SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos"

Transkriptio

1 SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka

2 Esimerkki: Kun halutaan suojautua sähkömagneettisia häiriöitä vastaan, on metallisuojus oiva vaimennin. Metalli ei kuitenkaan ole ideaalinen johde, vaan aina pieni osa siihen tulevasta kentästä pääsee tunkeutumaan äärellisen paksuisen levyn läpi. Levy vaimentaa kahdesta syystä: 1. Levyn molemmista pinnoista tapahtuu voimakas heijastus, koska ilman ja metallimateriaalin sähköinen kontrasti on suuri. Tämän voi laskea heijastuskertoimen avulla. 2. Levyyn syntyvät pyörrevirrat muuttavat sähkömagneettista energiaa lämmöksi. Tämän vaikutuksen voi laskea esim. tasoaallon vaimennuksen avulla. 2

3 Tutkitaan tässä esimerkissä, kumpi näistä vaimennustekijöistä on voimakkaampi. Oletetaan, että tasoaalto tulee kohtisuoraan kuparilevyä päin. Olkoon aallon taajuus 10 GHz ja käytetään kuparin materiaaliparametreina µ = µ 0 ja σ = Lasketaan ensiksi, kuinka monta desibeliä vaimennusta tulee heijastuksessa. Lasketaan sitten kuinka monta desibeliä kupari vaimentaa metriä kohden. 1. Heijastushäviön voi laskea heijastuskertoimen avulla. Kun kentän heijastuskerroin on γ, tehoa katoaa heijastuksessa 1- γ 2. Huomaa itseisarvo, sillä heijastuskerroin voi olla kompleksiluku: γ = η η 0 η + η 0, (1) missa η 0 = µ0 ɛ 0 on ilman aaltoimpedanssi, η metallin. 3

4 Kuparille johtavuus dominoi permittiivisyyttä eli ɛ c = j σ ω, joka siis on itseisarvoltaan paljon ykköstä suurempi, joten ( γ = jωɛ 0 σ jωɛ σ ) jωɛ0 σ (2) (3) 4

5 Siten, kun pidetään mielessä, että jωɛ 0 σ 1, 1 γ 2 1 (1 2 = 1 1 = 1 ( 1 2 ( 1 2 = jωɛ 0 σ jωɛ 0 σ ( 1 4Re = 4Re jωɛ 0 σ 2 jωɛ 0 σ ) ( [ jωɛ 0 σ ] [ jωɛ 0 σ ) 2 (4) (5) ) jωɛ 0 σ (6) ) jωɛ 0 σ (7) ]) (8) (9) = 4 ωɛ 0 2σ. (10) 5

6 Sijoittamalla kuparin materiaaliparametrit heijastuskerroinlausekkeeseen saadaan 1- γ eli tehoa häviää noin 35,5 db. 2. Entäpä vaimennus? Koska kyseessä on hyvä johde, saadaan vaimennuskertoimelle (tunkeutumissyvyyden käänteisluku): α πfµσ (11) eli tunkeutumissyvyys on µm ja vaimennus 13 db/µm. Siis 2,7µm levyä vaimentaa yhtä paljon, kuin heijastus yhdestä rajapinnasta. 6

7 Polarisaatio Miten sähkökentät käyttäytyvät, kun niitä tarkastellaan yhdessä pisteessä? Sähkö ja magneettikenttien käyttäytyminen on samankaltaista. Tarkastellaan pelkästään sähkökenttää. Aallon polarisaatio kuvaa sähkökentän käyttäytymistä. Tasoaallon sähkökenttä on E(z, t) = Re {Ê0 e j(ωt kz)} = E 0r cos(ωt kz) E 0i sin(ωt kz). 7

8 Tarkastellaan E:tä xy tasossa kohdassa z 0. Tällöin saamme, että E(z 0, t) = E 0r cos(ωt kz 0 ) E 0i sin(ωt kz 0 ). Kun pätee, että ωt kz 0 = 0, E:n arvo on E 0r. Kun 1/4 jaksosta on liikuttu, on ωt kz 0 = π/2. Tällöin kentän arvo on E 0i. Kenttää kuvaava vektori voi käyttäytyä kolmella tavalla: E 0i E 0r E 0i E 0r E 0r ja E 0i yhdensuuntaisia. Muutoin E 0r ja E 0i : sama suuruus ja kohtisuorassa toisiaan nähden. Polarisaatiot ovat lineaarinen ja elliptinen polarisaatio sekä 8

9 ympyräpolarisaatio. Huomaa, että esimerkiksi kahden lineaarisesti polarisoituneen aallon summana voidaan saada mikä tahansa polarisaatio. Elliptisellä ja ympyräpolarisoituneella tapauksella on myös niin kutsuttu kätisyys: Kun katsotaan aallon etenemissuuntaan, oikea kätinen eli positiivinen aalto kiertää myötäpäivään. Muussa tapauksessa polarisaatio on vasen kätinen eli negatiivinen. Oikeakätinen Vasenkätinen Kysymys: Missä tapauksissa polarisaatio olisi syytä huomoida? 9

10 1. Viestinnässä antennien suuntaukset merkitsevät, tärkeä huomata myös EMC:n kannalta: E Hyvä vastaanotin Huono vastaanotin 2. Optiikassa, polarisaatiota hyödynnetään erilaisissa suotimissa: Heijastunut & polarisoitunut Valonsäde Suodin Vesi Taittunut 3. On myös olemassa molekyylejä, jotka muuttavat polarisaatiota: Sugar jam 10

11 Dispersio Häviöttömässä aineessa tasoaallot liikkuvat nopeudella, joka on riippumaton aallon taajuudesta. Häviöllisissä aineissa tilanne on kuitenkin toinen, sillä eri taajuudet liikkuvat eri nopeuksilla. Kun aallon liikkumisnopeus on riippuvainen sen taajuudesta tai aallonpituudesta, on kyseessä dispersio. Käytännössä esimerkiksi tietoa siirtävät signaalit koostuvat useammista taajuuksista, jolloin materiaaleissa, joissa etenemisnopeus riippuu aallon taajuudesta, signaali vääristyy. 11

12 Esimerkki: Kun tarkastelimme tasoaaltoja huomasimme, että aikatasossa ne olivat esitettävissä funktion cos(ωt kz) avulla. Jos asetetaan ωt βz = a (vakio vaihe) saadaan vaihenopeus Ideaaliselle eristeelle β ω µɛ ja vaihenopeus on vakio riippumatta taajuudesta. Hyville johteille sen sijaan β 1 2 ωµɛ, joten ja siten taajuudesta riippuvainen. u p = dz dt = ω β. (12) u p = ω β 1 µɛ (13) u p = ω β 2ω µɛ, (14) 12

13 Suojaus Kaksi käyttötarkoitusta suojata ulkopuolista maailmaa laitteen aiheuttamilta kentiltä suojata laitetta häiriöisessä ympäristössä eli suojaus on este sähkömagneettisen kentän etenemiselle. Häiriönlähde 13

14 Säteilyhäiriöiden lisäksi suojataan johtuvia häiriöitä esim. suodattimet pistorasioissa. Olennainen suure suojaukseen liittyen on suojaustehokkuus eli alkuperäisen kentän suhde vaimennettuun (suojan läpi menneeseen) kenttään. Suojaustehokkuuus annetaan tyypillisesti desibeleinä (esim. 100 db vaimennuskerroin) Ideaalisuoja sulkee täydelllisesti suojattavan laitteen sisäänsä, mutta esim. aukot ja läpiviennit heikentävät suojausta. Huomaa, että huonosti toteutettu suoja saattaa jopa aiheuttaa suuremmat häiriöt, kuin mitä ilman suojaa aiheutuu. 14

15 Suojaustehokkuus Tarkastellaan metallisuojaa, jonka paksuus on t ja jonka materiaaliparametrit ovat: σ,ɛ ja µ. z = 0 z = t σ,ɛ ja µ. E i E t2 E t η 0 E r E r2 η η 0 15

16 Suojaustehokkuus (shielding effectiveness) voidaan määritellä seuraavasti E i SE = 20log 10 E t. (15) Huomaa kuitenkin, että myös muita määritelmiä on käytössä. Kuten aikaisemmin olemme huomanneet, tapahtuu rajapinnoilla heijastumista ja lisäksi kulkiessaan johtavassa aineessa aalto vaimenee. 16

17 Kokonaissuojaustehokkuus on ilmaistavissa näitten summana eli missä SE db = R db + A db + M db, (16) R db heijastumishäviö vasemmalla ja oikealla rajapinnalla A db vaimenemishäviötä aallon kulkiessa suojan läpi M db jatkoheijastukset (yleensä merkityksettömiä) Tarkastellaan seuraavaksi tapausta, joka toteutuu yleensä käytännössä: suoja on rakennettu hyvästä johteesta ja sen paksuus on tunkeutumissyvyyttä selvästi suurempi. Tällöin siis pätee η η 0 ja t δ. 17

18 Oletuksista johtuen kenttä E t2 on voimakkaasti vaimentunut, kun se kohtaa oikeanpuoleisen rajapinnan. Heijastunut aalto E r2 vaimenee myös voimakkaasti ennenkuin se kohtaa vasemmanpuoleisen rajapinnan, jolloin voimme olettaa, että E r2 0 (kun z = 0). Olemme aiemmin määrittäneet läpäisykertoimen, joka on vasemmalla rajapinnalla τ = E t2 E i = 2η η 0 + η. (17) Tarkoituksena on siis laskea lähestyvän ja läpimenneen aallon suhde, joka on laskettavissa kahdessa osassa E t E i = E t E t2 E t2 E i = 2η 0 η 0 + η 2η η 0 + η = 4ηη 0 (η 0 + η) 2 (18) 18

19 Huomaa, että koska η η 0, läpäisykerroin ensimmäisellä rajapinnalla on selvästi pienempi kuin toisella. Toisin sanoen ensimmäisellä rajapinnalla aalto heijastuu voimakkaasti. Täten R db = 20log 10 E i E t Magneettikenttien suhteelle pätee H t2 H i = 20log (η 0 + η) ηη 0 20log η η. (19) = E t2/η E i /η 0 = E t2 E i η 0 η = 2η 0 η 0 + η. (20) Vastaavasti jolloin H t H t2 = E t/η 0 E t2 /η = 2η η 0 + η, (21) H t H i = 4ηη 0 (η 0 + η) 2. (22) 19

20 Tulos on sama kuin sähkökentillekin, tosin yksi ero löytyy, nimittäin magneettikenttä heijastuu voimakkaammin oikealla kuin vasemmalla rajapinnalla. Tästä voi päätellä, että magneettikentille vaimenemishäviöt ovat merkityksellisempiä kuin sähkökentille. Edellä oletimme, että E t2 on yhtä suuri molemmilla rajapinnoilla. Käytännössä E t2 vaimenee huomattavasti ennenkuin se saavuttaa oikean rajapinnan; tekijällä e αt = e t/ρ (t on kuljettu matka). Tämä tekijä on kuitenkin helposti huomioitu; kerrotaan yhtälö (18) tekijällä e t/ρ, joten vaimennushäviö A db = 20log 10 e t/ρ. (23) Kokonaishäviöt ovat siis edellisten summa. Hyvän johteen 20

21 aaltoimpedanssi joten η j ωµ σ, (24) ( ) 1 σ R db = 20log 10. (25) 4 ωµ r ɛ 0 Monesti heijastumishäviötä verrataan kuparin heijastumishäviöön, joten sijoittamalla missä σ Cu kuparin johtavuus σ = σ Cu σ r, (26) suhteellinen johtavuus verrattuna kuparin johtavuuteen 21

22 R db = log 10 ( σr µ r f ), (27) joka on suurimmillaan matalilla taajuuksilla ja ei-magneettisilla aineilla (µ r 1). Tunkeutumissyvyys on joten ρ = 1 πfµσ, (28) A db = 20log 10 e t/ρ = 20 t ρ log 10e 131.4t fµ r σ r, (29) missä t metreissä. 22

23 Tämä riippuu voimakkaasti suojan paksuudesta vrt. sunkeutumissyvyyteen, sillä A db =8.7 db, kun t/ρ=1 A db =17.4 db, kun t/ρ=2. Huomaa, että R db on σ r µ r :n ja A db on σ r µ r :n funktio. Matalilla taajuuksilla R db on pääasiallisena suojausmekanismina, korkeilla taajuuksilla A db. 23

24 Suojaus matalataajuiselta magneettikentältä Matalataajuisella magneettisella lähikentällä sekä heijastuminen että vaimentumishäviöt pieniä, joten muita menetelmiä on käytettävä suojaukseen. Yksi tapa on korkean µ:n materiaalilla kentän sivuun ohjaaminen. Toinen on vastakkaissuuntaisen magneettikentän luominen oikosuljetuilla johdinsilmukoilla Suojaus ei kuitenkaan ole aina tehokasta, sillä µ pienenee suurilla kentän voimakkuuksilla (kyllästyminen) ja myös f:n funktiona. Käytännössä ratkaisu on usein monikerroksinen suojakotelo tms. 24

25 Piiri ja kenttälaskennasta Kaikkiin suunnittelumenetelmiin liittyy rajoituksia. Tämän takia olennaista on muistaa, mitä olettamuksia/yksinkertaistuksia kunkin suunnittelumenetelmän taustalla on. Esimerkiksi piiriteoria käsittää tietyn hieman pelkistetyn version sähkömagneettisista ilmiöistä. Kenttäteorian puolella sitä vastaa niin kutsuttu kvasi staattinen approksimaation (eli Ampèren laissa ei huomioida termiä D t ) 25

26 Eräs yleisesti käytetty tekijä arvioitaessa, mitkä ilmiöt ovat olenaisia on järjestelmän sähköinen mitta. Usein käytetty kriteeri: Järjestelmä on sähköisesti pieni, jos sen fysikaalinen mitta d on paljon pienempi kuin aallonpituus λ (vähintään d < λ/10). 26

27 Piiriteorian taustalla olevia olettamuksia olemme jo osin käsitelleet aiemminkin: 1. Sähköiset ilmiöt tapahtuvat samanaikaisesti koko järjestelmässä. 2. Jokaisen piirikomponentin kokonaisvaraus on nolla. 3. Komponenttien välillä ei ole magneettista kytkentää. 27

28 Esimerkki ilmiöstä, jota piiriteoria ei kykene selittämään: Monopoliantenni: Kun antenni lähettää signaalia, siihen syötetään virtaa sopivalla taajuudella. Piiriteorian mukaan lähde syöttää virtaa avoimeen piiriin, sillä eihän ko. johto ole kytkettynä mihinkään silmukkaan. Täten virtaa ei pitäisi kulkea ja siten mitään ei pitäisi tapahtua. 28

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähkömagneettiset aallot Aikaharmoniset kentät

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Receiver. Nonelectrical noise sources (Temperature, chemical, etc.) ElectroMagnetic environment (Noise sources) Parametric coupling

Receiver. Nonelectrical noise sources (Temperature, chemical, etc.) ElectroMagnetic environment (Noise sources) Parametric coupling EMC Sähkömagneettinen kytkeytyminen EMC - Kytkeytymistavat ElectroMagnetic environment (Noise sources) Nonelectrical noise sources (Temperature, chemical, etc.) Conductors Capacitive Inductive Wave propagation

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

SMG-1400 SMG KENTÄT JA AALLOT 2 Arvostelukriteerit tenttiin 28.11.2007 Tentistä oli tällä kertaa hyvin vaikea saada täysiä pisteitä (osasyynä T3), mutta jonkin verran pisteitä oli puolestaan melko helppo

Lisätiedot

SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Suuriniemi

SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Suuriniemi SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin 26.1.2009. Suuriniemi 1. Ilman perusteluja ei annettu pisteitä. Jos vastaus on oikein ja perustelu liittyy aiheeseen mutta ei mennyt ihan puikkoihin,

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Aaltoputket ja mikroliuska rakenteet

Aaltoputket ja mikroliuska rakenteet Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

3.32. On tärkeätä muistaa, että tehosta desibeleissä puhuttaessa käytetään kerrointa 10 ja kentänvoimakkuuden yhteydessä kerrointa 20.

3.32. On tärkeätä muistaa, että tehosta desibeleissä puhuttaessa käytetään kerrointa 10 ja kentänvoimakkuuden yhteydessä kerrointa 20. 3.3 3. Desibeli Tasoaallon vaimenemisen häviöllisessä väliaineessa voi laskea aaltoluvusta β. Aaltoluvun imaginaariosa on mitta vaimenemiselle, ja usein puhutaankin β i :stä yksiköissä neperiä/metri eikä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

Sähkömagneettiset aallot

Sähkömagneettiset aallot Luku 11 Sähkömagneettiset aallot Tämä luku käsittelee monokromaattisten sähkömagneettisten aaltojen etenemistä erilaisissa homogeenisissa väliaineissa (RMC luku 17; CL käsittelee aaltoliikettä luvussa

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Lehti, Niemimäki, Suuriniemi

SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin Lehti, Niemimäki, Suuriniemi SMG-1400 SMG KENTÄT JA AALLOT 2 Kriteerit tenttiin 27.11.2008. Lehti, Niemimäki, Suuriniemi Ensimmäinen tehtävä tuli arvostelluksi melko tiukasti, mikä näkyi pistekeskiarvossa 3.16: Kyllä/Ei-vastauksiin

Lisätiedot

Sähkömagneettiset aallot

Sähkömagneettiset aallot Luku 10 Sähkömagneettiset aallot Sähkömagneettisten aaltojen spektri on erittäin laaja. Esimerkkejä löytyy hyvin matalista taajuuksista aina gammasäteisiin, joiden taajuudet ovat suuruusluokkaa 10 20 10

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

HÄVIÖLLISEN PYÖREÄN AALTOJOHDON SIMULOINTI

HÄVIÖLLISEN PYÖREÄN AALTOJOHDON SIMULOINTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jukka Hautala j82212 Toni Takalo n86196 SATE.2010 Dynaaminen kenttäteoria HÄVIÖLLISEN PYÖREÄN AALTOJOHDON SIMULOINTI Sivumäärä: 13 Jätetty tarkastettavaksi:

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT LUENTO 4 HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT HAVAINTOJA ELÄVÄSTÄ ELÄMÄSTÄ HYVÄ HÄIRIÖSUOJAUS ON HARVOIN HALPA JÄRJESTELMÄSSÄ ON PAREMPI ESTÄÄ HÄIRIÖIDEN SYNTYMINEN KUIN

Lisätiedot

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.

Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Lähd etään hakem aan ratkaisua y htälöistä (2 ) ja (3 ), kuten T E M -siirtolinjojen y htey d essä. N y t aaltoputkien tapauksessa z-kom

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

EMC Suojan epäjatkuvuudet

EMC Suojan epäjatkuvuudet EMC Suojan epäjatkuvuudet EMC - Aukot suojassa Edelliset laskelmat olettivat että suoja on ääretön ehyt tasopinta Todellisuudessa koteloissa on saumoja, liitoksia aukkoja: tuuletus, painonapit luukkuja,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT

VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT VAAAN YLIOPITO TEKNILLINEN TIEDEKUNTA ÄHKÖTEKNIIKKA Maarit Vesapuisto ATE.010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE : AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT Opetusmoniste (Raaka

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t. Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 1. Luento 26.8.2013 Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto DI Juho Tyster Opetusjärjestelyt Luentoja 14h, laskuharjoituksia 14h, 1.periodi Luennot ja harjoitukset

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot