8. Kieliopit ja kielet
|
|
- Aki Timo-Jaakko Manninen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti oikein muodostettu. Subjekti = "mies, predikaatti="räpyttää"ja objekti "siipiään". Lause on siis muodollisesti eli syntaktisesti oikein muodostettu, vaikka lauseen sisältö eli semantiikka olisi pielessä. "Mies räpytys siivet" ei ole kieliopillisesti oikein muodostettu lause, koska se ei noudata Suomen kielen kielioppia. Formaali kieli Luonnollisen kielen eli puhutun kielen syntaksi on aina äärimmäisen monimutkainen. Itse asiassa ei ole mahdollista kuvata kaikkia puhutun kielen kielioppisääntöjä. Kielen syntaksin tutkimus on johtanut käsitteeseen Formaali kieli: Kieltä, jossa kielen kielioppi on kuvattu tarkasti hyvin määritellyillä säännöillä. Lingvistiikan lisäksi formaalilla kielillä on sovelluksia ohjelmointikielten tutkimuksessa ja tietoliikenteessä Kääntäjät, ohjelmointikielten syntaksi, bittijonojen käsittely jne.
2 8.1. Määritelmiä Kieli on kokoelma sanoja ja sanojen yhdistämistapoja, joita käyttää tai ymmärtää jokin yhteisö. Aakkosto on äärellinen, ei-tyhjä joukko merkkejä (eli symboleja, kirjaimia) Tavallisia aakkostoja ovat suomen kielen kirjaimet (mukaanlukien sanavälit ja välimerkit) sekä bitit 0 ja 1. Sana on äärellinen jono kirjaimia. Tyhjä sana λ on sana, jossa ei ole yhtään kirjainta. Sanan w pituus w on w:n sisältämien kirjaimien lukumäärä. Esimerkiksi aabbc = 5 ja = 3 = 5. Tyhjälle sanalle on λ = 0. Sanojen katenaatio Kaksi sanaa w 1 ja w 2 ovat samat (merkitään w 1 = w 2 ), jos niissä molemmissa esiintyvät samat kirjaimet samassa järjestyksessä. Esimerkiksi abba abab, mutta aabλ = aab. Sanojen perusoperaatio on katenaatio eli sanojen kirjoittaminen peräkkäin. Sanojen w 1 ja w 2 katenaatiota (tässä järjestyksessä) merkitään w 1 w 2 :lla. Esimerkiksi sanojen aaba ja ccad katenaation on sana aabaccad. Yleensä sana w 1 w 2 w 2 w 1. Lisäksi wλ = w kaikilla sanoilla w.
3 Sanojen potenssi Sanan w n:s (katenaatio) potenssi on sana w n = ww w }{{}. n kpl Erikseen on määritelty, että w 1 = w ja w 0 = λ. Lisäksi aina λ n = λ. Sanan peilikuva Sanan w peilikuva w R on sana, joka saadaan w:stä ottamalla kirjaimet oikealta vasemmalle. Jos w = a 1 a 2 a n, niin w R = a n a n 1 a 2 a 1. Erityisesti λ R = λ. Selvästi on (w 1 w 2 ) R = w R 2 w R 1.
4 Osasanat Sana u on sanan w alkuosa, jos w = uv jollakin sanalla v. Sana u on sanan w loppuosa, jos w = vu jollakin sanalla v. Sana u on sanan w osasana, jos w = v 1 uv 2 joillakin sanoilla v 1, v 2. Sanojen lukumäärä Huom. Aakkoston sanoja on numeroituvasti ääretön määrä. Toisin sanoen aakkoston sanat voidaan kirjoittaa päättymättömäksi listaksi.
5 Määritelmä Formaali kieli on joukko jonkin aakkoston sanoja. Kieli on äärellinen, jos se sisältää äärellisen määrän sanoja. Tyhjä kieli on kieli, joka ei sisällä yhtään sanaa. Kieli {λ} on kieli, joka sisältää vain tyhjän sanan. Yhden sanan muodostama kieli {w} ja sana w yleensä samaistetaan ja merkitään myös kieltä w:llä. Kielille käytetään joukko-opin merkintöjä:,,, \. Sanan w kuuluminen kieleen merkitään w L. Vastaavasti merkintä w / L tarkoittaa, että w ei ole kielen L sana. Aakkoston V kaikkien sanojen muodostamaa kieltä merkitään V :llä. Myös λ V. Kieli V + = V \ {λ} eli kaikkien aakkoston V ei tyhjien sanojen muodostama kieli.
6 Kielten ylinumeroituvuus Kieliä on selvästi ääretön määrä. Lause 8.1.Aakkoston kieliä on ylinumeroituvasti ääretön määrä. Toisin sanoen aakkoston kieliä ei voida kirjoittaa listaksi, Tod. Vastaoletus:Kaikki aakkoston V kielet voidaan kirjoittaa listaksi L 1, L 2,... L i, L i+1,.... Kirjoitetaan aakkoston V sanat listaksi w 1, w 2,.... Määritellään kieli L seuraavasti: w i L täsmälleen silloin kun w i / L i, kun i = 1, 2,... Vastaoletuksen perusteella L = L n jollakin n. Kielen L määritelmän perusteella: Jos w n L n, niin w / L ja jos w n / L n, niin w L. Sana w n esiintyy vain toisessa kielistä L ja L n. Siis L L n, mikä on ristiriita. Kielten operaatioita Kielten L 1 ja L 2 katenaatio (tässä järjestyksessä) on kieli L 1 L 2 = {w 1 w 2 w 1 L 1 ja w 2 L 2 }. Kielen L n:s (katenaatio) potenssi on kieli L n = {w 1 w 2 w n w 1, w 2,..., w n L}. Erityisesti L 1 = L, L 0 = {λ}. Myös 0 = λ.
7 Kielen katenaatiosulkeuma Kielen L katenaatiosulkeuma on kieli L = n=0 L n. eli L on kieli joka muodostuu sanoista jotka saadaan kielen L sanoista katenoimalla. Myös λ L. Vastaavasti kieli L + = n=1 L n, jossa sana λ on mukana vain jos λ L. Voidaan osoittaa, että L + = LL = L L. Säännölliset kielet Säännölliset kielet aakkostossa V : 1., {λ} ja {a}, a V ovat säännöllisiä kieliä. 2. Jos L ja L ovat säännöllisiä kieliä, niin myös L L, LL ja L ovat säännöllisiä kieliä. Esimerkki Kieli {ab n n =, 0, 1,...} on säännöllinen, sillä {ab n n =, 0, 1,..., } = {a}{λ, b, b 2, b 3,...} = {a}{b}.
8 Säännölliset ilmaisut Säännöllinen kieli kuvataan usein säännöllisen ilmaisun avulla. Säännölliset ilmaisut aakkostossa V: 1., {λ} ja a, a V ovat säännöllisiä ilmaisuja 2. Jos R ja S ovat säännöllisiä ilmaisuja, niin myös (R), R + S, R S ja R ovat säännöllisiä ilmaisuja. Esimerkki. Aakkoston {0, 1} säännöllisiä ilmaisuja: λ, 0, 1, λ + 1, 0 + (1 0)0 1 Operaattoreiden suoritusjärjestys Sulkujen vähentämiseksi on sovittu säännöllisen ilmaisun operaatioille suoritusjärjestys: ensin, senjälkeen, ja viimeiseksi +. Esimerkiksi säännöllinen ilmaisu a + b a on sama kuin (a + (b (a ))). Jos sekaannusta ei synny, jätetään merkitsemättä. Esimerkiksi edellisen säännöllinen ilmaisu voidaan esittää muodossa a + ba.
9 Jokainen säännöllinen ilmaisu R määrää säännöllisen kielen L(R) seuraavasti: L( ) =, L(λ) = {λ}, L(a) = {a}, L(R + S) = L(R) L(S), L(RS) = L(R)L(S) ja L(R ) = (L(R)). Esimerkiksi L(a + bc ) = L(a) (L(b)L(c )) = {a} (L(b)L(c) ) = {a} ({b}{λ, c, c 2,...}) = {a, b, bc 2, bc 3, bc 4...}. Jokainen säännöllisen ilmaisun määräämä kieli on säännöllinen. Jokaisen säännöllisen kielen määrää säännöllinen ilmaisu. Kaksi säännöllistä ilmaisua R ja S ovat samat, jos L(R) = L(S). Esimerkki. Määrää aakkoston {0, 1} säännöllinen ilmaisu, jonka määräämä kieli sisältää täsmälleen kaikki parillisen pituiset bittijonot. Ratk....
8. Kieliopit ja kielet 1 / 22
8. Kieliopit ja kielet 1 / 22 Luonnollinen kieli Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää
uv n, v 1, ja uv i w A kaikilla
2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko
Säännöllisten kielten sulkeumaominaisuudet
Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,
Muodolliset kieliopit
Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.
Luonnolliset vs. muodolliset kielet
Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma
11.4. Context-free kielet 1 / 17
11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä
Automaatit. Muodolliset kielet
Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
Hahmon etsiminen syotteesta (johdatteleva esimerkki)
Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Output. Input Automaton
16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite
FORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus
FORMAALI SYSTEEMI (in Nutshell): Formaali kieli: aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus esim. SSM:n tai EBNF:n avulla Semantiikka:
4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
9. Matemaattisista koneista.
9. Matemaattisista koneista. Monia tietojenkäsittelytehtäviä, digitaalisia komponetteja, ohjelmia jne. voidaan mallintaa äärellistilaisella matemaattisella koneella. Matemaattinen kone on myös tietojenkäsittelijän
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko
9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ
Yhteydettömät kieliopit [Sipser luku 2.1]
Yhteydettömät kieliopit [ipser luku 2.1] Johdantoesimerkkinä tarkastelemme kieltä L = { a n b m a n n > 0, m > 0 }, joka on yhteydetön (mutta ei säännöllinen). Vastaavan kieliopin ytimenä on säännöt eli
ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun
ICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen
Pysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio
TOD.NÄK JA TILASTOT, MAA10 Kombinatoriikka Todennäköisyyksiä (-laskuja) varten tarvitaan tieto tapahtumille suotuisien alkeistapausten lukumäärästä eli tapahtumaa vastaavan osajoukon alkioiden lukumäärästä.
Äärettömät sanat. Aleksi Saarela. Matematiikan ja tilastotieteen laitos ja FUNDIM-keskus, Turun yliopisto. A. Saarela (TY) Äärettömät sanat 1 / 28
Äärettömät sanat Aleksi Saarela Matematiikan ja tilastotieteen laitos ja FUNDIM-keskus, Turun yliopisto A. Saarela (TY) Äärettömät sanat 1 / 28 1 Sanojen kombinatoriikan taustaa 2 Esimerkkejä äärettömistä
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015
TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
Ei-yhteydettömät kielet [Sipser luku 2.3]
Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25
DFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13
2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:
Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen
Vastauksia. Topologia Syksy 2010 Harjoitus 1
Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.
Tietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja
Rajoittamattomat kieliopit
Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet
Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava
Kertausta 1. kurssikokeeseen
Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.
Säännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)
1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,
M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0.
A Bittien nollaus Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. Saat käyttää seuraavia operaatioita: muuta jokin bitti vastakkaiseksi (0 1 tai 1 0) muuta kaikki
Chomskyn hierarkia ja yhteysherkät kieliopit
Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Laskennan teoria
581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä
5.3 Ratkeavia ongelmia
153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
on rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
LOGIIKKA johdantoa
LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt
8.5. Jäsennyspuu 1 / 23
8.5. Jäsennyspuu 1 / 23 Kääntäminen ja BNF Ohjelmointikielten kuten Java, C++, Pascal, Fortran jne. syntaksi määritellään tyypillisesti BNF-muotoisilla säännöillä. Sääntöjä on usein satoja. Ohjelman kääntämisessä
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
Ratkeavuus ja efektiivinen numeroituvuus
Luku 6 Ratkeavuus ja efektiivinen numeroituvuus Proseduurit Olkoon A aakkosto. Proseduuri aakkoston A sanoille on mikä hyvänsä prosessi (algoritmi) P, jolle annetaan syötteeksi sana w A, ja joka etenee
MS-A0401 Diskreetin matematiikan perusteet
MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta
Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä
Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä olevilla komponenteilla? Voisiko jollakin ohjelmointikielellä
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset
2. Yhteydettömät kielet
2. Yhteydettömät kielet Yhteydettömät eli kontekstittomat kielet (context-free language, CFL) ovat säännöllisiä kieliä laajempi luokka formaaleja kieliä. Ne voidaan esittää yhteydettömillä kieliopeilla
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.
TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
M = (Q, Σ, Γ, δ, q 0, q acc, q rej )
6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.
jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
Tehtävä 2: Säännölliset lausekkeet
Tehtävä 2: Säännölliset lausekkeet Kun tietokoneohjelmalla luetaan käyttäjän syötettä, olisi syöte aina syytä tarkistaa. Syötteessä voi olla vääriä merkkejä tai merkkejä väärillä paikoilla (syntaktinen
Datatähti 2019 alku. task type time limit memory limit. A Kolikot standard 1.00 s 512 MB. B Leimasin standard 1.00 s 512 MB
Datatähti 2019 alku task type time limit memory limit A Kolikot standard 1.00 s 512 MB B Leimasin standard 1.00 s 512 MB C Taulukko standard 1.00 s 512 MB D Ruudukko standard 1.00 s 512 MB E Sanalista
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.
Johdanto Lauselogiikassa tutkitaan sekä syntaktisella että semanttisella tasolla loogisia konnektiiveja ja niiden avulla muodostettuja kaavoja sekä myös formaalia päättelyä. Tarkastelemme aluksi klassisen
1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y.
3.8 Yhtedettömien kielten rajoitksista Yhtedettömille kielille on oimassa säännöllisten kielten pmppaslemman astine. Nt kitenkin merkkijonoa on pmpattaa samanaikaisesti kahdesta paikasta. Lemma 3.9 ( -lemma
Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =
1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja
Pinoautomaatit. Pois kontekstittomuudesta
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
Rajoittamattomat kieliopit (Unrestricted Grammars)
Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli
Laskennan teoria
581336-0 Laskennan teoria luennot syyslukukaudella 2004 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa, opettajan suuntautumisvaihtoehdossa
Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
Kaikki mitä olet aina halunnut tietää pumppauslemmoista, mutta mitä et ole kehdannut kysyä
Kaikki mitä olet aina halunnut tietää pumppauslemmoista, mutta mitä et ole kehdannut kysyä Tommi Syrjänen 1 Yleistä pumppauslemmoista Pumppauslemmalla voidaan todistaa, että kieli ei kuulu johonkin kieliluokkaan.