1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?
|
|
- Timo-Pekka Jurkka
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu. Olkoot funktiot f : A B ja g : B C aluksi mielivaltaisia. a) ) Olkoon f rajoitettu. Tällöin g f voi olla rajoitettu tai rajoittamaton. α) Rajoitettu: valitaan A = B = C = R ja funktiot rajoitettu f :=, siis vakiofunktio, ja g := Id. Silloin (g f)() = g(f()) = g() =, joten g f on rajoitettu. β) Ei rajoitettu: valitaan A = B = ]0, [ ja C = R. Olkoon f : ]0, [ ]0, [, f() :=, ja g : ]0, [ R, g() :=. Koska f() < kaikilla ]0, [, on f on rajoitettu. Olkoon M > 0 mielivaltainen luku. Nt hdistetlle funktiolle g f : ]0, [ R pätee (g f)() = = > M, kun 0 < <. Siis g f ei ole rajoitettu. M ) Olkoon toiseksi g rajoitettu. Tällöin g f on rajoitettu. Todistetaan tämä suoralla todistuksella: Oletetaan että g on rajoitettu. Tällöin on määritelmän mukaan olemassa M > 0 siten, että g() < M kaikilla B. Tällöin (g f)() = g(f()) < M kaikilla A, koska f() B. Siis g f on rajoitettu. b) Tässä pitää funktioiden olla R R (vrt. jaksollisuuden määritelmä). ) Olkoon f jaksollinen funktio. Tällöin mös g f on jaksollinen. Todistetaan tämä suoralla todistuksella: Jos funktiolla f on jakso a, niin f(+a) = f() kaikilla R. Tällöin (g f)( + a) = g(f( + a)) = g(f()) = (g f)() kaikilla R. Siis g f on jaksollinen. ) Olkoon g jaksollinen. Tällöin g f voi olla jaksollinen, mutta mös jaksoton. Esimerkki jaksollisesta: g : R R, g() := sin, on tunnetusti jaksollinen. Valitaan f : R R, f() :=. Silloin (g f)() = sin ja g f on jaksollinen. Jaksoton: Olkoon edelleen g : R R, g() = sin, ja valitaan f : R R, f() :=. Yhdistett funktio g f : R R, (g f)() = g(f()) = g( ) = sin ei ole jaksollinen. Se värähtelee väliä [, ] hä kiihtvällä frekvenssillä, kun (ks. kuvio).
2 Muodosta sellainen neljännen asteen polnomi, a) jolla ei ole lainkaan reaalisia nollakohtia. b) jonka reaaliset nollakohdat ovat ja, ja molemmat ovat ksinkertaisia. c) jolla on kolme eri reaalista nollakohtaa. Ratkaisu. a) A() := + b) B() := ( )( )( + ) c) C() := ( )( )( ), nollakohdat, ja eikä muita. Nämä ovat polnomien tuloina polnomeja ja kaikki neljättä astetta.. Muodosta osamurtokehitelmä rationaalilausekkeille a) +, b) +, Ratkaisu. a) Nimittäjän tekijöihin jaoksi saadaan + = ( )( + ) = ( )( + ), sillä nollakohdat ovat = ja =. Siis + = ( )( + ) Voidaan kättää vaikkapa Heaviside-menetelmää: Tehdään rite ( )( + ) = A + B +. Kerrotaan htälö termillä 0, jolloin saadaan htälö + B( ) = A +. + Sijoitetaan tähän = /, jolloin A = /5. Sijoitetaan tämä alkuperäiseen, ja kerrotaan se sitten termillä + 0; näin = B.
3 Tästä sijoitus = antaa B = /5. Osamurtokehitelmä on siis + = 5 b) Nimittäjän tekijöihin jaoksi saadaan = ( )( + ), missä jälkimmäisellä tekijällä ei ole reaalisia nollakohtia. Yritetään tähänkin Heaviside ia, kuitenkin laittaen toisen asteen termin osoittajaan B + C: + = ( )( + ) = A + B + C +. Kerrotaan taas termillä 0, jolloin saadaan htälö + Sijoitus = / antaa A = /9. ( ) (B + C)( ) = A +. + I tapa jatkaa psen reaalimuuttujissa: Saatiin siis ( )( + ) = 9 + B + C +. Koska + > 0, ei jatketa Heaviside lla vaan lavennetaan samanimittäjäisiksi: ( )( + ) = 9 + B + C + = 9 ( + ) + ( )(B + C) ( )( + ) Verrataan osoittajia: kertomalla auki oikeanpuoleinen osoittaja saadaan (samuus ): ( ) 9 + B + C B C 9 + B + (C B) C, joka on totta arvoilla B = /9 ja C = /9 (ks. loppua). II tapa jatkaa Heaviside lla kompleksiluvuilla kohdasta ( ): Sijoitetaan tämä alkuperäiseen, ja kerrotaan se sitten termillä + 0; näin = B + C. Sijoitetaan tähän rohkeasti = i ja lavennellaan normaalimuotoon i B + C = i = + i i = = i 9. Olettaen luvut B ja C reaalisiksi saamme vertaamalla reaali- ja imaginaariosia tuloksen: + =
4 . Sievennä a) 9, b) a a a a a, c) 5n b n a n b n 5 a. b 6n Ratkaisu. a) Sievennetään potenssilaskusäännöillä 9 = ( ) ( ) = 6 6 = = 6 = 6. b) Sievennetään potenssilaskusäännöillä a a ) a = (a a a 5 a (a 5 ) = a (a ) a a 5 = a a 8 a a 5 = a + 8 a + 5 = a 8 a 8 = a 8 8 = a 9 6 = a 55. c) Sievennetään a 5n b n a n b n a = (a5n ) (b n ) b 6n a (b 6n ) = a 5n b n a n b n a b n = a 5n a n a b n b n b n = a n b 9n. 5. Ratkaise htälöt a) ( + ) / = (( + ) ) /, b) ( ) / = (( ) ) /. Ratkaisu. a) Parittomalla n N on juurifunktio /n laajennettavissa koko reaalilukujen joukkoon bijektiona. Koska lausekkeet + ja ( + ) ovat reaalisia kaikilla R, on ( + ) / = (( + ) ) / + = ( + ) = =. b) Samoin: ( ) / = (( ) ) / = ( ) = 6 =
5 6. Ratkaise htälö 6 = ja piirrä kuvio. Ratkaisu. Kseessä ovat parilliset juuret, joten ratkaisuiksi kävät vain joukon [ A := 6, ] [ 6 [, [ =, ] 6 [,.5] alkiot. Voitaisiin poistaa juuret vedoten juurrettavien ei-negatiivisuuteen joukossa A sekä juurifunktion ksikäsitteisteen (kun sopimusten mukaisesti valitaan positiivinen haara), mutta tehdään tässä toisin: selvitetään aluksi mitkä ovat mahdollisia juuria, ts. katsotaan ksisuuntaisesti mitä htälön voimassaolosta välttämättä seuraa: 6 = 6 = ( ) = + 5 = 0 = ( ± ). Näistä kahdesta ehdokkaasta vain /(+ ).6 on joukossa A. Tarkastus osoittaa, että tämä todella on ratkaisu. Mös kuvio vahvistanee tuloksen oikeellisuutta: 7. Piirrä reaalifunktioiden f, g, kuvaajat ja laske niiden leikkauspisteet. 0 f() := ( + ), g() := ( + ), Ratkaisu. Funktioiden lausekkeiden eksponentit eivät ole rationaalisia (mutta ovat positiivisia), joten juurrettavien on oltava ei-negatiivisia. Ehdoista vallitseva on /, silloinhan mös toteutuu. Juurifunktion bijektiivisden mukaan, kun /: f() = g() ( + ) = ( + ) ( + ) = ( ( + ) ) + = ( + ) = 0, = ( ± 5). Molemmat ovat vaaditulla välillä, joten leikkauspisteet ovat (saatavissa kumman funktion avulla hvänsä): ( (, g( )) = ( + 5), ( ( + ) 5)) (.68, 5.) ja ( (, g( )) = ( 5), ( ( ) 5)) ( 0.68, ) 5
6 Ratkaise htälö a) ln( ) + ln( ) ln =. b) + =. Ratkaisu. a) Tutkitaan ensin, millä tuntemattoman arvoilla htälö on määritelt. Logaritmi on määritelt vain aidosti positiivisilla arvoilla, joten tät olla ) > 0 eli >, ) > 0 eli 0 ja ) > 0. Näistä kolmesta ehdosta saadaan siis hteensä määrittelehto >. Yhtälön toteutumisesta seuraa: ln( ) + ln( ) ln = ln( ) + ln = ln ln(( ) ) = ln = ( ) = 0 = 0 tai = ( ± 5). Määrittelehdon > toteuttaa näistä vain = ( + 5).6, ja sijoitus alkuperäiseen htälöön osoittaa sen ratkaisuksi. b) Muokataan aluksi + = + = ( ) + = 0. Tehdään muuttujanvaihto sijoittamalla htälöön t = > 0, jolloin saadaan t t + = 0 t = ± ( ) t = ± t = tai t = molemmat kelpaavat! = tai = = 0 tai =. Yhtälön ratkaisut ovat siten = 0 ja = (tarkasta!). 6
7 9. Ratkaise epähtälö a) ln <. b) e e 0. Ratkaisu. a) Logaritmi on määritelt vain aidosti positiivisilla arvoilla, joten 0 eli. Ratkaistaan (lisää perustelut!): ln < e ln < e < e e < < e e < < + e. Ottaen huomioon määrittelehdon saamme ratkaisuiksi ] e, [ { +e \ }. b) Osoittaja ja nimittäjä voivat vaihtaa merkkiä ainostaan nollakohdissa. Tutkitaan nollakohdat erikseen. Osoittajalla on vain ksi nollakohta: e = 0 e = = 0. Nimittäjällä on ksi nollakohta, joka on samalla epähtälön määrittelemättömskohta: e = 0 e = = ln = ln. Tutkitaan osamäärän etumerkkiä merkkikaavion avulla: e + + e + Osamäärä + + ln 0 Epähtälön ratkaisut ovat siis ], ln [ [0, [. 7
Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista
Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
LisätiedotFunktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
Lisätiedotsin x cos x cos x = sin x arvoilla x ] π
Matematiikan johdantokurssi, syksy 08 Harjoitus 0, ratkaisuista. Todenna, että = + tan x. Mutta selvitäppä millä reaaliarvoilla se oikeasti pitää paikkansa! Ratkaisu. Yhtälön molemmat puolet ovat määriteltyjä
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.
LisätiedotMatematiikan pohjatietokurssi
Matematiikan pohjatietokurssi Demonstraatio, 8.-9.9.015, ratkaisut 1. Jaa tekijöihin (joko muistikaavojen avulla tai ryhmittelemällä) (a) x +x+ = x + x + = (x+) x +x+ = (x +x+1) = (x+1) (c) x 9 = (x) 3
LisätiedotReaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite
Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Hakemisto KATSO MYÖS: potenssi, juuret, polnomit, rationaalifunktiot, eksponenttifunktio, logaritmifunktio, trigonometriset funktiot, arcusfunktiot,
Lisätiedot2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
LisätiedotRationaalilauseke ja -funktio
4.8.07 Rationaalilauseke ja -funktio Määritelmä, rationaalilauseke ja funktio: Kahden polynomin ja osamäärä, 0 on rationaalilauseke, jonka osoittaja on ja nimittäjä. Huomaa, että pelkkä polynomi on myös
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
LisätiedotFunktio. Funktio on kahden luvun riippuvuuden ilmaiseva sääntö, joka annetaan usein laskulausekkeena.
n ja muuttujan arvon laskeminen on kahden luvun riippuvuuden ilmaiseva sääntö, joka annetaan usein laskulausekkeena. ESIMERKKI Tarkastele funktiota f() = + 7. a) Laske funktion arvo, kun =. b) Millä muuttujan
LisätiedotMatematiikan pohjatietokurssi
Matematiikan pohjatietokurssi Demonstraatio 3, 15.9.014 1. Mitkä seuraavista voisivat olla funktion kuvaajia ja mitkä eivät? Miksi? (a) (b) (c) (d) Vastaus: Kuvaajat b ja c esittävät funktioita. Huomaa,
LisätiedotKorkeamman asteen polynomifunktio
POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Korkeamman asteen polnomifunktio Määritelmä: Jos polnomifunktion asteluku n, niin funktiota sanotaan korkeamman asteen polnomifunktioksi, P: P = a n n + a n 1 n 1 +...
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
Lisätiedot1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotAlgebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.
Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
Lisätiedot2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
Lisätiedotmäärittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,
LisätiedotTekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
LisätiedotMAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014
0..0 MAOL-pistetsohje Matematiikka lht oppimäärä Kevät 0 Hvästä suorituksesta näk, miten vastaukseen on päädtt. Ratkaisussa on oltava tarvittavat laskut tai muut riittävät perustelut ja lopputulos. Arvioinnissa
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
Lisätiedot4 Derivaatta. 4.1 Funktion kasvun ja vähenemisen tutkiminen
4 Derivaatta 4. Funktion kasvun ja vähenemisen tutkiminen Eräitä kiinnostavimmista asioista funktioita tutkittaessa ovat funktion kasvavuus ja vähenevs. Funktio on jollain välillä kasvava, jos f(a) f(b)
LisätiedotNELIÖJUURI. Neliöjuuren laskusääntöjä
NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
LisätiedotFunktion raja-arvo ja jatkuvuus
Funktion raja-arvo ja jatkuvuus Funktion raja-arvo Monisteen määritelmässä 32 s 55 määritellään funktion f) raja-arvo f) ja sitä selitetään huomautuksen 33 kohdassa a) Seuraavassa on a hiukan tarkempi
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotJuuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =
LisätiedotEpäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt
Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon
Lisätiedot4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
LisätiedotReaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
LisätiedotOlkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:
4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x
LisätiedotKOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
LisätiedotMAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
Lisätiedot5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
Lisätiedot6*. MURTOFUNKTION INTEGROINTI
MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
LisätiedotMatemaattinen Analyysi
Vaasan liopisto, kevät 2015 / ORMS1010 Matemaattinen Analsi 8. harjoitus, viikko 18 R1 ma 16 18 D115 (27.4.) R2 ke 12 14 B209 (29.4.) 1. Määritä funktion (x) MacLaurinin sarjan kertoimet, kun (0) = 2 ja
LisätiedotYhden muuttujan reaalifunktiot
Yhden muuttujan reaalifunktiot Määritelmä Monisteessa määritellään, mitä tarkoittaa funktio eli kuvaus A B, missä A ja B ovat joitain reaalilukujoukkoja, siis joukon R osajoukkoja Itse asiassa aivan samalla
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotFunktion suurin ja pienin arvo DERIVAATTA,
Funktion suurin ja pienin arvo DERIVAATTA, MAA6 1. Suurin ja pienin arvo suljetulla välillä Lause, jatkuvan funktion ääriarvolause: Suljetulla välillä a, b jatkuva funktio f saa aina pienimmän ja suurimman
LisätiedotDifferentiaaliyhtälöt I, kevät 2017 Harjoitus 3
Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
Lisätiedot3 Raja-arvo ja jatkuvuus
3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla
Lisätiedot1.1. YHDISTETTY FUNKTIO
1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)
Lisätiedota) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )
Lisätiedot1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
LisätiedotPositiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
Lisätiedot( ) < ( ) Lisätehtävät. Polynomifunktio. Epäyhtälöt 137. x < 2. d) 2 3 < 8+ < 1+ Vastaus: x < 3. Vastaus: x < 5 6. x x. x < Vastaus: x < 2
Lisätehtävät Polnomifunktio 7. Epähtälöt = + 8. a) < + < + < Vastaus: ) < < Vastaus: < 8 8 8 = 8 = + c) ( ) < + ( ) < + < + < : ( > ) < Vastaus: < d) ( )
LisätiedotH5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
Lisätiedot6 Funktioita ja yhtälöitä
6 Funktioita ja yhtälöitä 6. Rationaali- ja juurifunktio LUVUN 6. YDINTEHTÄVÄT 60. a) Määritelty, kun a 0. ( a ) ( a ) a a y y ( a a )( a ( a )) a a a a y y a 6 a ( y) ( y) Toinen tapa: ( a ) ( a ) a a
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Lisätiedot3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
LisätiedotMatematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotRollen lause polynomeille
Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................
LisätiedotHY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
Lisätiedot1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotYlioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Lisätiedoty z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotKompleksiluvut Kompleksitaso
. Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotValintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
LisätiedotMITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan
Lisätiedot2.2.1 Ratkaiseminen arvausta sovittamalla
2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
Lisätiedot1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
LisätiedotMAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
Lisätiedot3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?
Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
LisätiedotLue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:
MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x
LisätiedotTRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT
3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään
Lisätiedotmäärittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.
MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä
Lisätiedot3.1 Väliarvolause. Funktion kasvaminen ja väheneminen
Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
Lisätiedot