1.Growth of semiconductor crystals
|
|
- Helmi Rantanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 BST, fall Growth of semiconductor crystals Origin of the properties of matter is in the atomic structure, or in more details, both in how electrons bind the atoms and in quantum dynamics of the electrons or the quantum state. Metals, semiconductors and several insulators/dielectrics are crystalline solid materials with a regular periodic crystal structure. The crystal structure plays a significant role in the properties of matter.
2 1.1. SEMICONDUCTOR MATERIALS Conductivity of semiconductors depends on the temperature, doping and some other external factors (like light). In general, the conductivity (or resistivity) depends on the charge carrier concentration (or density) and the mobility of charge carriers. Charge carrier concentration Resistivity metals semimetals semiconductors dielectrics Elemental semiconductors are the ones in man group IV elements Si, Ge (ja C), ja binäärisiä yhdistepuolijohteita III V-, II VI- ja IV IV-yhdisteet. Ternäärisillä ja kvaternäärisillä yhdisteillä voidaan saada puolijohteille haluttuja ominaisuuksia. II III IV V VI BST, fall Alkuaine-pj. IV IV III V II VI
3 Puolijohteissa kuten eristeissäkin on miehitettyjen ja miehittämättömien sallittujen elektronitilojen välillä kielletty energiarako E g (myös energia-aukko, engl. bandgap). Energiaraon yli tapahtuvan transition energia emittoituu tai absorboituu fotonina, jonka aallonpituus on λ. Siten E g = hc / λ. Huom! (E / ev) (λ / µm) = BST, fall Yhdistepuolijohteiden seossuhteiden valinnan lisäksi puolijohteiden ominaisuuksia voidaan säätää myös seostamalla (engl. doping) hyvin pieniä määriä valittuja alkuaineita. Tällöin näitä aineita sanotaan epäpuhtauksiksi (engl. impurity) KIDEHILAT (engl. crystal lattice) Periodiset rakenteet Kiteen atomit ovat asettuneet paikoilleen jaksollisesti riveihin, jonoihin ja kerroksiin. Kiteessä aineen atomit ovat järjestyneet jaksollisesti kaikissa suunnissa. Sen sijaan amorfisen aineen (engl. amorphous) atomeilla ei ole pitkän kantaman järjestystä. Tällaisia aineita ovat mm. lasit, tyypillisesti esim. SiO 2. Monikiteinen aine (engl. polycrystalline) taas koostuu rakeista (engl. grain), joissa on kiderakenne, mutta rakeilla ei ole säännönmukaista järjestystä. Erilliskiteeksi (engl. single crystal) sanotaan makroskooppisen kokoista kidettä. Si- ja GaAskiekot ovat suuria erilliskiteitä. Käytännössä kiteissä on aina kidevikoja (eli kidevirheitä, engl. defect). Niitä voidaan käyttää myös säätämään materiaalin ominaisuudet halutuiksi.
4 Kiteen atomien järjestys, hila (engl. crystal lattice), saadaan toistamalla jaksollisesti ns. yksikkökoppia (engl. unit cell). Yksikkökoppi määrittelee kantavektorit a, b ja c ja niiden kokonaislukuiset yhdistelmät ovat translaatiovektoreita r = p a + q b + s c, (1-1) jotka määrittelevät hilapisteet (engl. lattice point). Yksikkökoppi ei ole yksikäsitteinen, vaan se voidaan valita usealla eri tavalla. Pienin yksikkökoppi on alkeiskoppi (engl. primitive cell) Kuutiolliset hilat Tavallisimmat ja tärkeimmät rakenteet ovat kuutiolliset hilat: yksinkertainen kuutiollinen (sc) BST, fall tilakeskeinen kuutiollinen (bcc) pintakeskeinen kuutiollinen (fcc) Yksikkökopin särmän pituutta sanotaan hilavakioksi a (engl. lattice constant). Fcc-rakene on ns. tiivispakkausrakenne (engl. close packed), jonka täyttösuhde on suurin mahdollinen, 74 % (= π 2 / 6). Se on tavallinen metalleilla. Myös heksagoninen tiivispakkausrakenne (egl. hexagonal close packed (hcp)) on tavallinen metalleilla.
5 Kidetasot ja -suunnat Kiteen atomien muodostama tietty taso voidaan ilmaista ns. Millerin indekseillä. Esim. 1 2 BST, fall Tavallisimmat tasot ovat {100} = Vektorin r = p a + q b + s c suunta on [pqs]. 111 = Kuutiollisessa hilassa (hkl ) [hkl ].
6 Timanttihila Puolijohdemateriaalien tavallisin kiderakenne on timanttihila (engl. diamond lattice) ja sen johdannainen sinkkivälkerakenne (engl. zincblende structure). Timanttihila saadaan asettamalla päällekkäin kaksi fcc-hilaa siten, että toinen on siirretty vektorin (a + b + c) / 4 verran ensimmäisen suhteen. Sinkkivälke- eli sfaleriittirakenne saadaan, kun em. fcc-hilat ovat eri alkuaineita. Alkuainepuolijohteilla on timanttirakenne ja binäärisillä yhdistepuolijohteilla taas tavallisimmin sinkkivälkerakenne. Joillakin II VI-yhdistepuolijohteilla on kuitenkin tavallisimmin wurtsiittirakenne. Useat yhdisteet voivat esiintyä molempina rakenteina. III V- ja II VI-yhdisteissä voi olla kahdenlaisia anioneita tai kationeita portaattomasti säädettävissä seossuhteissa. Esim. Ga x In 1 x As y N 1 y, missä 0 x 1 ja 0 y 1. BST, fall
7 1.3. KITEEN KASVATUS Puolijohdeteknologiassa tarvitaan suuria ja puhtaita erilliskiteitä. Epäpuhtauksien osuus voidaan saada jopa luokkaan 1: Materiaalit Tarvittavat alkuaineet saadaan kemiallisesti erottamalla sopivista yhdisteistä. Piikiekkojen valmistamiseen tarvittava Si saadaan piidioksidista, SiO 2 (hiekka) Erilliskidetangon kasvatus Erilliskiteisten puolijohdekiekkojen valmistamiseksi kasvatetaan sulasta materiaalista ns. Czochralski-menetelmällä tankoja (engl. ingot), jotka sitten leikataan kiekoiksi (engl. wafer). Yhdistepuolijohteiden kasvatuksessa tarvitaan menetelmää oikean seossuhteen säilyttämiseksi, esim. "liquid-encapsulated Czochralski method". BST, fall
8 BST, fall Kiekot (engl. wafer) Kasvatettu tanko prosessoidaan mekaanisesti haluttuihin määrämittoihin ja sahataan alle mm paksuisiksi (esim. 775 µm) kiekoiksi. Tankojen kidesuunnat määritetään röntgenkristallografian avulla ja merkitään kiekkoihin viistämällä yksi reuna esim. [110]-tasoa pitkin. Kiekkojen pinta, tavallisesti (100), käsitellään ja kiillotetaan mekaanisesti ja kemiallisesti Seostus (engl. doping) Kiekkojen seostusta voidaan tehdä jo kasvatusvaiheessa. Tällöin halutun seostuksen saamiseksi on tunnettava ns. jakautumakerroin k d = C S / C L, (1 6) missä C L ja C S ovat sulan ja kiteytyneen materiaalin epäpuhtauskonsentraatiot. Jakautumakerroin riippuu materiaaleista ja kasvatusolosuhteista. Esim. fosforille piissä se voi olla tietyissä olosuhteissa 0.35, ks. kirjan esimerkki 1 4.
9 1.4. EPITAKSIAALINEN KASVATUS Komponenttien valmistuksen kannalta tärkeimpiä kasvatusmenetelmiä on valmiille kiekolle tapahtuva kasvatus siten, että kiekko toimii "siemenenä" eli mallina kasvavalle kiderakenteelle. Tätä sanotaan epitaksiaaliseksi kasvatukseksi (engl. epitaxial growth, epitaxy, suom. epitaksia). Tällaisia menetelmiä ovat CVD / VPE LPE MBE Hilasovitus BST, fall Kun kasvatettava materiaali ja substraatti ovat eri yhdisteitä, on kyseessä heteroepitaksia (engl. heteroepitaxy). Tällöin tulee ottaa huomioon näiden materiaalien hilasovitus (engl. lattice matching, lattice fit). Valitsemalla yhdisteiden seossuhteet sopivasti saadaan rakenteiden jännitykset ja hilavirheet minimoiduksi, esim. In 0.53 Ga 0.47 As / InP. Ks. kuva Hyvin ohuita kerroksia ( 100 Å) voidaan kasvattaa myös "epäsovitettuina" (engl. lattice-mismatched), jolloin hallituilla jännityksillä voidaan virittää materiaalien ominaisuuksia. Tällaisia kerroksia sanotaan pseudomorfisiksi (engl. pseudomorphic). Kun misfit-kerroksen paksuus ylittää kriittisen paksuuden t C, on seurauksena kidevirheitä (misfit dislocations), joiden "kautta" hilaparametri muuttuu toiseksi. "Strained-layer superlattice"-rakenteessa (SLS) on vuoroin puristus- ja vetojännityksessä olevia kerroksia.
10 BST, fall
Luku 3: Virheetön kide
Luku 3: Virheetön kide Suurin osa teknisistä materiaaleista ovat kiteisiä. Materiaalit voidaan kiderakenteensa puolesta jakaa 7:ään kidesysteemiin ja 14:sta piste- eli Bravais-hilaan. Metallien kiderakenne
Chem-C2400 Luento 2: Kiderakenteet Ville Jokinen
Chem-C2400 Luento 2: Kiderakenteet 11.1.2019 Ville Jokinen Oppimistavoitteet Metalli-, ioni- ja kovalenttinen sidos ja niiden rooli metallien ja keraamien kiderakenteissa. Metallien ja keraamien kiderakenteen
Kidehilan perusominaisuudet
Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla
Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017
Materiaalifysiikan perusteet 51104P Ratkaisut 1, Kevät 017 1. Kiderakenteen alkeiskopin hahmottamiseksi pyritään löytämään kuvitteellisesta rakenteesta sen pienin toistuva yksikkö (=kanta). Kunkin toistuvan
Kidehilan perusominaisuudet
Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla
10. Puolijohteet. 10.1. Itseispuolijohde
10. Puolijohteet KOF-E, kl 2005 69 Metallit, puolijohteet ja useat eristeet ovat kiteisiä kiinteitä aineita, joilla on säännönmukainen jaksollinen atomijärjestys ja elektronien energioiden kaistarakenne.
1. Puolijohdekiteiden kasvatus
1. Puolijohdekiteiden kasvatus PTP, sl 2011 1 Aineiden ominaisuuksien perusta on niiden atomaarisessa rakenteessa, siinä kuinka elektronit sitovat atomeja toisiinsa sekä siinä kuinka atomit ja elektronit
KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA
KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r
Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia
Kiinteän aineen ominaisuuksia I Kiteiden perustyypit Kiderakenteiden peruskäsitteitä Kiteisen aineen perusominaisuuksia Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan
Chem-C2400 Luento 4: Kidevirheet Ville Jokinen
Chem-C2400 Luento 4: Kidevirheet 18.1.2019 Ville Jokinen Oppimistavoitteet Liukoisuus (käsiteltiin luennolla 3) 0D, pistemäiset kidevirheet: (liukoisuus), vakanssit 1D, viivamaiset kidevirheet: dislokaatiot
Puolijohteet. luku 7(-7.3)
Puolijohteet luku 7(-7.3) Metallit vs. eristeet/puolijohteet Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö
KIDETUTKIMUS. 1. Työn tavoitteet. 2. Työn taustaa
Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 KIDETUTKIMUS 1. Työn tavoitteet Tässä työssä havainnollistetaan kiteisten aineiden rakenteen tutkimista röntgendiffraktion
Vyöteoria. Orbitaalivyöt
Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien
1. Materiaalien rakenne
1. Materiaalien rakenne 1.3 Kiderakenteista 2. Luento 4.11.2010 www.helsinki.fi/yliopisto 1.3 Kiderakenteista 1.3.1 Aineen faasit: Kiteisyyden määrittäminen Kiteisyyden eli kiderakenteen määrittämiset
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria
Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Kidesuunnat Kidesuuntien määrittäminen kuutiollisessa
Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on
763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla
Luku 3: Kiinteiden aineiden rakenne
Luku 3: Kiinteiden aineiden rakenne Käsiteltäviä aiheita Kuinka atomit järjestyvät kiinteiksi aineiksi? (tällä erää keskitymme metalleihin) Kuinka materiaalin tiheys riippuu sen rakenteesta? Milloin materiaaliominaisuudet
4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017
OY/MFP R6 017 Materiaalifysiikan perusteet 514P Ratkaisut 6, Kevät 017 1. Koska kuvitteellisten materiaalien hila on pkk-hila, niiden käänteishila on tkk-hila ja Brillouin-koppi on Kuvan 1.1 mukainen.
1.5 RÖNTGENDIFFRAKTIO
1.5 RÖNTGENDIFFRAKTIO 1.5.1 Kiinteän aineen rakenne Kiinteät aineet voidaan luokitella kahteen ryhmään sen mukaan, millä tavalla niiden atomit tai molekyylit ovat järjestäytyneet. Amorfisten aineiden,
Työn tavoitteita. 1 Teoriaa
FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä
Thin Films Technology. Lecture 3: Physical Vapor Deposition PVD. Jari Koskinen. Aalto University. Page 1
Thin Films Technology Lecture 3: Physical Vapor Deposition PVD Jari Koskinen Aalto University Page 1 Thin film deposition PVD Solid target Line of sight deposition Physical Low substrate temperature PECVD
TL6931 RF-ASIC. Tavoitteet
TL6931 RF-ASIC Veijo Korhonen Tavoitteet Opiskelija saa kuvan integroitujen RFpiirien suunnittelusta. Perehtyminen yleisimpiin valmistusprosesseihin, pakkaustekniikoihin ja suunnittelutyökaluihin antaa
PHYS-C0240 Materiaalifysiikka kevät 2017
PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto
1. Johdantoa. Kiinteiden aineiden jaottelu atomirakenteen mukaan:
1. Johdantoa Kiinteiden aineiden jaottelu atomirakenteen mukaan: Jaottelu makroskooppisten ominaisuuksien mukaan: - koheesioenergian - kemiallisten ominaisuuksien - "fysikaalisten" ominaisuuksien (kimmo,
TASASUUNTAUS JA PUOLIJOHTEET
TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan
4. Selitä sanoin ja kuvin miten n- ja p-tyypin puolijohteiden välinen liitos toimii tasasuuntaajana?
Tentti 4..2006. a) Selitä Braggin laki röntgensäteiden heijastukselle kiteistä. b) Tutki onko tasoissa (00), (0) ja () sammuneita heijastuksia tilakeskeisessä kuutiollisessa rakenteessa. Toista sama pintakeskeisessä
Alikuoret eli orbitaalit
Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia
763628S Kondensoidun materian fysiikka
763628S Kondensoidun materian fysiikka Jani Tuorila Fysiikan laitos Oulun yliopisto 10. tammikuuta 2012 Yleistä Kurssin verkkosivu löytyy osoitteesta: https://wiki.oulu.fi/display/763628s/ Etusivu Se sisältää
Fysikaaliset ominaisuudet
Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?
Metallien plastinen deformaatio on dislokaatioiden liikettä
Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaatioiden ominaisuuksia Eivät ala/lopu tyhjästä, vaan: muodostavat ympyröitä alkavat/loppuvat raerajoille,
Metallien plastinen deformaatio on dislokaatioiden liikettä
Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta
Metallit jaksollisessa järjestelmässä
Metallit Metallit käytössä Metallit jaksollisessa järjestelmässä 4 Metallien rakenne Ominaisuudet Hyvin muokattavissa, muovattavissa ja työstettävissä haluttuun muotoon Lujia Verraten korkea lämpötilan
Vyöteoria. σ = neμ. Orbitaalivyöt
Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neμ elektronien
DEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Yleistietomateriaalia luentojen tueksi Aurinkokennotyypit: Mitä erilaisia aurinkokennotyyppejä on olemassa, ja miten ne poikkeavat ominaisuuksiltaan toisistaan? Yksikiteisen
Luento 12. Kiinteät aineet
Kiinteät aineet Luento 12 Kiinteät aineet ja nesteet kuuluvat molemmat kondensoituneisiin aineisiin. Niissä atomien väliset etäisyydet ovat atomien koon suuruusluokkaa eli 0.1 0.5 nm. Kiinteä aineen erottaa
Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen
6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi
PUOLIJOHTEISTA. Yleistä
39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa
, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
Pehmeä magneettiset materiaalit
Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit
Puhtaat aineet ja seokset
Puhtaat aineet ja seokset KEMIAA KAIKKIALLA, KE1 Määritelmä: Puhdas aine sisältää vain yhtä alkuainetta tai yhdistettä. Esimerkiksi rautatanko sisältää vain Fe-atomeita ja ruokasuola vain NaCl-ioniyhdistettä
DIARC-pintakäsittelyillä uusia ominaisuuksia tuotteisiin
Nanoteknologiaa koneenrakentajille DIARC-pintakäsittelyillä uusia ominaisuuksia tuotteisiin Juha Viuhko 1 kehittää ja valmistaa älykkäitä pintaratkaisuja parantamaan asiakkaiden tuotteiden ja palveluiden
Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde
Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 1. Johdanto 2. Rakenne ja toimintaperiaate 3. Kennon suorituskyvyn karakterisointi 4. Kennon komponenteista huokoinen puolijohde 5. Kennon komponenteista
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
MUUTOKSET ELEKTRONI- RAKENTEESSA
MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.
Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250
Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia 9.2.2017 CHEM-A1250 Tasapaino ja tasapainovakio Kaksisuuntainen reaktio a A+ b B p P + r R Eteenpäin menevän reaktion nopeus: rr 1
Luku 4: Hilaviat. Käsiteltäviä aiheita. Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on?
Käsiteltäviä aiheita Luku 4: Hilaviat Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on? Voidaanko vikojen määrää ja tyyppiä kontrolloida? Miten viat vaikuttavat materiaaliominaisuuksiin?
Lecture 4: Physical Vapor Deposition PVD
Thin Films Technology Lecture 4: Physical Vapor Deposition PVD Jari Koskinen Aalto University Page 1 Contents Plasma Ion surface interactions Film growth mechanisms Different PVD methods Commercial PVD
SMG-4300: Yhteenveto ensimmäisestä luennosta
SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.
781611S KIINTEÄN OLOMUODON KEMIA (4 op)
781611S KIINTEÄN OLOMUODON KEMIA (4 op) ma ti ke to pe 12.9. klo 12-14 19.9. klo 12-14 26.9. klo 12-14 3.10. klo 12-14 KE351 10.10. klo 12-14 17.10. klo 12-14 24.10. klo 12-14 31.10. klo 12-14 KE351 14.9.
Makroskooppinen approksimaatio
Deformaatio 3 Makroskooppinen approksimaatio 4 Makroskooppinen mikroskooppinen Homogeeninen Isotrooppinen Elastinen Epähomogeeninen Anisotrooppinen Inelastinen 5 Elastinen anisotropia Material 2(s 11
Määritelmä, metallisidos, metallihila:
ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön
Valosähköisten aurinkopaneeleiden hyötysuhteet
Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta Energiatekniikan koulutusohjelma BH10A0200 Energiatekniikan kandidaatintyö ja seminaari Valosähköisten aurinkopaneeleiden hyötysuhteet Efficiencies
Röntgenfluoresenssin käyttö tutkimuksessa
Röntgenfluoresenssin käyttö tutkimuksessa Oppimateriaalia toisen asteen ja lukion fysiikan tunnille Markku Rousu Oulun Yliopisto 11. toukokuuta 2016 Lyhyt katsaus asiakirjan sisältöön Tässä opetusmateriaalissa
Kokonaislukuoptiomointi Leikkaustasomenetelmät
Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat
Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000
Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat
763628S Kondensoidun materian fysiikka
76368S Kondensoidun materian fysiikka Jani Tuorila Fysiikan laitos Oulun yliopisto 8. helmikuuta 01 Yleistä Kurssin verkkosivu löytyy osoitteesta: https://wiki.oulu.fi/display/76368s/etusivu Se sisältää
SMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1
Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat
Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen
34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla
TEOREETTINEN FYSIIKKA TEKNIIKAN TUKENA
TEOREETTINEN FYSIIKKA 1 TEKNIIKAN TUKENA Tapio Rantala Fysiikka Tampereen teknillinen yliopisto http://www.tut.fi/semiphys SISÄLTÖ MITÄ FYSIIKKA ON Filosofiaa vai arkipäivää? Tiedettä vai tekniikkaa? MATERIAALIFYSIIKKA
RUOSTUMATTOMAT TERÄKSET
1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja
MIKI TAVAST KAVITEETIN VAIHESIIRTOON PERUSTUVA HEIJASTUS- MITTAUS. Diplomityö
MIKI TAVAST KAVITEETIN VAIHESIIRTOON PERUSTUVA HEIJASTUS- MITTAUS Diplomityö Tarkastaja: TkT Tomi Leinonen Tarkastaja ja aihe hyväksytty Luonnontieteiden tiedekuntaneuvoston kokouksessa 15.1.2014 II TIIVISTELMÄ
EPMAn tarjoamat analyysimahdollisuudet
Top Analytica Oy Ab Laivaseminaari 27.8.2013 EPMAn tarjoamat analyysimahdollisuudet Jyrki Juhanoja, Top Analytica Oy Johdanto EPMA (Electron Probe Microanalyzer) eli röntgenmikroanalysaattori on erikoisrakenteinen
KIINTEÄN AINEEN FYSIIKKA 763333A. Erkki Thuneberg
KIINTÄN AINN FYSIIKKA 763333A rkki Thuneberg Fysiikan laitos Oulun yliopisto 2014 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/763333a Verkkosivulta löytyy luentomateriaali (tämä
SMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
2. Verkkosilikaattiryhmän mineraalit ja niiden kidekemiallinen rakenne.
MINERALOGIAN PERUSKURSSI (771102) 25.9.2009 a) Kiisu c) Parametrisuhde d) Ametisti e) Yhdistetty kidemuoto f) Kaksosviirukkeisuus 2. Verkkosilikaattiryhmän mineraalit ja niiden kidekemiallinen rakenne.
Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
1. Materiaalien rakenne
1. Materiaalien rakenne 1.4 Metallien rakenne 4. Luento 11.11.2010 Theoretical Density, Example: Copper # atoms/unit cell Atomic weight (g/mol) Volume/unit cell (cm 3 /unit cell) na V c N A Avogadro's
Vertical Piezoelectric Structures for in-plane Actuation in MEMS Sensors
Vertical Piezoelectric Structures for in-plane Actuation in MEMS Sensors Elmeri Österlund School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology.
Faasimuutokset ja lämpökäsittelyt
Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja
Kvanttisointi Aiheet:
Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?
SMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran.
SMG-4300: Yhteenveto kolmannesta luennosta PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran. Aurinkokennon maksimiteho P max voidaan lausua tyhjäkäyntijännitteen
n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni
3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja
12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)
12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa
Luento5 8. Atomifysiikka
Atomifysiikka Luento5 8 54 Kvanttimekaniikan avulla ymmärrämme atomin rakenteen ja toiminnan. Laser on yksi esimerkki atomien ja valon kvanttimekaniikasta. Luennon tavoite: Oppia ymmärtämään atomin rakenne
Tekijä lehtori Zofia Bazia-Hietikko
Tekijä lehtori Zofia Bazia-Hietikko Tarkoituksena on tuoda esiin, että kemia on osa arkipäiväämme, siksi opiskeltavat asiat kytketään tuttuihin käytännön tilanteisiin. Ympärillämme on erilaisia kemiallisia
Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
sillä hilassa vaikuttava periodinen potentiaali vaihtelee väleillä, jotka ovat pieniä verrattuna aaltopaketin
Semiklassinen elektronidynamiikka Blochin teoria osoittaa, että metallikiteissä elektronit eivät siroa ioneista (kuten Druden malli olettaa). Metallit eivät kuitenkaan ole täydellisiä johteita, sillä mikään
Kiinteiden materiaalien rakenne
Kiinteiden materiaalien rakenne Ketelaarin diagrammi Fajansin säännöt: (1) Sidoksen polaarisuus pienenee kationin koon pienentyessä tai varauksen kasvaessa () Sidoksen polaarisuus pienenee anionin koon
SMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden
CHEM-C2210 Alkuainekemia ja epäorgaanisten materiaalien synteesi ja karakterisointi (5 op), kevät 2017
CHEM-C2210 Alkuainekemia ja epäorgaanisten materiaalien synteesi ja karakterisointi (5 op), kevät 2017 Tenttikysymysten aihealueita eli esimerkkejä mistä aihealueista ja minkä tyyppisiä tehtäviä kokeessa
Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),
Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien
Yksikkökoppi Pienin toistuva rakenne materiaalin sisällä.
Ashbyn kartat (Ashby diagrams) Kullakin materiaaliryhmällä on muutama ominaisuus, joka erottaa ne selvästi toisista materiaaliryhmistä. Ashbyn kartoissa materiaalit jaetaan ryhmiin. Niistä voidaan päätellä
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu
Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta
Mikroskooppisten kohteiden
Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε
DEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Kolmannen luennon aihepiirit Reduktionistinen tapa aurinkokennon virta-jännite-käyrän muodon ymmärtämiseen Lähdetään liikkeelle aurinkokennosta, ja pilkotaan sitä pienempiin
Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio
XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio Röntgenfluoresenssi Röntgensäteilyllä irroitetaan näytteen atomien sisäkuorilta (yleensä K ja L kuorilta) elektroneja. Syntyneen vakanssin paikkaa
Osallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
erilaisten mittausmenetelmien avulla
Säteilynkestävien pii-ilmaisimien ilmaisimien karakterisointi erilaisten mittausmenetelmien avulla Motivaatio sekä taustaa Miksi Czochralski-pii on kiinnostava materiaali? Piinauhailmaisimen toimintaperiaate
JAKSOLLINEN JÄRJESTELMÄ
JASOLLINEN JÄRJESTELMÄ Oppitunnin tavoite: Oppitunnin tavoitteena on opettaa jaksollinen järjestelmä sekä sen historiaa alkuainepelin avulla. Tunnin tavoitteena on, että oppilaat oppivat tieteellisen tutkimuksen
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014
763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin
Kellot, taajuuslähteet. Kellot, taajuuslähteet. Mittaustekniikan perusteet / luento 6 Perusmittalaitteet 4. Kideoskillaattorit
Mittaustekniikan perusteet / luento 6 Perusmittalaitteet 4 Kellot, taajuuslähteet Kellon (taajuuslähteen) epävarmuus riippuu käytetystä referenssistä Taajuusreferenssejä: Kvartsikiteet Mekaaninen värähtelijä
Ionisidos ja ionihila:
YHDISTEET KEMIAA KAIK- KIALLA, KE1 Ionisidos ja ionihila: Ionisidos syntyy kun metalli (pienempi elek.neg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos on
L 99/10 Euroopan unionin virallinen lehti 5.4.2012
L 99/10 Euroopan unionin virallinen lehti 5.4.2012 Suorakaiteen muotoinen tavara, jonka mitat ovat noin 60 300 cm ja joka koostuu kahdesta yhteenliimatusta kerroksesta (joista toinen on tekstiilikangasta