1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on

Koko: px
Aloita esitys sivulta:

Download "1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on"

Transkriptio

1 1467S Digitaalinen kuvankäsittely 1 Johdanto 1.1 Mitä digitaalinen kuvankäsittely on Kuva voidaan ajatella kaksiulotteiseksi funktioksi f(x, y), jossa x ja y ovat koordinaatit ja f:n arvo pisteessä (x, y) on kuvan intensiteetti tai harmaasävy tuossa pisteessä. Kun f:n, x:n ja y:n arvot ovat äärellisiä ja diskreettejä, puhutaan digitaalisesta kuvasta, ja digitaalisella kuvankäsittelyllä tarkoitetaan näiden kuvien käsittelemistä tietokoneella. Ihmisen näköaisti rajoittuu pieneen osaan sähkömagneettisen säteilyn spektristä. Tätä aluetta kutsutaan näkyväksi valoksi. Erilaiset kuvantamisjärjestelmät mahdollistavat kuitenkin sähkömagneettisen säteilyn kuvantamisen hyvin erilaisilta aallonpituuksilta gamma-aalloista radioaaltoihin. Digitaalinen kuva ei välttämättä perustu ollenkaan sähkömagneettiseen säteilyyn, mistä esimerkkejä ovat mm. ultraäänikuvat ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 1

2 1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on tai tietokonegrafiikka. Digitaaliseen kuvankäsittelyyn liittyvät olennaisesti mm. digitaalisen signaalinkäsittelyn ja konenäön alat. Digitaalisen kuvankäsittelyn ja konenäön rajaa ei ole helppo määritellä täsmällisesti, vaan hyödyllisempää on jakaa digitaalisten kuvien käsittely matalan, keski- ja korkean tason prosesseihin. Matalan tason prosesseissa sekä prosessin syöte että tulos ovat kuvia. Esimerkkejä matalan tason prosesseista ovat kohinan poisto kuvasta, kuvan terävöittäminen tai värikuvan muuttaminen väriavaruudesta toiseen. Keskitason prosesseja ovat mm. kuvan segmentointi (eli kuvan jakaminen mielekkäisiin pienempiin osiin) ja näiden osien kuvaaminen (description) eli esittäminen tunnistukseen sopivassa muodossa. Kuvan osien tunnistaminen tai luokittelu luetaan eri lähteissä joko keski- tai korkean tason prosessiksi. Kurssikirjassa näiden katsotaan olevan ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 2

3 1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä keskitason prosesseja. Korkean tason prosessien tavoite on kuvan tai sen tunnistettujen osien ymmärtäminen, ja mahdollisesti jonkinlainen päätöksenteko kuvan perusteella. Esimerkki korkean tason prosessoinnista voisi olla robotin ohjaaminen kamerasta tulevan kuvan perusteella. Yleensä kuten jatkossa tässäkin kurssissa digitaalisella kuvankäsittelyllä tarkoitetaan matalan tason sekä yksinkertaisimpia keskitason prosesseja. 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Gamma-säteiden kuvantamista käytetään hyväksi mm. lääketieteessä ja tähtitieteessä. Röntgensäteitä on hyödynnetty erityisesti lääketieteen kuvantamisessa jo ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 3

4 1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä pitkään. Perinteisten röntgenkuvien lisäksi röntgensäteiden avulla otetaan angiografia- eli verisuonikuvia sekä tietokonetomografiakuvia. Lääketieteen lisäksi röntgenkuvia käytetään tähtitieteessä sekä teollisuudessa mm. laaduntarkastukseen. Ultraviolettisäteilyn kuvantamista hyödynnetään mm. mikroskopiassa. Näkyvän valon ja infrapunasäteilyn kuvantaminen on arkielämästä kaikkein tutuinta: esimerkiksi digikamerat tai tavalliset skannerit perustuvat tähän. Arkisten sovellusten lisäksi näkyvän valon tai infrapunasäteilyn kuvantamista käytetään esim. kaukokartoitukseen (remote sensing) satelliiteista tai lentokoneista, visuaaliseen laaduntarkastukseen teollisuudessa tai erilaisiin automaattisiin tunnistustehtäviin kuten sormenjälkien tai rekisterikilpien tunnistukseen. Mikroaaltojen kuvantamisen selkeästi tärkein sovellus on tutka. Tutka perustuu mikroaaltojen lähettämiseen ja kohteesta heijastuvien aaltojen ilmaisuun antennin ja (digitaaalisen) signaalinkäsittelyjärjestelmän avulla. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 4

5 1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Radioaaltoja samoin kuin spektrin toisessa päässä olevia gammasäteitä käytetään lähinnä tähtitieteen ja lääketieteen kuvantamisessa. Lääketieteessä radioaaltoja käytetään magneettiresonanssikuvien (MRI) ottamiseen ja tähtitieteessä taivaankappaleita voidaan kuvata radiotaajuuksilla siinä missä muillakin sähkömagneettisen säteilyn spektrin alueilla. Kuvassa 1 on kuvia Crab-nimisestä pulsarista, jotka on otettu sähkömagneettisen spektrin eri alueilla. Kuten kuvasta näkyy, pulsari näyttää aivan erilaiselta eri aallonpituusalueilla. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 5

6 1467S Digitaalinen kuvankäsittely 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuva 1: Kuva Crab-pulsarista eri sähkömagneettisen spektrin alueilla kuvattuna. Vasemmalta oikealle: gamma-, röntgen-, näkyvän valon-, infrapuna- ja radiotaajuuksien alue Välttämättä kuvantamismenetelmä ei perustu lainkaan sähkömagneettiseen säteilyyn. Muita mahdollisia menetelmiä ovat mm. ääni (alle 100 Hz:n äänet geologiassa ja ultraäänikuvaus useissa sovelluksissa), elektronisuihku (elektronimikroskoopit) tai kuvien luominen tietokoneella (esim. fraktaalit). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 6

7 1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet 1.3 Kuvankäsittelyn vaiheet Erityisesti konenäkösovelluksissa kuvankäsittelyprosessi voidaan jakaa useaan vaiheeseen: 1. Kuvantaminen. Edellä käsiteltiin muutamia eri vaihtoehtoja digitaaliseen kuvanmuodostukseen. Menetelmästä riippumatta oletuksena yleensä on, että kuvantamisen tuloksena saadaan yksi- tai värikuvien tapauksessa useampikanavainen digitaalinen kuva. 2. Kuvan korostus tai entistäminen. Kuvan korostuksen tarkoituksena on saada kuva näyttämään paremmalta tai käyttötarkoitukseensa sopivammalta. Esimerkkejä kuvan korostusmenetelmistä ovat kuvan kontrastin lisääminen ja kuvan terävöittäminen. Kuvan entistämisessä lähtökohtana on, että kuvaan on kuvantamisessa tai jossain muussa vaiheessa tullut häiriö, jota pystytään jollain tavoin mallintamaan, ja tätä mallia käyttäen häiriön vaikutus pyritään poistamaan tai sitä ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 7

8 1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet pyritään vähentämään. 3. Segmentointi lähtee oletuksesta, että kuva koostuu useista mielekkäistä itsenäisistä osista (kuten varsinaisesta kuvattavasta kohteesta ja taustasta). Segmentoinnin tarkoituksena on erottaa nämä osat toisistaan. Automaattinen segmentointi on useissa sovelluksissa erittäin vaikeaa, mutta toisaalta segmentointi on kriittinen osa kuvankäsittelyprosessia, sillä epäonnistunut segmentointi johtaa pääsääntöisesti koko järjestelmän suorituskyvyn romahtamiseen. 4. Representaatio. Kuvan segmentoinnin jälkeen tuloksena on kutakin kuvan osaa esittävä pikselijoukko. Representaatio tarkoittaa näiden osien esittämistä erilaisten piirteiden avulla, toisin sanoen muodossa, joka sopii jatkokäsittelyyn ja tunnistukseen parhaiten. 5. Luokittelu ja tunnistus. Kuvan osat pyritään luokittelemaan edellisessä vaiheessa laskettujen piirteiden perusteella. Esimerkiksi videokuvaan ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 8

9 1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet perustuvassa liikennelaskentasovelluksessa pyritään tunnistamaan kuvasta ajoneuvot tai satelliittikuvasta etsitään automaattisesti peltoalueita. Kaikkia edellämainittuja vaiheita tarkastellaan tällä kurssilla. Muita digitaalisen kuvankäsittelyn alueita, joihin kurssilla perehdytään, ovat 1. Värikuvien käsittely. Suurimmassa osassa kurssia oletuksena on, että käsiteltävät kuvat ovat yksikanavaisia eli harmaasävykuvia. Monikanavaisten eli värikuvien käsittely on muuttunut jatkuvasti yhä tärkeämmäksi osaksi digitaalista kuvankäsittelyä, ja joiltain osin se eroaa harmaasävykuvien käsittelystä. 2. Aallokkeet. Aallokkeita käytetään moniin tarkoituksiin digitaalisessa kuvankäsittelyssä. 3. Kuvan kompressointi. Kompressoinnin eli pakkauksen tarkoituksena on vähentää kuvan esittämiseen tarvittavaa bittimäärää tallennus- tai ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 9

10 1467S Digitaalinen kuvankäsittely 1.3 Kuvankäsittelyn vaiheet tiedonsiirtokapasiteetin säästämiseksi. Kompressoinnissa käytetään hyväksi kuvassa esiintyvää toistoa eli redundanssia. 4. Morfologiset operaattorit perustuvat matemaattiseen morfologiaan. Niitä hyödynnetään mm. binäärikuvien käsittelyssä sekä kuvan segmentoinnissa ja representaatiossa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 10

11 1467S Digitaalinen kuvankäsittely 2 Digitaalisen kuvan perusteet 2.1 Havaitseminen Digitaalinen kuvankäsittely perustuu suurelta osin formaaliin matemaattiseen käsittelyyn, mutta toisaalta intuitio ja käytännönläheinen analyysi ovat tärkeitä käytettyjen menetelmien valinnassa. Tästä syystä ihmisen näköjärjestelmän tunteminen on oleellista kuvankäsittelyssä. Seuraavassa käsitellään ihmissilmän rakennetta, kuvanmuodostusta silmässä sekä silmän sopeutumista valaistusolosuhteisiin. Ihmissilmän rakenne on esitetty kuvassa 2. Silmän kuori muodostuu kolmesta kerroksesta: Sarveiskalvo ja kovakalvo muodostavat uloimman kerroksen. Näistä sarveiskalvo muodostaa suurimman osan silmän taittovoimasta. Silmän osat saavat ravinteensa suonikalvon verisuonista. Sisimpänä olevan verkkokalvon ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 11

12 1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen valoherkät solut tuottavat varsinaisen näköaistimuksen. Iiriksen keskellä oleva aukko, pupilli, säätelee silmään tulevan valon määrää. Pupillin halkaisija vaihtelee noin kahdesta kahdeksaan millimetriin. Sädekehän lihakset säätelevät mykiön paksuutta. Mykiö toimii silmässä linssinä. Verkkokalvolla on kahdenlaisia soluja: Tappi- ja sauvasoluja. Tappisolut ovat keskittyneet pääasiassa verkkokalvon keskellä olevalle tarkan näön alueelle, ja ne ovat herkkiä värille. Tappisoluihin perustuvaa näköä kutsutaan fotooppiseksi tai päivänäkemiseksi. Sauvasolut sen sijaan ovat levittäytyneet melko tasaisesti verkkokalvolle. Ne eivät ole herkkiä valon eri aallonpituuksille eli väreille, ja ne vaativat toimiakseen huomattavasti vähemmän valoa kuin tappisolut. Sauvasoluihin perustuvaa näköä kutsutaan skotooppiseksi tai hämäränäöksi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 12

13 1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen Kuva 2: Yksinkertaistettu kuva ihmissilmän rakenteesta ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 13

14 1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen Terävän kuvan muodostuminen silmässä perustuu siihen, että linssinä toimiva silmän mykiö muuttaa muotoaan sädekehän lihasten ohjaamana. Linssin polttoväli vaihtelee noin 14:n ja 17:n mm:n välillä. Kun ihminen katsoo kohdetta joka on yli 3 metrin päässä, mykiö on litteimmillään ja sen polttoväli pisimmillään. Kun kohde on lähempänä silmää, linssi muuttuu paksummaksi ja samalla polttoväli lyhenee. Ihmissilmä kykenee havaitsemaan valtavan suuren skaalan eri kirkausasteita: häikäisyrajalla valon intensiteetti on noin kertainen skotooppisen näön alarajaan verrattuna. Silmä ei kuitenkaan kykene havaitsemaan kaikkia näitä kirkkauksia kerralla vaan se adaptoituu tietylle kapeammalle sävyalueelle iiriksen koon muuttumisen ja verkkokalvon solujen adaptaation seurauksena. Kun silmä on adaptoitunut tietylle intensiteettialueelle, tätä aluetta tummemmat kohteet näkyvät mustina ja toisaalta sitä kirkkaamman valon tuleminen silmään aiheuttaa silmän adaptoitumisen yhä kirkkaammille intensiteeteille. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 14

15 1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen Koska digitaalisen kuvan arvot ovat diskreettejä, on olennainen ja mielenkiintoinen kysymys, kuinka monta eri harmaasävyä ihminen voi havaita eli kuinka paljon kahden harmaan kohteen intensiteetin tulee poiketa, jotta ihminen kokee ne erisävyisiksi. Tätä voidaan mitata esimerkiksi kuvan 3 järjestelyllä. Tässä taustan intensiteetti on I ja keskellä vilautetaan I:n verran kirkkaampaa aluetta. Pienintä muutosta, jolla koehenkilö havaitsee muutoksen 50 %:ssa kokeista, merkitään I c :llä. Nyt arvoa I c /I kutsutaan Weberin suhteeksi. Pieni Weberin suhde tarkoittaa, että pienet muutokset havaitaan ja suuri suhde, että vain suuret muutokset havaitaan. On huomattu, että Weberin suhteen arvo riippuu I:stä. Weberin suhde pienenee kun taustan intensiteetti kasvaa. Kerrallaan, yhdessä kohdassa ihmissilmä voi havaita korkeintaan parikymmentä eri harmaasävyä. Näin vähäinen määrä harmaasävyjä ei kuitenkaan riitä korkealaatuisen harmaasävykuvan esittämiseen, sillä katse kiertelee kuvassa ja eri kohdissa silmä adaptoituu erilaisten ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 15

16 1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen harmaasävyalueiden havaitsemiseen. Korkealaatuisen kuvan esittämiseen vaaditaankin yleensä yli 100 intensiteettitasoa. Ι Ι+ Ι Kuva 3: Koejärjestely, jolla mitataan harmaasävyjen erottelukykyä Havaittu, subjektiivinen intensiteetti ei usein riipu suoraan todellisesta, mitatusta valon intensiteetistä. Ensinnäkin on havaittu, että subjektiivinen intensiteetti on likimain absoluuttisen intensiteetin logaritmi. Lisäksi erilaiset optiset illuusiot kuten Machin nauhat ja kuvassa 4 esitetty ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 16

17 1467S Digitaalinen kuvankäsittely 2.1 Havaitseminen suhteellisesta kontrastista johtuva harha haittaavat harmaasävyjen havaitsemista. Kuva 4: Absoluuttisten harmaasävyjen havaitsemiseen liittyvä harha: kuvan ruudut A ja B ovat absoluuttiselta harmaasävyltään samat. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 17

18 1467S Digitaalinen kuvankäsittely 2.2 Valo ja sähkömagneettinen spektri 2.2 Valo ja sähkömagneettinen spektri Sähkömagneettista spektriä käsiteltiin edellisessä luvussa. Spektri jaetaan lyhyemmästä aallonpituudesta pidempään päin lueteltuna gamma-, röntgen-, ultravioletti-, näkyvän valon, infrapuna-, mikroaalto- ja radioaaltoalueisiin. Säteilyn taajuus ν ja aallonpituus λ liittyvät toisiinsa yhtälöllä λ = c ν, (2.2-1) jossa c on valon nopeus. Yhden fotonin energia riippuu myös taajuudesta: jossa h on Planckin vakio. E = hν, (2.2-2) Näkyvän valon aallonpituus on välillä 0, 43µm 0, 79µm. Värispektri voidaan jakaa kuuteen alueeseen (lyhyimmästä aallonpituudesta alkaen): violetti, sininen, vihreä, keltainen, oranssi ja punainen. Siirtymät näiden ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 18

19 1467S Digitaalinen kuvankäsittely 2.2 Valo ja sähkömagneettinen spektri välillä eivät luonnollisesti ole teräviä vaan väri muuttuu toiseksi vähitellen aallonpituuden muuttuessa. Väriä tarkastellaan tarkemmin luvussa 6. Se, minkä värisenä jokin kohde havaitaan, riippuu sekä kohteen valaisuun käytetyn valon väristä että kohteen heijastusominaisuuksista. Valkoinen valo sisältää käytännössä kaikkia näkyvän valon aallonpituuksia, ja esimerkiksi vihreinä havaittavat kohteet heijastavat valoa, jonka aallonpituus on välillä nm, ja absorboivat muilla aallonpituusalueilla olevan valon. Siitä heijastuu siis pääasiassa vihreää väriä vastaavia aallonpituuksia. Säteilyn aallonpituuden lisäksi sen määrällä on merkitystä. Eritysesti näkyvä valon ollessa kyseessä valon määrää kuvataan termeillä radianssi, luminanssi ja kirkkaus. Radianssi mittaa, kuinka paljon energiaa säteilylähteestä virtaa. Radianssin mittayksikkö on watti. Luminanssi mittaa havaitsijan havainnoimaa intensiteettiä. Esimerkiksi infrapunasäteilyn ollessa kyseessä säteilylähteen radianssi voi olla huomattavan suuri, mutta ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 19

20 1467S Digitaalinen kuvankäsittely 2.2 Valo ja sähkömagneettinen spektri lähde on hädin tuskin havaittavissa ihmissilmällä eli sen luminanssi on lähes nolla. Kirkkaus taas tarkoittaa havaitsijan kokemaa harmaasävyä. Kuten edellä todettiin, kirkkaus on subjektiivinen käsite ja siihen vaikuttavat monenlaiset tekijät eikä se ole helposti mitattavissa. Periaatteessa, mikäli voidaan kehittää sensori, joka mittaa energiaa tietyllä sähkömagneettisen spektrin alueella, voidaan tällä alueella säteileviä tai säteilyä heijastavia kohteita kuvantaa. Erityisesti mikroskopian alueella on kuitenkin huomattava, että nähdäkseen tietyn kohteen säteilyn aallonpituuden tulee olla samaa luokkaa tai pienempi kuin kohteen koko. Esimerkiksi vesimolekyylin läpimitta on luokkaa m, joten vesimolekyylien tutkimiseen tarvitaan sähkömagneettista säteilyä, jonka aallonpituus on tuota luokkaa tai pienempi, eli esimerkiksi röntgensäteitä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 20

21 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen 2.3 Kuvantaminen Kuvantamisessa sensori mittaa kuvattavasta kohteesta tietyllä spektrin alueella tulevaa säteilyä. Sensorin vaste riippuu jollain tavalla (ei välttämättä lineaarisesti) sensoriin tulevan säteilyn määrästä. Sensorin vaste muutetaan digitaaliseen muotoon ja yleensä sille suoritetaan joitain signaalinkäsittelyoperaatioita halutunlaisen kuvan saamiseksi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 21

22 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuva 5: 2-ulotteinen kuva voidaan muodostaa käyttämällä yksittäissensoria jota voidaan liikuttaa suhteessa kuvattavaan kohteeseen. Kuvassa 5 on esimerkki yksittäissensorista. Yksittäissensori voi olla esimerkiksi valodiodi. Kaksiulotteisen kuvan saamiseksi yksittäissensoria on liikutettava sekä x- että y-suunnassa. Tämän järjestelyn hyvä puoli on, että mekaanista liikettä voidaan kontrolloida sopivalla laitteistolla erittäin tarkasti, joten erittäin korkean tarkkuuden kuvien ottaminen on mahdollista (joskin hitaasti). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 22

23 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Yksittäissensoreita käyteteään myös lasereiden kanssa. Laserista tuleva säde ohjataan liikuteltavien peilien avulla kohteeseen ja sieltä heijastuva valo edelleen sensoriin. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 23

24 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuva 6: Esimerkkejä viivasensoreista ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 24

25 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Viivasensoreista on esimerkkejä kuvassa 6. Viivasensoreita käytettäessä sensoria tarvitsee liikuttaa enää yhdessä suunnassa kaksiulotteisen kuvan saamiseksi. Lääketieteen kuvantamisessa (tietokonetomografiassa, sekä MRI- ja PET-kuvauksessa) käytetään kuvassa oikealla puolella olevaa järjestelyä: Säteilylähde pyörii kuvattavan kohteen ympärillä ja vastapuolella on ko. säteilylle herkkä sensori. Kun mittauksia otetaan useissa eri suunnissa, sensorien vasteesta voidaan laskea kohteen poikkileikkauskuva nk. käänteisellä Radon-muunnoksella. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 25

26 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuva 7: Kuvantaminen matriisisensorilla ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 26

27 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Tavallisissa digitaalikameroissa ym. vastaavissa laitteissa käytetään sensorimatriisia, jossa on valoherkkiä sensoreita m n elementin matriisissa. Sensoritekniikasta riippuen värikuvia otettaessa tarvitaan yleensä useita sensoreita kuvapistettä kohti eri värikomponenttien mittaamiseksi. Kuvassa 7 on tyypillinen kuvausjärjestely sensorimatriisia käytettäessä: Valonlähteestä tuleva valo (tai muu sähkömagneettinen säteily) heijastuu kuvattavasta kohteesta, kulkee linssi- tai muun kuvantamisjärjestelmän läpi kuvatasolle, jossa on säteilylle herkkiä sensoreita. Sensorit integroivat niihin tulevaa säteilyenergiaa tietyn ajan (valotusajan) yli, jonka jälkeen kuvasignaali on luettavissa matriisista analogisessa muodossa. Lopuksi analoginen signaali muuutetaan digtaaliseksi A/D-muunnoksessa, jota tarkastellaan seuraavassa kappaleessa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 27

28 1467S Digitaalinen kuvankäsittely 2.3 Kuvantaminen Kuvanmuodostus Harmaasävykuva voidaan ymmärtää kaksiulotteiseksi funktioksi f(x, y), 0 < f(x, y) < (2.3-1) joka kuvaa kuvattavasta kohteesta kuvantamisjärjestelmään tulevan säteilyn määrää. Useimmissa tapauksissa f voidaan jakaa kahteen komponenttiin: valaistuskomponenttiin i(x, y) joka kuvaa säteilylähteestä kuvattavaan kohteeseen tulevan säteilyn määrää ja heijastuskomponenttiin r(x, y) joka kuvaa kuinka hyvin kuvattava kohde heijastaa säteilyä. Kuva f voidaan siis esittää tulona f(x, y) = i(x, y)r(x, y), (2.3-2) jossa 0 < i(x, y) < (2.3-3) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 28

29 1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi ja 0 < r(x, y) < 1. (2.3-4) 2.4 Kuvan näytteenotto ja kvantisointi Kuvantamisjärjestelmään tuleva signaali on jatkuva sekä paikan että intensiteetin suhteen. Digitaalisessa kuvassa sekä koordinaattien että kuvafunktion arvot ovat diskreettejä. Kuvan diskretoimista paikan suhteen kutsutaan näytteistämiseksi ja intensiteetin (amplitudin, kuvafunktion arvon) diskretoimista kvantisoinniksi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 29

30 1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi N y M 1 x Kuva 8: Tässä kurssissa kuvatason koordinaatisto valitaan seuraavasti: x- akselin positiivinen suunta on vasemmasta yläkulmasta alaspäin ja y-akselin positiivinen suunta vasemmasta yläkulmasta oikealle. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 30

31 1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi Olkoon aluperäinen jatkuva kuvafunktio f(x, y). Siitä otettuja näytteitä f(x 0 + x x, y 0 + y y), 0 x M 1, 0 y N 1 kutsutaan näytteistetyksi funktioksi. Huomaa, että kurssikirjan mukaisesti tässä kurssissa käytetään koordinaatteja x ja y välillä kuvaamaan jatkuvan funktion koordinaatteja ja välillä näytteistetyn funktion indeksejä. Kuvankäsittelyssä yleisesti käytetty koordinaattien merkitsemistapa poikkeaa matematiikan käytännöstä. Tässä kurssissa käytetty koordinaatisto on esitelty kuvassa 8. Näytteistettyä kuvaa käsitellään usein myös ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 31

32 1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi M N-matriisina: f(0, 0) f(0, 1)... f(0, N 1) f(1, 0) f(1, 1)... f(1, N 1) f(x, y) = f(m 1, 0) f(m 1, 1)... f(m 1, N 1) (2.4-1) Huomaa, että kurssissa käytetty kuvatason koordinaatiston valinta vastaa matriisilaskennassa perinteisesti käytettyjä indeksejä. Analogia-digitaalimuunnoksessa alkuperäisen kuvafunktion arvot kvantisoidaan tietylle määrälle harmaasävytasoja. Alkuperäisen funktion intensiteettiarvot [L min, L max ] kvantisoidaan välille 0,...,L 1. Rajaa L min pienemmät ja rajaa L max suuremmat intensiteetit leikkautuvat eli saavat arvon 0 tai L 1 kvantisoidussa funktiossa. Kuvassa 9 on esimerkki tasavälisestä kvantisoinnista: alkuperäinen funktion arvot kuvautuvat ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 32

33 1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi arvoiksi 0, 1....,7. Digitaaliset kuvat esitetään yleensä binäärimuodossa, joten käytännön syistä kvantisointitasojen määrä L valitaan usein siten, että se on 2:n potenssi: L = 2 k. (2.4-3) Nyt ilman kompressiota digitaalisen kuvan esittämiseen tarvitaan b = M N k (2.4-4) bittiä. Esimerkiksi 256:m harmaasävyn pikselin kuvan esittäminen vaatii bittiä = 256 kilotavua. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 33

34 1467S Digitaalinen kuvankäsittely 2.4 Kuvan näytteenotto ja kvantisointi kvantisoitu arvo alkuperäinen arvo Kuva 9: Esimerkki kvantisointifunktiosta, joka kvantisoi alkuperäisen funktion arvot tasavälisesti 8 kvantisointitasolle. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 34

35 1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä 2.5 Pikseleiden välisiä yhteyksiä Pikselin p = (x, y) 4-naapurit ovat ja sen diagonaalinaapurit ovat (x + 1, y), (x 1, y), (x, y + 1), (x, y 1) (x + 1, y + 1), (x + 1, y 1), (x 1, y + 1), (x 1, y 1). Pisteen 4-naapureita merkitään N 4 (p):llä ja diagonaalinaapureita N D (p):llä. Diagonaali- ja 4-naapurit yhdessä muodostavat pisteen 8-naapurit, N 8 (p):n, ks. kuva 10. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 35

36 1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä N 4(p) N (p) D N (p) 8 Kuva 10: Pisteen p 4-, diagonaali- ja 8-naapurit. Jotta kaksi pistettä olisivat vierekkäisiä (adjacent), niiden täytyy olla naapureita ja lisäksi niiden harmaasävyjen täytyy täyttää määrätty samanlaisuuskriteeri. Jos V :llä merkitään sitä harmaasävyjen joukkoa, jotka täyttävät samanlaisuuskriteerin (esim. voidaan määrätä, että V :hen kuuluvat harmaasävyt 0 30), 4-, 8- ja m-vierekkäisyys määritellään seuraavasti: 4-vierekkäisyys. Pisteet p ja q ovat 4-vierekkäisiä, jos niiden harmaasävyarvot kuuluvat V :hen ja q kuuluu N 4 (p):hen. 8-vierekkäisyys. Pisteet p ja q ovat 8-vierekkäisiä, jos niiden ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 36

37 1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä harmaasävyarvot kuuluvat V :hen ja q kuuluu N 8 (p):hen. m-vierekkäisyys. Pisteet p ja q ovat m-vierekkäisiä, jos niiden harmaasävyarvot kuuluvat V :hen ja 1. q kuuluu N 4 (p):hen tai 2. q kuuluu N D (p):hen ja joukkoon N 4 (p) N 4 (q) ei kuulu pikseleitä joiden harmaasävyarvo on V :ssä (a) (b) (c) Kuva 11: Esimerkki pisteiden välisestä vierekkäisyydestä kun V = {1} ja käytetään (a) 4-vierekkäisyyttä, (b) 8-vierekkäisyyttä, (c) m-vierekkäisyyttä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 37

38 1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä Polku pisteestä p = (x, y) pisteeseen q = (s, t) on jono erillisiä pisteitä (x 0, y 0 ), (x 1, y 1 ),...,(x n, y n ) siten että p = (x, y) = (x 0, y 0 ) sekä q = (s, t) = (x n, y n ), ja pisteet (x i 1, y i 1 ) ja (x i, y i ) ovat vierekkäisiä kun 1 i n. Olkoon S joukko pikseleitä kuvassa. Nyt p ja q ovat liittyneitä (connected) S:ssä jos on olemassa polku p:stä q:hun siten että kaikki polun pisteet ovat S:ssä. Olkoon p piste S:ssä. Tällöin niiden pisteiden joukkoa, jotka ovat liittyneitä p:hen S:ssä kutsutaan S:n liittyneeksi komponentiksi. Jos S koostuu tasan yhdestä liittyneestä komponentista, S:ää kutsutaan liittyneeksi joukoksi. Liittynyttä joukkoa kutsutaan kuvan alueeksi (region). Alueen R rajan (boundary, border, contour) muodostavat ne pisteet, joilla on vähintään yksi naapuri, joka ei ole R:ssä sekä ne R:n pisteet jotka ovat samalla koko kuvan reunapisteitä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 38

39 1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä Kuvan alueisiin liittyy oleellisesti myös reunan (edge) käsite. Rajan ja reunan oleellinen ero on, että raja on alueeseen liittyvä globaali käsite, ja se muodostaa suljetun polun kuvassa. Reuna sen sijaan on paikallinen käsite, ja sillä tarkoitetaan paikallista epäjatkuvuutta kuvan harmaasävyarvoissa. Reunojen ilmaisua käsitellään kappaleessa Etäisyysmittoja Olkoot p, q ja z kuvapisteitä, koordinaatteina (x, y), (s, t) ja (u, v). D on etäisyysfunktio eli metriikka, jos 1. D(p, q) 0 (D(p, q) = 0, jos ja vain jos p = q), 2. D(p, q) = D(q, p) ja 3. D(p, z) D(p, q) + D(q, z) (kolmioepäyhtälö). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 39

40 1467S Digitaalinen kuvankäsittely 2.5 Pikseleiden välisiä yhteyksiä p:n ja q:n välinen Euklidinen etäisyys: D e (p, q) = (x s) 2 + (y t) 2. (2.5-1) D 4 -etäisyys (city block, Manhattan distance): D 8 -etäisyys (chessboard): D 4 (p, q) = x s + y t. (2.5-2) D 8 (p, q) = max( x s, y t ). (2.5-3) On syytä huomata, että edellä esitettyjen etäisyysmittojen arvo ei riipu lainkaan kuvapisteiden harmaasävyistä; etäisyys lasketaan pelkästään koordinaattien avulla. Lisäksi voidaan määritellä kuvapisteiden arvoista riippuva etäisyys, D m -etäisyys, joka tarkoittaa lyhyimmän mahdollisen p:stä q:hun kulkevan m-polun pituutta. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 40

41 1467S Digitaalinen kuvankäsittely 2.6 Lineaariset ja epälineaariset operaatiot (a) (b) (c) Kuva 12: Esimerkkejä etäisyysmitoista. Ympyröityjen pisteiden välinen etäisyys (a), (b)- ja (c)-kohdassa on D e -mitalla 2 2, D 4 -mitalla 4 ja D 8 -mitalla 2. D m -mitalla etäisyys on (a)-kohdassa 2, (b)-kohdassa 3 ja (c)-kohdassa Lineaariset ja epälineaariset operaatiot Olkoon H operaattori, jonka syöte ja tulos ovat kuvia. H on lineaarinen operaattori, jos mille tahansa kuville f ja g sekä mille tahansa skalaareille a ja b pätee H {af + bg} = ah {f} + bh {g}. (2.6-1) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 41

42 1467S Digitaalinen kuvankäsittely 2.6 Lineaariset ja epälineaariset operaatiot Mikäli em. yhtälö ei päde, operaattorin sanotaan olevan epälineaarinen. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 42

43 1467S Digitaalinen kuvankäsittely 3 Kuvan korostus paikkatasossa Kuvan korostuksen tavoitteena on prosessoida kuvaa siten, että tuloskuva on valittuun sovellutukseen käyttökelpoisempi kuin alkuperäinen kuva. Kuvan korostusmenetelmät voidaan jakaa paikka- ja taajuustason menetelmiin. Tässä luvussa käsitellään paikkatason menetelmiä. 3.1 Taustaa Paikkatasolla tarkoitetaan sitä pikseleiden joukkoa, joka muodostaa varsinaisen kuvan. Paikkatason menetelmät käyttävät suoraan näiden pikseleiden arvoja kuvan prosessointiin. Paikkatason operaattori voidaan määritellä yhtälöllä g(x, y) = T [f(x, y)], (3.1-1) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 43

44 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia missä f(x, y) on syötekuva, g(x, y) on tuloskuva ja T on paikkatason operaattori, joka on määritelty jossain (x, y)-tason naapurustossa. T voi käyttää syötteenään yhden kuvan sijaan myös useampaa kuvaa, esimerkiksi jos T -operaatio määritellään usean syötekuvan keskiarvoistamiseksi. Paikkatason menetelmien perusajatus on, että prosessointi aloitetaan esim. kuvan vasemmasta yläkulmasta ja kunkin pikselin prosessoinnissa käytetään hyväksi syötekuvasta ko. pikselin ympärillä määritellyn suorakaiteen tai neliön muotoisen naapuruston harmaasävyjä. Tämän jälkeen naapurustoa siirretään pikselin verran oikealle ja käsitellään seuraava piste, jne. 3.2 Harmaasävymuunnoksia Yksinkertaisimmassa tapauksessa edellä mainitun naapuruston koko on 1 1, jolloin tuloskuvan pikselin arvo riippuu ainoastaan kyseisen pikselin arvosta lähtökuvassa. Tämä operaatio voidaan määritellä harmaasävyjen ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 44

45 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia muunnosfunktiona s = T(r), (3.1-2) missä r on syötekuvan f(x, y) harmaasävy ja s on harmaasävy tuloskuvassa g(x, y). Seuraavassa esitellään eräitä keskeisimpiä harmaasävymuunnoksia. Negatiivikuva Olkoon syötekuvassa harmaasävyjä välillä [0, L 1]. Tällöin kuvan negatiivikuva saadaan harmaasävymuunnoksella s = L 1 r. (3.2-1) Tällä muunnoksella voidaan korostaa erityisesti pieniä vaaleita harmaasävyalueita, jotka ovat tummien alueiden ympäröimiä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 45

46 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia Logaritmi Logaritmimuunnos määritellään yhtälöllä s = c log(1 + r), (3.2-2) missä c on vakio. Tämä muunnos kuvaa kapean alueen pieniä harmaasävyjä lähtökuvassa laajemmalle alueelle harmaasävyjä tuloskuvassa ja päin vastoin. Toisin sanoen, muunnos on käyttökelpoinen kun mielenkiintoinen informaatio kuvassa on keskittynyt harmaasävyalueen alapäähän. Eksponentiaalinen muunnos Eksponentiaalinen harmaasävymuunnos määritellään yhtälöllä s = cr γ, (3.2-3) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 46

47 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia missä c ja γ ovat positiivisia vakioita. Useiden kameroiden, näyttöjen, jne vaste on edellämainitun yhtälön mukainen, joten vastaavanmuotoinen gamma-korjaus tehdään harmaasävyarvoille lineaarisen vasteen saavuttamiseksi. Paloittain lineaariset muunnokset Paloittain määriteltyjä lineaarisia muunnoksia voidaan käyttää halutun harmaasävyalueen korostamiseen. Esimerkkejä paloittain määritellyistä lineaarisista muunnoksista on kuvassa 13. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 47

48 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia (r 2, s 2 ) s s s (r, s ) 1 1 r (a) r (b) r (c) Kuva 13: Esimerkkejä paloittain määritellyistä lineaarisista harmaasävymuunnoksista: (a) kontrastin venytys, (b) ja (c) erilaisia vaihtoehtoja intensiteetin viipalointiin. Kontrastin venytyksellä voidaan lisätä kuvan harmaasävydynamiikkaa. Pisteet (r 1, s 1 ) ja (r 2, s 2 ) määrittävät kuvauksen. Kun r 1 = s 1 ja r 2 = s 2, kyseessä on lineaarinen kuvaus, joka ei muuta kuvan harmaasävyjä. Jos taas ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 48

49 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia r 1 = r 2, s 1 = 0 ja s 2 = L 1, saadaan kynnystysfunktio joka kuvaa r 1 :tä pienemmät harmaasävyt mustaksi ja sitä suuremmat valkoiseksi. Valitsemalla näiden kahden ääritapauksen väliltä saadaan erilaisia kuvan kontrastia lisääviä funktioita. Intensiteetin viipalointi korostaa kuvan tiettyä harmaasävyaluetta. Kuvan 13 (b) mukainen kuvaus korostaa määrättyä aluetta ja säilyttää muut harmaasävyt ennallaan, ja kuvan 13 (c) mukainen kuvaus esittää halutun harmaasävyalueen kirkkaana ja kaikki muut harmaasävyt tummana. Bittitasojen viipaloinnissa esitetään harmaasävykuvan määrätyn bitin arvot mustavalkokuvana. Tätä voidaan hyödyntää esimerkiksi arvioitaessa, kuinka monen bitin tarkkuudella kuva pitää esittää jotta riittävä määrä yksityiskohtia saadaan säilytettyä. Esimerkki bittitason viipaloinnista on kuvassa 14. Kuten esimerkistä huomaa, tärkein informaatio on muutamaa eniten merkitsevää bittiä vastaavilla bittitasoilla, ja matalammilla tasoilla on pääasiassa pienempiä yksityiskohtia ja kohinaa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 49

50 1467S Digitaalinen kuvankäsittely 3.2 Harmaasävymuunnoksia ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 50

51 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi 3.3 Histogrammin prosessointi Olkoon kuvassa harmaasävyjä [0, L 1]. Tällöin kuvan histogrammi on diskreetti funktio h(r k ) = n k, jossa r k on harmaasävy välillä [0, L 1] ja n k on niiden kuvapisteiden lukumäärä, joiden harmaasävyarvo on r k. Normalisoidussa histogrammissa arvot on jaettu kuvapisteiden kokonaismäärällä n, eli p(r k ) = n k /n. Vapaasti tulkittuna normalisoitu histogrammi antaa estimaatin kunkin sävyn esiintymistodennäköisyydestä kuvassa. Histogrammin muoto antaa hyödyllistä infomaatiota kuvasta esim. kontrastin korostustarpeita silmälläpitäen. Esimerkkejä erilaisista harmaasävykuvista ja niiden histogrammeista on kuvassa 15. Histogrammin laskenta on yksinkertaista, joten histogrammeihin perustuvia kuvankäsittelymenetelmiä käytetään paljon reaaliaikaisissa kuvankäsittelysovelluksissa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 51

52 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 52

53 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Histogrammin tasoitus Oletetaan seuraavassa, että kuvan harmaasävyt on normalisoitu välille [0, 1] ja että normalisoitu harmaasävyjakauma p r (r) on määritelty ja positiivinen välillä [0, 1] ja se on jatkuva. Koska nyt jakauma on jatkuva eikä diskreetti, puhutaan todennäköisyystiheysfunktiosta histogrammin sijaan. Tarkastellaan harmaasävymuunnosta s = T(r), joka on 1. yksikäsitteinen ja monotonisesti kasvava kun 0 r 1 ja 2. 0 T(r) 1 kun 0 r 1. Tällöin käänteismuunnos s = T 1 (r) on olemassa, ja sillä on samat ominaisuudet. Nyt todennäköisyystiheysfunktioille p s (s) ja p r (r) on voimassa p s (s) = p r (r) dr ds. (3.3-3) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 53

54 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Kuvankäsittelyssä yleisesti käytetty harmaasävymuunnos on muotoa s = T(r) = r 0 p r (w)dw, (3.3-4) jossa w on integrointivakio. Huomaa, että T(r) on samalla satunnaismuuttujan r kertymäfunkio. Koska p r (r):n oletettiin olevan positiviinen välillä [0, 1], T(r) on yksikäsitteinen ja monotonisesti kasvava tällä välillä. Satunnaismuuttujan kertymäfunktion ominaisuuksista seuraa, että T(r) täyttää myös em. ehdon 2. Muunnoksen T(r) derivaatta on ds dr = dt(r) dr = d dr r 0 p r (w)dw = p r (r). (3.3-5) Nyt kaavasta saadaan s:n jakauma seuraavasti: p s (s) = p r (r) dr ds = p r(r) 1 p r (r) = 1, 0 s 1. (3.3-6) ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 54

55 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Muunnoksella T(r) saadaan siis kuvan harmaasävyjakauma muutettua tasaiseksi. Käytännön tilanteissa digitaalisilla kuvilla jakauma p r (r) ei ole jatkuva vaan diskreetti. Normalisoidulle histogrammille p r (r k ) = n k n muunnos T(r k ) määritellään seuraavasti: (3.3-7) s k = T(r k ) = k p r (r j ) = j=0 k j=0 n j n (3.3-8) Tätä operaatiota kutsutaan histogrammin tasoittamiseksi tai ekvalisoinniksi. Kaavan mukainen muunnos täyttää edellämainitut ehdot 1. ja 2., mutta toisin kuin jatkuvassa tapauksessa, tuloksena saatavan kuvan histogrammi ei yleensä ole täysin tasainen. Tämä johtuu muunnoksen diskreetistä luonteesta. Kuvassa 16 on esimerkki harmaasävykuvasta, jolle ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 55

56 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi on suoritettu histogrammin tasoitus Kuva 16: Esimerkki harmaasävykuvasta, jolle on suoritettu histogrammin tasoitus. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 56

57 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Histogrammin määrääminen Histogrammin tasoitus muuttaa kuvan histogrammin lähes tasaiseksi, mutta kaikissa tilanteissa tämä lähestymistapa ei ole paras mahdollinen vaan voi olla hyödyllisempää tavoitella jotain muuta kuin tasaista histogrammia. Käsitellään jälleen jatkuvia jakaumia. Olkoon p z (z) haluttu harmaasävyjakauma. Nyt muunnos G(z) = z 0 p z(w)dw muuttaa jakauman p z (z) tasajakaumaksi. Jos käänteismuunnos G 1 (s) on olemassa (ks. ehdot 1. ja 2. edeltä), se muuttaa tasajakauman jakaumaksi p z (z). Edellisessä kappaleessa kuvatulla muunnoksella s = T(r) voidaan annetun kuvan harmaasävyjakauma tasoittaa, joten jakauman määrittäminen tapahtuu yhdistetyllä muunnoksella z = G 1 (s) = G 1 (T(r)). (3.3-12) Tällä muunnos muuntaa jakauman p r (r) halutuksi jakaumaksi p z (z). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 57

58 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Käytännössä käänteismuunnoksen G 1 (s) määrittäminen voi olla vaikeaa jatkuvassa tapauksessa. Diskreetissä tapauksessa sen sijaan voidaan muunnokset toteuttaa yksinkertaisesti taulukoilla. Diskreetissä tapauksessa tosin pätee sama kuin histogrammin tasoittamisessa eli saavutettu jakauma ei usein ole täsmälleen halutun kaltainen. Esimerkki histogrammin määräämisellä saadusta kuvasta on kuvassa 17. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 58

59 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi (a) (b) (c) Kuva 17: Esimerkki histogrammin määräämisestä. (a) tavoiteltu histogrammi, (b) histogrammin määräämisellä saatu kuva, (c) tuloskuvan histogrammi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 59

60 1467S Digitaalinen kuvankäsittely 3.3 Histogrammin prosessointi Paikallinen käsittely Edellä esitetyt menetelmät ovat globaaleja, koska muunnosfunktio perustuu koko kuvan harmaasävyjakaumaan. Usein tarvitaan paikallista korostusta, koska globaali muunnos ei anna välttämättä hyvää tulosta. Paikallinen histogrammin käsittely toimii seuraavasti: 1. Määritellään n m suuruinen ympäristö (ikkuna), jota liikutetaan piste pisteeltä kuvan yli. 2. Kussakin pisteessä lasketaan n m ympäristön histogrammi, jota käytetään joko histogrammin tasoituksessa tai spesifioinnissa antamaan uusi arvo n m ympäristön keskipisteelle. 3. Ympäristö siirretään seuraavaan pisteeseen ja lasketaan uusi histogrammi. Laskenta-ajan pienentämiseksi voidaan käyttää myös ei-päällekkäisiä ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 60

61 1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla ympäristöjä, mikä saattaa kuitenkin aiheuttaa "shakkiruutuefektin". 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla Tässä osassa tarkastellaan kuvan korostusta aritmeettisilla ja loogisilla operaattoreilla. Loogista NOT-operaatiota lukuunottamatta kaikissa käsiteltävissä operaatioissa syötteenä on vähintään kaksi kuvaa. Perusajatus on, että syötekuvat ovat samankokoisia, ja jokaiselle pikselille lasketaan ko. pikselin summa, erotus, jne. lähtökuvissa. Mahdollisia operaatioita ovat mm NOT-operaattori. Syötteenä on vain yksi kuva ja tuloksena saadaan negatiivikuva (kaava 3.2-1). AND-operaattori ja OR-operaattori. Käytetään lähinnä binäärimaskien kanssa erotettaessa kuvasta tiettyä osaa käsittelyä varten. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 61

62 1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla AND-operattoria käytettäessä maskin ykkösiä vastaavat pikselit lähtökuvassa pysyvät ennallaan ja nollia vastaavat pikselit muuttuvat mustiksi. OR-operaattoria käytettäessä maskin ykkösiä vastaavat pikselit muuttuvat valkoisiksi ja nollia vastaavat pikselit pysyvät ennallaan. Kertolasku. Kertolaskun avulla voidaan toteuttaa monimutkaisempia maskioperaatioita: binäärimaskin sijasta voidaan käyttää harmaasävymaskia. Yhteen- ja vähennyslasku. Yhteenlaskua (keskiarvoistamista) voidaan käyttää kohinan vähentämiseen ja vähennyslaskua kuvien välisten erojen osoittamiseen. Näitä käsitellään tarkemmin seuraavassa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 62

63 1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla Kuvien vähentäminen Kuvien vähentämisellä saadaan esille kahden kuvan välinen ero. Tätä voidaan hyödyntää mm. Tutkittaessa kuvankäsittelyoperaation (esim. kuvan bittimäärän vähennyksen) vaikutusta kuvaan: vähennetään käsitelty kuva alkuperäisestä Lääketieteellisessä kuvantamisessa: esimerkiksi käytettäessä varjoainetta röntgenkuvassa vähennetään ilman varjoainetta otettu kuva varjoaineen kanssa otetusta kuvasta jolloin saadaan verisuonet selvästi näkyviin. Liikkuvien kohteiden ilmaisussa ja seuraamisessa: vähennetään paikallaan olevalla kameralla otetun kuvasekvenssin kaksi kuvaa toisistaan. Erotuskuvassa on (kohinan lisäksi) kuvien ottamisen välillä liikkuneet kohteet. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 63

64 1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla Jos alkuperäisissä kuvissa on harmaasävyja [0,..., L 1], voi erotuskuvassa olla arvoja [ (L 1),...,0,...,L 1]. Yleensä digitaalisissa kuvissa ei sallita negatiivisia arvoja. Ongelman voi ratkaista esim. seuraavilla kahdella tavalla: joko lisätään erotuskuvaan vakio L 1 ja jaetaan tulos kahdella, tai lisätään erotuskuvaan sen pienimmän arvon vastaluku ja kerrotaan tulos luvulla (L 1)/(Max), missä Max on muunnetun kuvan suurin arvo. Ensimmäinen ratkaisu on yksinkertainen toteuttaa, mutta sen seurauksena koko käytettävissä oleva harmaasävyalue ei välttämättä ole käytössä. Jälkimmäinen menetelmä taas on toteutukseltaan hieman monimutkaisempi, mutta se takaa, että lopullisessa tuloskuvassa koko harmaasävyalue on käytössä. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 64

65 1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla Kuvien keskiarvoistaminen Oletetaan, että alkuperäiseenkuvaan f(x, y) summaututuu kohinaa η(x, y), eli g(x, y) = f(x, y) + η(x, y). (3.4-2) Oletetaan lisäksi, että eri pikseleiden kohinanäytteet ja saman pikselin ajallisesti peräkkäiset kohinanäytteet ovat korreloimattomia, ja että kohina on nollakeskiarvoista. Tavoitteena on vähentää kohinaa ottamalla laskemalla keskiarvokuva ḡ(x, y) joukosta kohinaisia kuvia {g i (x, y)}: ḡ(x, y) = 1 K K g i (x, y). (3.4-3) i=1 Jos edellämainitut kohinaa koskevat oletukset pitävät paikkansa, voidaan ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 65

66 1467S Digitaalinen kuvankäsittely 3.4 Kuvan korostus aritmeettisilla ja loogisilla operaattoreilla osoittaa että keskiarvokuvan odotusarvo ja varianssi saadaan kaavoista ja E{ḡ(x, y)} = f(x, y) (3.4-4) σ 2 ḡ(x,y) = 1 K σ2 η(x,y). (3.4-5) Keskiarvokuvan varianssi siis laskee kun K kasvaa eli käytännössä kuvassa oleva kohina vähenee kun lasketaan keskiarvo useasta kuvasta. Tämä kuitenkin vaatii, että kuvattavasta kohteesta voidaan ottaa identtisiä peräkkäisiä otoksia, jotka pystytään kohdistamaan tarkasti päällekkäin. Useissa sovelluksissa tämä ei ole mahdollista, mutta keskiarvoistamista käytetään mm. mikroskopiassa ja astronomiassa. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 66

67 1467S Digitaalinen kuvankäsittely 3.5 Spatiaalisen suodatuksen perusteita 3.5 Spatiaalisen suodatuksen perusteita Spatiaaliset suodatusmenetelmät perustuvat artimeettisten tai loogisten operaatioiden suorittamiseen kunkin pikselin määrätyssä naapurustossa. Yleensä suodatuksessa käytetään myös maskia (ks. kuva 18), joka on naapuruston kokoinen matriisi, joka sisältää suodattimen kertoimet, jotka määräävät ko. suodattimen ominaisuudet. f(x 1,y 1) f(x 1,y) f(x 1,y+1) w( 1, 1) w( 1,0) w( 1,1) f(x,y 1) f(x,y) f(x,y+1) w(0, 1) w(0,0) w(0,1) f(x+1,y 1) f(x+1,y) f(x+1,y+1) w(1, 1) w(1,0) w(1,1) Kuva 18: 3 3-naapurusto kuvassa f(x, y) sekä 3 3-maski w. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 67

68 1467S Digitaalinen kuvankäsittely 3.5 Spatiaalisen suodatuksen perusteita Lineaarisessa spatiaalisessa suodatuksessa tuloskuvan pikselin arvo saadaan laskemalla summa naapuruston pikseleiden arvoista kerrottuna vastaavilla maskin kertoimilla eli a b g(x, y) = w(s, t)f(x + s, y + t), (3.5-1) s= a t= b jossa w on (2a + 1) (2b + 1)-kokoinen maski, f on lähtökuva ja g tuloskuva. Voidaan osoittaa, että tämä operaatio on lineaarinen eli täyttää ehdon Epälineaarisessa spatiaalisessa suodatuksessa käytetään myös naapuruston arvoja, mutta painotetun summan sijaan käytetään jotain muuta aritmeettista tai loogista operaatiota, jonka seurauksena ehto ei täyty. Naapuruston arvoista voidaan laskea esim. mediaani tai varianssi. Kuvan reunoilla ei kaikilla pikseleillä ole vaadittavia naapureita, jotta kyseinen pikseli voitaisiin käsitellä normaalisti. Tällöin on olemassa mm. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 68

69 1467S Digitaalinen kuvankäsittely 3.5 Spatiaalisen suodatuksen perusteita seuraavia vaihtoehtoja: 1. Käsitellään vain ne pikselit, joilla on kaikki tarvittavat naapurit. Tämän käsittelytavan seurauksena tuloskuva on pienempi kuin lähtökuva. 2. Käytetään reunoilla erilaista maskia tai alkuperäisestä maskista vain ne kertoimet jotka osuvat kuvan todellisten pikseleiden päälle. 3. Käsitetään kuva syklisesti suljetuksi. Käytetään harvoin, ja tälle käsittelytavalle tulisi olla joku perustelu. Ks. kuva 19 (a). 4. Heijastetaan reunapikseleiden arvot niiden ympärille. Ks. kuva 19 (b). 5. Oletetaan kuvan ulkopuoliset pisteet nolliksi. Ks. kuva 19 (c). ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 69

70 1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet (a) (b) (c) Kuva 19: Vaihtoehtoja reunojen käsittelyyn spatiaalisessa suodatuksessa. (a) Kuvan käsittäminen sykliseksi, (b) Heijastaminen, (c) Ulkopuolisten pisteiden olettaminen nolliksi. 3.6 Tasoittavat spatiaaliset suodattimet Kuvan tasoittamisen (smoothing) tai sumentamisen (blurring) tavoitteena on vähentää kuvasta kohinaa sekä tarpeettomia yksityiskohtia ennen ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 70

71 1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet jatkokäsittelyä. Tasoittaminen myös yhdistää pienet katkeamat reunoissa tai käyrissä. Kuvassa 20 on esimerkki tasoituksen käytöstä. Eräitä tasoittavia suodattimia kutsutaan myös alipäästösuodattimiksi. Tämän nimityksen perusteluja käsitellään luvussa 4. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 71

72 1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet (a) (b) (c) (d) Kuva 20: Esimerkki tasoituksen käytöstä kuvankäsittelyssä. Alkuperäisessä kuvassa (a) on paljon kohinaa ja kuvan renkaassa on pieni katkos. Jos tavoitteena on mustavalkoinen kuva, jossa on yhtenäinen rengas, tästä kuvasta ei saada hyvää tulosta millään kynnysarvolla (b). Jos sen sijaan kuvaa tasoitetaan ensin (c) ja tasoitettu kuva kynnystetään (d), tulos on merkittävästi parempi. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 72

73 1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet Tasoittavat lineaariset suodattimet Tasoittavissa lineaarisissa suodattimissa perusajatus on, että kunkin pikselin naapurustosta lasketaan painotettu tai painottamaton keskiarvo. Yleisesti tämä voidaan laskea kaavalla g(x, y) = a b s= a t= b w(s, t)f(x + s, y + t) a s= a b t= b w(s, t), (3.6-1) missä esim. 3 3-naapurustoa ja painottamatonta keskiarvoa käytettäessa w on w = ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 73

74 1467S Digitaalinen kuvankäsittely 3.6 Tasoittavat spatiaaliset suodattimet ja painotettua keskiarvoa käytettäessä w voi olla esim w = Järjestysstatistiikkaan perustuvat suodattimet Usein käytetyt epälineaariset tasoittavat suodattimet perustuvat järjestysstatistiikkaan. Näistä yleisin on mediaanisuodatin, jossa k k-naapuruston keskipisteen uudeksi arvoksi tulee naapuruston harmaasävyjen mediaani eli keskimmäinen arvo kun naapuruston harmaasävyt on laitettu suuruusjärjestykseen. Yleensä mediaanisuodatus hämärtää kuvassa olevia reunoja vähemmän kuin lineaariset tasoittavat suodattimet. ulun yliopisto, sähkö- ja tietotekniikan osasto Slide 74

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

6*. MURTOFUNKTION INTEGROINTI

6*. MURTOFUNKTION INTEGROINTI MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t

Lisätiedot

Värijärjestelmät. Väritulostuksen esittely. Tulostaminen. Värien käyttäminen. Paperinkäsittely. Huolto. Vianmääritys. Ylläpito.

Värijärjestelmät. Väritulostuksen esittely. Tulostaminen. Värien käyttäminen. Paperinkäsittely. Huolto. Vianmääritys. Ylläpito. Tällä tulostimella voidaan tulostaa värillisiä asiakirjoja. Värituloste herättää huomiota, lisää arvostusta ja tulosteen tai tietojen arvoa. käyttö lisää lukijoiden määrää, sillä väritulosteet luetaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Esimerkki - Näkymätön kuu

Esimerkki - Näkymätön kuu Inversio-ongelmat Inversio = käänteinen, päinvastainen Inversio-ongelmilla tarkoitetaan (suoran) ongelman ratkaisua takaperin. Arkipäiväisiä inversio-ongelmia ovat mm. lääketieteellinen röntgentomografia

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot