ja kennelpiireille: Kurssin anominen Suomen Kennelliitto ry. 28.12.2015 2(20) Kurssin anominen Sisältö: Oikeus kurssien sähköiseen anomiseen... 4 Tapahtumat-välilehti

Lisätiedot

ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6

ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6 VIMPELIN LUKIO OPPIKIRJAT LV. 2015-2016 ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6 kirjallisuus Särmä, tehtäviä 1 9789511237211 OTAVA 1 1 Särmä, tehtäviä

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Koskenkylän päiväkoti Vanha Viipurintie 2, 07700 Koskenkylä

Koskenkylän päiväkoti Vanha Viipurintie 2, 07700 Koskenkylä 1510021096 15.9.2015 Loviisan kaupunki Koskenkylän päiväkoti Vanha Viipurintie 2, 07700 Koskenkylä Ramboll Finland Oy Niemenkatu 73, 15140 Lahti Puh. +358 20 755 611 Sisällys LAADUNVARMISTUS 3 ESIPUHE

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta

Liite 2: Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Verkot TKK (c) Ilkka Mellin (2007) 1 Verkko eli graafi: Määritelmä 1/2 Verkko eli graafi muodostuu pisteiden joukosta V, särmien

Lisätiedot

Helene Schjerfbeck (1862 1946) Omakuva, Valoa ja varjoja / Självporträtt, ljus och skugga öljy, 1945, Saltsjöbaden Signe och Ane Gyllenbergs

Helene Schjerfbeck (1862 1946) Omakuva, Valoa ja varjoja / Självporträtt, ljus och skugga öljy, 1945, Saltsjöbaden Signe och Ane Gyllenbergs Helene Schjerfbeck (1862 1946) Omakuva, Valoa ja varjoja / Självporträtt, ljus och skugga öljy, 1945, Saltsjöbaden Signe och Ane Gyllenbergs stiftelse, Helsinki Kielen kärjestä ja juurista André Maury

Lisätiedot

Matematiikkaa logiikan avulla

Matematiikkaa logiikan avulla Ralph-Johan Back Joakim von Wright Matematiikkaa logiikan avulla Rakenteiset päättelyketjut lukiomatematiikassa Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 4, Oct 2008

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

Vadi m Kulikov. Ressun lukio. Työ sijoitt uu kahdelle tieteenalalle: matematiikka ja filoso fia.

Vadi m Kulikov. Ressun lukio. Työ sijoitt uu kahdelle tieteenalalle: matematiikka ja filoso fia. Reaaliluvut: keksitty vai löydetty käsite? Filosofisesti tuettu reaalilukujen johdatus klassisen joukko-opin aksioomista. Vadi m Kulikov Ressun lukio Työ sijoitt uu kahdelle tieteenalalle: matematiikka

Lisätiedot

H e l s i n g i n l u o n n o n m o n i m u o t o i s u u s. Kääpien merkitys luonnon toiminnassa. Kaarina Heikkonen, Sami Kiema, Heikki Kotiranta

H e l s i n g i n l u o n n o n m o n i m u o t o i s u u s. Kääpien merkitys luonnon toiminnassa. Kaarina Heikkonen, Sami Kiema, Heikki Kotiranta H e l s i n g i n l u o n n o n m o n i m u o t o i s u u s Kääpien merkitys luonnon toiminnassa Kaarina Heikkonen, Sami Kiema, Heikki Kotiranta Luonnontilaisessa metsässä on paljon lahopuuta ja runsaasti

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Helsingin Rudolf Steiner koulu, oppikirjat lukuvuodelle 2012 2013

Helsingin Rudolf Steiner koulu, oppikirjat lukuvuodelle 2012 2013 Helsingin Rudolf Steiner koulu, oppikirjat lukuvuodelle 2012 2013 A-Ruotsi 1-2 Dags 2. WSOY. 3-4 Ilmoitetaan myöhemmin. 5-6 Magnet 6. WSOY. 7 Materiaali opettajalta. 8-9 Magnet 7. WSOY. 10 Materiaali opettajalta.

Lisätiedot

a b c d + + + + + + +

a b c d + + + + + + + 11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

MAA11 - Lukuteoria ja logiikka

MAA11 - Lukuteoria ja logiikka Anna-Maija Partanen Antti Rasila Mika Setälä Vapaa matikka 11 MAA11 - Lukuteoria ja logiikka Avoimet oppimateriaalit ry Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. LUKUTEORIA JA LOGIIKKA How

Lisätiedot