Kidehilan perusominaisuudet

Koko: px
Aloita esitys sivulta:

Download "Kidehilan perusominaisuudet"

Transkriptio

1 Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla säännöllisin välein. Hilan säännöllisyydellä tarkoitetaan sitä, että siirryttäessä kahden identtisessä asemassa olevan pisteen välillä (translaatiosymmetria), ympärillä näkyvä atomirakenne on muuttumaton. Kiteellä voi translaatiosymmetrian lisäksi olla rotaatio-, peili- ja inversiosymmetrioita. Seuraavassa oletetaan, että kantaklusterilla ei ole magneettista momenttia. Magnetoituneissa aineissa joudutaan hilasymmetrian käsitettä yleistämään hieman.

2 Perusominaisuudet: 2D-kidehila Oheisessa kuvassa esiintyvät vektorit a ja b ovat alkeishilavektoreita ja niitä vastaavat neliö (vas.) ja vinoneliö (oik.) ovat kuvan 2D-hilojen alkeiskoppeja Kiteen alkiota, jota siirtäen toistamalla voidaan muodostaa makroskooppinen kide kutsutaan hilakopiksi. Pinta-alaltaan pienin hilakoppi on alkeiskoppi. Kiteellä voi olla useita alkeiskoppeja. Alkeiskopin särmät määrääviä vektoreita kutsutaan alkeisvektoreiksi. Mielivaltainen alkeisvektoreiden kokonaisluvuilla painotettu summa on Bravaisin hilan hilavektori.

3 Kiteen kanta Yksiatominen kanta Kaksiatominen kanta Kiteessä säännöllisesti toistuva rakenne voi koostua useammasta kuin yhdestä atomista. Yllä molemmat 2D-kiteet ovat suorakaidehiloja, mutta oikeanpuoleisessa kiteen kanta(klusteri) sisältää kaksi atomia. Biologisissa kiderakenteissa kanta voi koostua tuhansista atomeista!!

4 2D-hilan alkeiskopit ja -vektorit Hila voidaan koota hilakopeista (harmaa) Alkeiskoppi on pinta-alaltaan pienin hilakoppi Alkeiskoppi ei ole aina yksikäsitteinen (punaiset kopit) Vektoreita R na mb ; n, m 0, 1, 2, kutsutaan hilavektoreiksi (a 2, b 2 ); (a 3, b 3 ); (a 4, b 4 ) ovat kaikki alkeishilavektoreita Jos vektorit A ja B ilmoittavat kahden pisteen sijainnin kiteessä ja A B R nämä pisteet ovat symmetrialtaan samassa asemassa ko kiteessä.

5 Wigner-Seitz alkeiskoppi Wigner-Seitz alkeiskoppi: Valitaan mielivaltainen atomi (kantaklusteri) Piirretään suorat lähinaapureihin (klustereihin) Piirretään suorille normaalitasot puoleenväliin Tasojen rajoittama alue on hilan Wigner-Seitz alkeiskoppi Tällä alkeiskopilla on sama symmetria kuin koko hilalla

6 Bravaisin hilat Voidaan osoittaa, että äärettömänä jatkuva kide voi muodostua vain muutaman eri kidesymmetrian eli hilan avulla. Näitä aidosti erilaisia hiloja kutsutaan Bravaisin hiloiksi keksijänsä mukaan. Ruokasuolakide halkeaa kidetasoa pitkin Kiteen kasvatusta. Pyörivän tangon päässä on siemenkide, jonka jatkoksi kasvaa vähitellen uutta kidettä

7 Bravaisin hilat (2D) Bravaisin hiloja on 5 kahdessa dimensiossa ja 14 kolmessa. 7

8 Bravaisin hilat (3D) 8

9 Bravaisin hilat 1 Yleinen hila on trikliininen (triclinic) Erikoistapauksina saadaan lisäksi 13 erilaista Bravaisin hilaa. Hilat eroavat toisistaan hilakoppien särmien pituuksien ja niiden välisten kulmien suhteen. Kuvissa esiintyvät kopit eivät kaikki ole alkeiskoppeja.

10 Bravaisin hilat 2 Erilaisten avaruushilojen luokittelun esitti ensimmäisenä saksalainen fyysikko, professori Mauritius Ludovicus (Moritz Ludvig) Frankenheim 1835 julkaisussaan Die Lehre von der Cohäsion, umfassened die Elasticität der Gase, die Elasticität und Coharenz der flüssigen und festen Körper und die Krystallkunde, Breslau, Hän teki kuitenkin virheen (15 hilaa), jonka ranskalainen fyysikko Auguste Bravais korjasi Hän todisti olemassa olevan 14 Bravaisin hilaa.

11 (Yksinkertainen) Kuutiollinen hila (SC) Kuutiollisen hilan (särmän pituus d) alkeisvektorit: a dˆi b dˆj c dkˆ Alkeiskopin tilavuus: V a b c d 3 Kuutiollinen hila (simple cubic = SC) on yksinkertaisin 3D-hila. Kuutiolliseen hilaan järjestäytyneen aineen tiheys on kuitenkin alhainen (pakkaussuhde 52%) ja siksi se on luonnossa harvinainen.

12 Tilakeskinen kuutiollinen hila (BCC) Alkeisvektorit: d a ˆi ˆj kˆ 2 d b ˆi ˆj kˆ 2 d c ˆi ˆj kˆ 2 Tila- eli koppikeskisessä kuutiollisessa hilassa on kärkien lisäksi atomi (tai kantaklusteri) kuution keskipisteessä. Pakkaussuhde 68%. Esiintyy mm metalleissa kuten, rauta ja kromi. Alkeiskoppi muodostuu yo. kuvan alkeisvektoreiden muodostamasta särmiöstä. 3 Alkeiskopin tilavuus V a b c d / 2 Kuutiollinen hila + atomi kuution keskipisteissä Body centered cubic = BCC

13 Pintakeskinen kuutiollinen hila (FCC) Alkeishilavektorit 1 a d i j 2 1 b d j k 2 1 c d k i 2 Kuutiollinen hila + atomit tahkojen keskipisteissä Face centered cubic = FCC Pinta- eli tahkokeskisessä kuutiollisessa hilassa on kärkien lisäksi atomi (tai kantaklusteri) kuution jokaisen 6 tahkon keskipisteessä. Pakkaussuhde 74%. Alkeiskopin tilavuus 1 V a b c d 4 3

14 Esimerkkejä alkuaineiden hilarakenteista bcc: sarakkeen 1 alkuaineet, lisäksi rauta, wolframi ja kromi fcc: jalokaasut (ei helium), kupari, hopea ja kulta hcp: helium, Mg, Zn, Ti, osmium, harv. maametallit 14

15 Ruokasuolakide (FCC-hila) Kloorin uloin kuori täydentyy argonin elektroni konfiguraatioksi Cl :1s 2s 2 p 3s 3p. Natriumin uloin 3s elektroni siirtyy kloorille ja natrium saa neonin elektronikonfiguraation Na :1s 2s 2 p. Kuvassa on janalla yhdistetty samaan kantaklusteriin kuuluvat kloori- ja natriumionit Kloori- ja natriumatomien välinen sidos perustuu Coulombin vetovoimaan.

16 Timanttihila Timantissa on FCC-hila. Hilan kantaklusteri koostuu kahdesta hiiliatomista A ja B. Atomin A koordinaatit ovat (0,0,0) ja atomin B koordinaatit (1/4,1/4,1/4) yksiköissä d. Atomien z-koordinaatit yksiköissä d.

17 Timanttihila Esimerkkejä: pii, germanium, hiili (timantti)

18 Sinkkivälkehila Atomien z-koordinaatit yksiköissä d. Sinkkivälkehila on FCC-hila, jossa on kahden eri alkuaineen atomeista koostuva kantaklusteri. Atomin A (gallium) koordinaatit ovat (0,0,0) ja atomin B (arseeni) koordinaatit (1/4,1/4,1/4) yksiköissä d.

19 Sinkkivälkehila Esimerkkejä: GaAs, InP, GaP, GaSb, InSb, ZnS, ZnSe. GaN, SiC, ZnO pystyvät kiteytymään sinkkivälkehilaan, mutta wurtsiittirakenne on termodynaamisesti stabiilimpi.

20 Hilaparametreja Hilavakio = kuutiollisen hilan (konventionaalisen) hilakopin sivun pituus Koordinaatioluku = lähinaapurien lukumäärä. Esimerkiksi BCC-hilassa se on 8 ja FCC-hilassa 12. Lähinaapurietäisyys = lähinaapuriatomien välinen etäisyys, FCC-hilassa se on a 2 Pakkaussuhde (oletetaan atomi kovaksi palloksi) = pallojen lukumäärä x pallon tilavuus / yksikkökopin tilavuus

21 Hilaparametreja

22 Heksagonaalinen hila Yksinkertainen heksagonaalinen hila koostuu kuvan sinisistä atomeista. Alkeisvektorit (punaisella): a a ˆi a b 2 ˆi 3 ˆj c c kˆ

23 HCP-hila Heksagonaalinen tiivispakkaushila (HCP-hila) koostuu kahdesta limittäin olevasta yksinkertaisesta heksagonaalisesta hilasta, joista toinen (ml. vihreät atomit kuvassa) on siirretty vektorilla a 3 b 3 c 2 (kuvassa oranssillla).

24 Atomien tiivispakkaus Kovista palloista koottu tiivispakkaus (a) kuutiollinen tiivispakkaus (b) sama avattuna c) heksagonaalinen tiivispakkaus (d) sama avattuna Huomaa, että molemmissa sijoitustavoissa jokainen pallo koskettaa 12 naapuripalloa ts. hiloilla on sama tiheys!! Kuutiollinen tiivispakkaus vastaa FCC hilaa. Heksagonaalinen tiivispakkaus vastaa heksagonaalista (HCP) hilaa In 1611 Johannes Kepler asserted that there was no way of packing equivalent spheres at a greater density than that of a face-centred cubic arrangement. This is now known as the Kepler Conjecture. This assertion has long remained without rigorous proof, but in August 1998 Prof. Thomas Hales of the University of Michigan announced a computer-based solution.

25 HCP- ja FCC-pakkauksien ero Ensimmäisen kerroksen A päälle voidaan latoa toinen kerros joko pisteisiin B tai C. Jos toinen kerros pinotaan pisteisiin B, voidaan kolmas kerros latoa pisteisiin A (jolloin syntyy pino ABABA.., joka on HCP ) tai C jolloin syntyy edellisen kanssa ei ekvivalentti pino ABCABC joka on FCC

26 Wurtsiittihila Wurtsiittihila koostuu kahdesta päällekkäisestä HCP-hilasta (siirtovektori kuvissa punaisella), jotka muodostuvat erilaisista atomeista. Esimerkkejä: GaN, SiC, ZnO, AlN

27 Wurtsiittihilan ja sinkkivälkehilan ero Sinkkivälkehilan ja wurtsiittihilan erona on lähinaapuriatomien sidosten suunnat. Sinkkivälkehilassa lähinaapuriatomien sidokset ovat xy-tasossa kääntyneet 60 astetta toisistaan, mutta wurtsiittihilassa ne ovat samassa suunnassa.

28 Käänteishila Kun kuvataan elektronin tai fotonin vuorovaikutusta hilassa olevien atomien kanssa, voidaan tarkastella yleisesti tasoaaltoja. Sellainen ik r tasoaalto, jolla on Bravaisin hilan periodisuus ( R ) toteuttaa ehdon e ik r R ik r ik R e e e 1 Aaltovektoreiden K joukkoa kutsutaan käänteishilaksi ja alkuperäistä Bravaisin hilaa suoraksi hilaksi. Käänteishila määritellään vain Bravaisin hiloille. Käänteishila on aina myös Bravaisin hila. Voidaan osoittaa, että elektronin tai fotonin kokonaisheijastuksessa (Braggin diffraktio) aaltovektorin muutos on käänteishilavektori.

29 Käänteishilan alkeisvektorit Käänteishilan alkeisvektorit A, B ja C voidaan muodostaa suoran hilan alkeisvektoreista a, b ja c seuraavasti b c A 2 a b c c a B 2. a b c a b C 2 a b c Jos tämä operaatio toistetaan ja muodostetaan käänteishilan käänteishilan alkeisvektorit, osoittautuu, että ne ovat samat kuin alkuperäisen suoran hilan alkeisvektorit. Käänteishilan käänteishila on siis suora hila.

30 Periodisuusehdon toteutuminen Suoran hilan ( R) ja käänteishilan ( K) mikä tahansa hilapiste on vektori R n a n b n c K k A k B k C 1 2 3, missä indeksit n ja k ovat kokonaislukuja, jotta periodisuusehto toteutuu: Tällöin siis K R 2 n k n k n k 2 n e ik R i 2 n e 1.

31 SC-hilan käänteishila Yksinkertaisen kuutiollisen hilan (SC-hilan) käänteishila on SC-hila. Käänteishilan alkeiskopin sivun pituus on 2 d. 2 d Yleinen SC-hilan käänteishilavektori on siis 2 ˆ 2 ˆ 2 K l i m j n kˆ d d d

32 BCC-hilan käänteishila Tilakeskisen kuutiollisen hilan (BCChilan) käänteishila on pintakeskinen kuutiollinen hila (FCC-hila). 4 d Käänteishilavektorit A B C 2 d 2 d 2 d i j j k k i

33 FCC-hilan käänteishila Pintakeskisen kuutiollisen hilan (FCChilan) käänteishila on tilakeskinen kuutiollinen hila (BCC-hila). Käänteishilavektorit: 2 A ˆi ˆj kˆ d 2 B ˆi ˆj kˆ d 2 C ˆi ˆj kˆ d 4 d Kuutiollinen symmetria säilyy aina käänteishilassa.

34 Heksagonaalisen hilan käänteishila Heksagonaalisen hilan käänteishila on heksagonaalinen hila. Käänteishilan (kuva b) hilaparametrit saadaan alkuperäisen hilan (kuva a) hilaparametreista seuraavasti: a c 2 c 4 3a Hila myös kääntyy 30 astetta xy-tasossa.

35 Ensimmäinen Brillouinin vyöhyke muodostetaan seuraavasti: Brillouinin vyöhykkeet Jokaiseen Bravaisin hilaan liittyy käänteishila, jonka kantavektoreina ovat käänteishilaan kantavektorit A, B, C Piirretään eräästä hilapisteestä vektorit lähimpiin naapuripisteisiin (siniset vektorit). Piirretään näiden vektoreiden puoliväliin normaalitasot. Näiden tasojen sisään jäävä alue on 1. Brillouinin vyöhyke (oranssi alue). Toinen Brillouinin vyökyke (vihreä) piirretään samaan tapaan.

36 Elektronin takaisinsironta Braggin teorian mukaan oikealle etenevä elektroni kokonaisheijastuu, jos kahdesta atomitasosta (vihreä) tapahtuvien osaheijastusten matkaero on aallonpituuden kokonais monikerta. Tällöin 2d eli k 2 d mikä vastaa 1. Brillouinin vyöhykkeen reunaa.

37 Brillouinin vyöhykkeet (3D) Kolmessa dimensiossa SC-hilan ensimmäinen Brillouinin vyöhyke on kuutio, jonka särmän pituus on 2 /d. BCC-hilan (a) ja FCC-hilan (b) ensimmäiset Brillouinin vyöhykkeet kuvassa alla.

38 Symmetriapisteet Elektronivyörakenteen kannalta tärkeitä ovat ensimmäisen Brillouinin vyöhykkeen korkean symmetrian pisteet. Kuvassa FCC-hilan tärkeimmät symmetriapisteet. 4 a 0

39 Kidesuunnat Kiteessä voidaan määritellä hilarakenteen perusteella tiettyjä suuntia. Valitaan suorakulmaiset koordinaattiakselit kiteen symmetrian mukaisesti. Tietyn vektorin suunta voidaan tällöin ilmaista kolmella luvulla, jotka merkitään hakasulkuihin. Ekvivalentit (saman symmetrian) suunnat merkitään (esimerkiksi 100- sunnat): x z [110] [111] [111] y , 010, 001, 100, 0 10, 00 1

40 Kidetasot Kuinka määritellään kidetasot? Noudatetaan seuraavaa algoritmia (kuutiolliselle kiteelle): 1) Piirretään hilaan mukautuvat akselit x, y, z (origo hilapisteessä, akselit atomirivien mukaisesti). 2) Etsitään tason ja akselien leikkauspisteet. 3) Otetaan leikkauspisteistä käänteisluvut. 4) Lavennetaan kaikki samalla luvulla, jotta saadaan vain kokonaislukuja. Nämä ovat ns. tason Millerin indeksit (h k l).

41 Millerin indeksit 1 Esimerkki. Vaiheet 1 ja 2: tason ja akselien leikkauspisteet. Saadaan joukko (3 2 2). z 2 x 3 2 y

42 Millerin indeksit 2 Esimerkki. Vaihe 3. Otetaan käänteisluvut. Saadaan (1/3 1/2 1/2). z 2 x 3 2 y

43 Millerin indeksit 3 Esimerkki. Vaihe 4. Lavennetaan x 6. Saadaan (2 3 3). z 2 x 3 2 y

44 Millerin indeksit 4 Lisäesimerkkejä. Samanarvoiset tasot/pinnat (esim. 100): , 010, 001, 100, 010, 001

45 Lisää esimerkkejä suuntia kuutiollisessa kiteessä: tasoja kuutiollisessa kiteessä:

Kidehilan perusominaisuudet

Kidehilan perusominaisuudet Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla

Lisätiedot

Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia

Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia Kiinteän aineen ominaisuuksia I Kiteiden perustyypit Kiderakenteiden peruskäsitteitä Kiteisen aineen perusominaisuuksia Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan

Lisätiedot

Chem-C2400 Luento 2: Kiderakenteet Ville Jokinen

Chem-C2400 Luento 2: Kiderakenteet Ville Jokinen Chem-C2400 Luento 2: Kiderakenteet 11.1.2019 Ville Jokinen Oppimistavoitteet Metalli-, ioni- ja kovalenttinen sidos ja niiden rooli metallien ja keraamien kiderakenteissa. Metallien ja keraamien kiderakenteen

Lisätiedot

Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria

Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Kidesuunnat Kidesuuntien määrittäminen kuutiollisessa

Lisätiedot

Luku 3: Virheetön kide

Luku 3: Virheetön kide Luku 3: Virheetön kide Suurin osa teknisistä materiaaleista ovat kiteisiä. Materiaalit voidaan kiderakenteensa puolesta jakaa 7:ään kidesysteemiin ja 14:sta piste- eli Bravais-hilaan. Metallien kiderakenne

Lisätiedot

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017 Materiaalifysiikan perusteet 51104P Ratkaisut 1, Kevät 017 1. Kiderakenteen alkeiskopin hahmottamiseksi pyritään löytämään kuvitteellisesta rakenteesta sen pienin toistuva yksikkö (=kanta). Kunkin toistuvan

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

KIDETUTKIMUS. 1. Työn tavoitteet. 2. Työn taustaa

KIDETUTKIMUS. 1. Työn tavoitteet. 2. Työn taustaa Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 KIDETUTKIMUS 1. Työn tavoitteet Tässä työssä havainnollistetaan kiteisten aineiden rakenteen tutkimista röntgendiffraktion

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

Luku 3: Kiinteiden aineiden rakenne

Luku 3: Kiinteiden aineiden rakenne Luku 3: Kiinteiden aineiden rakenne Käsiteltäviä aiheita Kuinka atomit järjestyvät kiinteiksi aineiksi? (tällä erää keskitymme metalleihin) Kuinka materiaalin tiheys riippuu sen rakenteesta? Milloin materiaaliominaisuudet

Lisätiedot

1.5 RÖNTGENDIFFRAKTIO

1.5 RÖNTGENDIFFRAKTIO 1.5 RÖNTGENDIFFRAKTIO 1.5.1 Kiinteän aineen rakenne Kiinteät aineet voidaan luokitella kahteen ryhmään sen mukaan, millä tavalla niiden atomit tai molekyylit ovat järjestäytyneet. Amorfisten aineiden,

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

1.Growth of semiconductor crystals

1.Growth of semiconductor crystals BST, fall 2012 1 1.Growth of semiconductor crystals Origin of the properties of matter is in the atomic structure, or in more details, both in how electrons bind the atoms and in quantum dynamics of the

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu

T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta

Lisätiedot

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R), Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien

Lisätiedot

Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1

Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1 Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

! 7! = N! x 8. x x 4 x + 1 = 6.

! 7! = N! x 8. x x 4 x + 1 = 6. 9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

PHYS-C0240 Materiaalifysiikka kevät 2017

PHYS-C0240 Materiaalifysiikka kevät 2017 PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine on hyvä erottaa kiinteästä aineesta, johon kuuluu myös

Lisätiedot

Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250

Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250 Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia 9.2.2017 CHEM-A1250 Tasapaino ja tasapainovakio Kaksisuuntainen reaktio a A+ b B p P + r R Eteenpäin menevän reaktion nopeus: rr 1

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

763628S Kondensoidun materian fysiikka

763628S Kondensoidun materian fysiikka 763628S Kondensoidun materian fysiikka Jani Tuorila Fysiikan laitos Oulun yliopisto 10. tammikuuta 2012 Yleistä Kurssin verkkosivu löytyy osoitteesta: https://wiki.oulu.fi/display/763628s/ Etusivu Se sisältää

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

RUOSTUMATTOMAT TERÄKSET

RUOSTUMATTOMAT TERÄKSET 1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

Kenguru 2019 Student lukio

Kenguru 2019 Student lukio sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta

Lisätiedot

763628S Kondensoidun materian fysiikka

763628S Kondensoidun materian fysiikka 76368S Kondensoidun materian fysiikka Jani Tuorila Fysiikan laitos Oulun yliopisto 8. helmikuuta 01 Yleistä Kurssin verkkosivu löytyy osoitteesta: https://wiki.oulu.fi/display/76368s/etusivu Se sisältää

Lisätiedot

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5 Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =

Lisätiedot

KIINTEÄN AINEEN RAKENNE JA FYSIKAALISET OMINAISUUDET

KIINTEÄN AINEEN RAKENNE JA FYSIKAALISET OMINAISUUDET KIINTEÄN AINEEN RAKENNE JA FYSIKAALISET OMINAISUUDET... 78 7.1 Johdanto...78 7. Kiteiden perustyypit...80 7.3 Kiderakenteiden peruskäsitteitä...85 7.4 Hilavärähtelyt kiinteässä aineessa....91 7.4.1 Identtisten

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

Ionisidos ja ionihila:

Ionisidos ja ionihila: YHDISTEET KEMIAA KAIK- KIALLA, KE1 Ionisidos ja ionihila: Ionisidos syntyy kun metalli (pienempi elek.neg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos on

Lisätiedot

Määritelmä, metallisidos, metallihila:

Määritelmä, metallisidos, metallihila: ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Alikuoret eli orbitaalit

Alikuoret eli orbitaalit Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Vyöteoria. Orbitaalivyöt

Vyöteoria. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

1. Johdantoa. Kiinteiden aineiden jaottelu atomirakenteen mukaan:

1. Johdantoa. Kiinteiden aineiden jaottelu atomirakenteen mukaan: 1. Johdantoa Kiinteiden aineiden jaottelu atomirakenteen mukaan: Jaottelu makroskooppisten ominaisuuksien mukaan: - koheesioenergian - kemiallisten ominaisuuksien - "fysikaalisten" ominaisuuksien (kimmo,

Lisätiedot

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11 S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin

Lisätiedot

c) 22a 21b x + a 2 3a x 1 = a,

c) 22a 21b x + a 2 3a x 1 = a, Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana

Lisätiedot

Jaksollinen järjestelmä ja sidokset

Jaksollinen järjestelmä ja sidokset Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Jaksollinen järjestelmä

Jaksollinen järjestelmä Mistä kaikki alkoi? Jaksollinen järjestelmä 1800-luvun alkupuoli: Alkuaineita yritettiin 1800-luvulla järjestää atomipainon mukaan monella eri tavalla. Vuonna 1826 Saksalainen Johann Wolfgang Döbereiner

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus. Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

1. Materiaalien rakenne

1. Materiaalien rakenne 1. Materiaalien rakenne 1.3 Kiderakenteista 2. Luento 4.11.2010 www.helsinki.fi/yliopisto 1.3 Kiderakenteista 1.3.1 Aineen faasit: Kiteisyyden määrittäminen Kiteisyyden eli kiderakenteen määrittämiset

Lisätiedot

Chem-C2400 Luento 4: Kidevirheet Ville Jokinen

Chem-C2400 Luento 4: Kidevirheet Ville Jokinen Chem-C2400 Luento 4: Kidevirheet 18.1.2019 Ville Jokinen Oppimistavoitteet Liukoisuus (käsiteltiin luennolla 3) 0D, pistemäiset kidevirheet: (liukoisuus), vakanssit 1D, viivamaiset kidevirheet: dislokaatiot

Lisätiedot

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö. TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Johdantoa/Kertausta. Kemia on elektronien liikkumista/siirtymistä. Miksi?

Johdantoa/Kertausta. Kemia on elektronien liikkumista/siirtymistä. Miksi? Johdantoa/Kertausta MATERIAALIT JA TEKNOLOGIA, KE4 Mitä on kemia? Kemia on elektronien liikkumista/siirtymistä. Miksi? Kaikissa kemiallisissa reaktioissa tapahtuu energian muutoksia, jotka liittyvät vanhojen

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot