Digitaalinen kuvankäsittely T (5 op) L. Syksy 2005

Koko: px
Aloita esitys sivulta:

Download "Digitaalinen kuvankäsittely T-61.5100 (5 op) L. Syksy 2005"

Transkriptio

1 Digitaalinen kuvankäsittely T (5 op) L Syksy 2005 Luennot: Laskuharjoitukset: Jorma Laaksonen Jukka Iivarinen OPETUSMONISTE 2005

2 Luento # Yleistä kurssista Kurssin suorittaminen Ilmoittautuminen Tiedotukset Luennot Laskuharjoitukset Poikkeuksia luento- ja harjoitusajoista Kirja Monisteet Harjoitustehtävä Tentti Suhde vanhaan T kurssiin Kurssi eri tutkinto-ohjelmien moduuleissa Kurssipalaute Johdanto Päämäärät ja osa-alueet (1.1) Historiaa (1.2) Yhteydet muihin aloihin (1.2)

3 3 2.4 Sovelluksia (1.3) Kuvantamismenetelmiä (1.3) Kuvankäsittelyn vaiheet (1.4) Kuvankäsittelyjärjestelmän osat (1.5) Ihmisen näköjärjestelmän perusteita Ihmissilmän rakenne (2.1) Verkkokalvon reseptorit (2.1.1) Kuvanmuodostus (2.1.2) Kirkkauden erottelu (2.1.3) Adaptoituminen valaistukseen (2.1.3) Machin nauhat (2.1.3) Valo fysikaalisena suureena (2.2) Kuvanmuodostus Kuvanmuodostusvälineitä (2.3) Yksittäissensori (2.3.1) Viivasensorit (2.3.2) Matriisisensori (2.3.3) Kuvamalli (2.3.4) Digitaalisen kuvan esitysmuoto

4 5.1 Koordinaatit (2.4.2) Näytteenotto ja kvantisointi (2.4.2) Kuvan subjektiivinen laatu (2.4.3) Digitaalikuvien suurentaminen ja pienentäminen (2.4.5) Kuva-alkioiden yhteyksiä Naapuruus (2.5.1) Liitännäisyys (2.5.2) Polut (2.5.2) Etäisyysmitat (2.5.3) Luento # Lineaariset operaatiot ja operaattorit (2.6) Kuvien ehostaminen pisteoperaatioin Spatiaalialuemenetelmät ehostuksessa (3.1) Harmaataso-operaatiot (3.2) Harmaa-arvohistogrammioperaatiot (3.3) Kokonaisiin kuviin kohdistuva ehostus Aritmeettiset ja loogiset operaatiot (3.4) Kuvien ehostaminen spatiaalisuodatuksella

5 9.1 Spatiaaliset ympäristöoperaatiot (3.5) Spatiaalinen pehmennys ehostuksessa (3.6) Lineaarinen alipäästösuodatus (3.6.1) Kuvan terävöittäminen ylipäästösuodatuksella (3.7). 76 Luento # Fourier-muunnoksen perusteet Fourier-muunnospari jatkuvassa tapauksessa (4.2.1) Diskreetti Fourier-muunnos, DFT (4.2.1) Kaksiulotteinen diskreetti Fourier-muunnos (4.2.2). 89 Luento # Taajuustasossa suodattaminen (4.2.3) Kuvien ehostaminen taajuustasossa Alipäästösuodatus (4.3) Ylipäästösuodatus (4.4) Homomorfinen suodatus (4.5) Luento #

6 13.10 Wiener-suodatus (5.8) Pakotettu pienimmän neliövirheen entistys (5.9) Lisää Fourier-muunnoksesta Jaksollisuus ja laajennetut sekvenssit (4.6.3) Kuvien entistäminen Yleistä entistämisestä (5) Huonontumismalli (5.1) Kohinamalleja (5.2.2) Spatiaalitasossa entistäminen (5.3) Luento # Adaptiivinen suodatus (5.3.3) Jaksollisen kohinan poisto taajuustasossa (5.4) Lineaarinen paikkainvariantti huonontumisprosessi (5.5) Huononnusfunktion estimointi (5.6) Käänteissuodatus (5.7) Luento #

7 Yhteenveto entistyksestä taajuusalueessa (5.7 11) Geometriset muunnokset (5.11) Morfologiaa Käsitteitä ja operaatioita (9.1.1) Dilaatio (täyttö, kasvatus) (9.2.1) Eroosio (pienennys) (9.2.2) Avaus ja sulkeminen (9.3) Luento # Reunan erottaminen (9.5.1) Alueen täyttäminen (9.5.2) Yhtenäisten komponenttien erottaminen (9.5.3) Osuma-tai-huti (hit-or-miss) (9.4) Ohennus (9.5.5) Paksunnus (9.5.6) Golay-aakkosia ( ) Aallokkeet ja moniresoluutiokäsittely Käsitteitä ja apuvälineitä (7.1)

8 17. Virhettä tuottava tiivistys Muunnoskoodaus tiivistysmenetelmänä (8.5.2) Tärkeimpiä kuvantiivistysstandardeja (8.6) Luento # Moniresoluutiokäsittely (7.2) Yksiulotteinen aallokemuunnos (7.3) Kaksiulotteinen aallokemuunnos (7.5) Kuvien tiivistäminen Tiivistyksen taustaa (8) Kuvantiivistyksen perusteita (8.1) Luento # Kuvantiivistysmalli (8.2) Informaatioteorian käsitteitä (8.3) Virheetön tiivistys (8.4) Luento #

9 18. Kuvien segmentointi Epäjatkuvuuksien havaitseminen (10.1) Reunapisteiden yhdistäminen ja rajaviiva (10.2) Hough-muunnos (10.2.2) Luento # Kynnystys (10.3) Aluelähtöinen segmentointi (10.4) Liikkeen käyttö segmentoinnissa (10.6) Värin käyttö kuvankäsittelyssä Värienkäytön perusteita (6) Väriteorian perusteita (6.1) Värimallit (6.2) Väärävärikuvat (6.3) Värimuunnokset (6.5) Värikuvien pehmennys ja terävöitys ( ) Värisegmentointi HSI-avaruudessa (6.7.1) Reunanetsintä värikuvissa (6.7.3) Kohina värikuvissa (6.8)

10 Tenttivaatimukset

11 1. Yleistä kurssista Kurssin suorittaminen Kurssin suorittamiseen kuuluu pakollinen harjoitustehtävä ja tentti. 1.2 Ilmoittautuminen Ilmoittautuminen kurssille ja tentteihin osoitteessa Tiedotukset Kurssiin liittyvistä asioista tiedotetaan osoitteessa ryhmässä news://nntp.tky.hut.fi/opinnot.tik.informaatiotekniikka sekä Informaatiotekniikan laboratorion ilmoitustaululla kolmannen kerroksen aulassa B-käytävän suulla.

12 Harjoitustehtävät ovat ennakkoon nähtävillä Harjoitustehtävät ovat suomeksi ja englanniksi, vastaukset englanniksi Luennot Luennot (12 kappaletta) pidetään perjantaisin kello salissa T1. Luennot pitää dosentti Jorma Laaksonen vastaanotto luennon jälkeen perjantaisin kello huoneessa B304. Luentokalvot ovat viimeistään luennon jälkeen esillä verkossa, Ennen luentoa voi jo tutustua syksyn 2004 luentokalvoihin osoitteessa Laskuharjoitukset Laskuharjoitukset (10 11 kappaletta) pidetään keskiviikkoisin salissa T1 I-periodilla kello ja II-periodilla kello alkaen Harjoitukset pitää TkT Jukka Iivarinen

13 1.6 Poikkeuksia luento- ja harjoitusajoista Normaaleista luento- ja harjoitusajoista saattaa tulla syksyn kuluessa poikkeuksia. Nyt aikataulu näyttää tältä: viikko ke pe L L H L H L H L H L H L7 viikko ke pe L L H ??? H L H L H L H11 Muutokset ovat mahdollisia, seuratkaa ilmoittelua! 13

14 Kirja Rafael C. Gonzalez & Richard E. Woods, Digital Image Processing, Second Edition, Prentice-Hall, 2002, ISBN , Kirjasta luetaan kappaleet Tutustumiskappale luvuista 3 10 on nähtävillä Informaatiotekniikan laboratorion sihteerin Tarja Pihamaan huoneen B326 harmaassa peltisessä vetolaatikostossa. Huomatkaa myös verkossa olevat luvut 1 2 sekä korjaukset: sample book material/sample book material.htm book updates/book updates.htm Kirjasta on jo olemassa ainakin kymmenen eri painosta, numerot Oman kirjansa painosnumeron saa selville sivulta iv, tässä esim. painos #1:

15 Monisteet Sekä luentokalvot että laskuharjoitukset ratkaisuineen ovat saatavissa verkosta. Lisäksi ne toimitetaan myös Editan opetusmonisteina. Kurssitoimittajaa ei tarvita. 1.9 Harjoitustehtävä Kurssin suoritukseen kuuluu pakollinen harjoitustehtävä, joka arvostellaan hyväksytty/hylätty-periaatteella. Palautus paperitulosteena Informaatiotekniikan laboratorion postilaatikkoon T-talon 3. kerroksen aulaan. Harjoitustehtävä on palautettava mennessä! Myöhempiin tentteihin ei saa osallistua, ellei harjoitustehtävä ole hyväksytysti suoritettu. Harjoitustehtävä tulee lokakuun aikana esille osoitteeseen

16 Tentti Tenttejä järjestetään kolme: ensimmäinen maanantaina , toinen kevään luentokauden alkupuolella ja viimeinen syksyn 2006 tenttikaudella tai luentokauden alussa. Tentissä neljä tehtävää à 6 pistettä eli maksimi 24 pistettä, 9 pisteellä läpi. Käyttää saa paperia, kynää, kumia ja ei-ohjelmoitavaa funktiolaskinta. Kaavakokoelmia ei saa käyttää eikä niitä jaeta Suhde vanhaan T kurssiin Kurssi korvaa vanhan samannimisen kurssin T , jonka laajuus oli 3 ov.

17 Kurssi eri tutkinto-ohjelmien moduuleissa T270-2 Informaatiotekniikka A2 ja A3 T272-3 Bioinformatiikka A3 AS310-3 Visuaalinen media syventävä moduuli S290-C Mikroelektroniikkasuunnittelun erikoismoduuli 1.13 Kurssipalaute Palautetta kurssista voi antaa verkossa osoitteessa

18 2. Johdanto Vanha klisee: Yksi kuva kertoo enemmän kuin tuhat sanaa. Arvioilta 75% ihmisen saamasta informaatiosta perustuu näköhavaintoihin. Kuvainformaation automaattisen käsittelyn tarve on suuri. Digitaalisen kuvankäsittelyn yleistymistä on perinteisesti hidastanut se, että käytettävien datamäärien suurudesta on seurannut tarvittavien laitteiden kalleus ja käsittelyn hitaus. Tästä perinteestä on nyt päästy eroon ja yhä useammat sovellukset ovat tulleet käytännössä toteuttamiskelpoisiksi. 2.1 Päämäärät ja osa-alueet (1.1) Päämääriltään digitaalinen kuvankäsittely jakautuu päähaaroihin: Kuvainformaation parantaminen ihmisen tulkintaa varten. 18 kuvankäsittely: kuva kuva pisteoperaatiot

19 Käytettävät menetelmät riippuvat paljon sovelluksesta. 19 suodatus entistäminen geometrian korjaus viivojen ja reunojen vahvistus kuvien kohdistus muutosanalyysi Kuvainformaation käsittely koneellista tulkintaa varten. kuva-analyysi / konenäkö: kuva jotain muuta kohteentunnistus kuvasta kuvan selittäminen, näkymäanalyysi robottinäkö, aktiivinen konenäkö Kuvien tiivistäminen Rekonstruktio projektioista

20 Historiaa (1.2) Lehtikuvien siirto merikaapelilla Lontoon ja New Yorkin välillä 1920-luvulla (5 harmaasävyä) Avaruusluotainten lähettämien kuvien parantelu 1960-luvulla Yhdysvalloissa ja 70-lukujen taitteesta alkaen satelliittikuvien käsittely, lääketieteelliset kuvantamis- ja analyysimenetelmät, astronomiset kuvat, hiukkasfysiikka, teollinen laadunvalvonta.

21 Yhteydet muihin aloihin (1.2) Hahmontunnistus Signaalinkäsittely Tekoäly Digitaalinen kuvankäsittely Optiikka Havaintopsykologia Graafinen tekniikka

22 Sovelluksia (1.3) sotilassovellukset graafinen ala kaukokartoitus lääketiede teollinen laaduntarkastus robottinäkö kuvansiirto ja -arkistointi arkeologia, fysiikka, tähtitiede, biologia, rikostutkinta,...

23 Kuvantamismenetelmiä (1.3) gammakuvaus (10 5 ev): lääketiede, PET, astronomia röntgenkuvaus (10 3 ev): lääketiede, varjoaine, CAT, ultraviolettikuvaus (10 1 ev): mikroskopia, astronomia näkyvä valo (10 0 ev): satelliittikuvat, sormenjäljet infrapunakuvaus (10 1 ev): satelliittikuvat mikroaaltokuvaus (10 4 ev): tutkakuvat radioaaltokuvaus (10 8 ev): lääketiede, MRI, astronomia seismografinen kuvaus (100 Hz): maaperän luonnonvarat kaikuluotaus: merenpohja ultraäänikuvaus (5 MHz): lääketiede elektronimikroskopia ( ): TEM, SEM fraktaalit ja muut laskennalliset kuvat

24 Kuvankäsittelyn vaiheet (1.4) kuvanmuodostus esikäsittely: kuvan ehostus tai entistäminen segmentointi jälkikäsittely, morfologia representaatio, kuvatiedon esittäminen luokittelu, tunnistus

25 2.7 Kuvankäsittelyjärjestelmän osat (1.5) verkkoyhteys näyttölaite tietokone massamuisti tulostuslaite kuvankäsittelylaitteisto kuvankäsittelyohjelmisto kuvasensorit 25 "reaalimaailma"

26 3. Ihmisen näköjärjestelmän perusteita Ihmissilmän rakenne (2.1) linssi verkkokalvo tarkan näön alue fovea iiris optinen akseli näköhermo sokea täplä

27 Verkkokalvon reseptorit (2.1.1) Tapit (cones) kirkasnäkö (photopic vision) 6 7 miljoonaa keskellä verkkokalvoa (5 ) herkkiä väreille: tappeja kolmea eri lajia yksityiskohtien näkeminen oma hermo jokaisella Sauvat (rods) hämäränäkö (scotopic vision) miljoonaa jakautuneena verkkokalvolle (160 ) ei värinäköä yleiskuvan muodostaminen useita samassa hermossa herkkiä muutoksille näkymässä

28 Kuvanmuodostus (2.1.2) 15 m 2.55 mm 100 m 17 mm Erona optisiin linsseihin on silmän mukautumiskyky ja joustavuus.

29 Kirkkaassa valaistuksessa Weberin suhde on pienempi ja siten silmän suhteellinen erottelukyky parempi kuin hämärässä Kirkkauden erottelu (2.1.3) I + I I I taustan intensiteetti I intensiteetin muutos keskellä I c pienin muutos, joka havaittavissa 50% kokeista I c /I Weberin suhde I c /I pieni: pienet suhteelliset muutokset havaitaan, hyvä erottelu I c /I suuri: vain suuret muutokset havaitaan, huono erottelu

30 Adaptoituminen valaistukseen (2.1.3) Silmän adaptaatiokyky valtava: tasoa hämäräkynnykseltä häikäisyrajalle. Samanaikaisesti silmä voi kuitenkin adaptoitua vain tietylle kirkkausalueelle. Silmä ei siten voi adaptoitua kirkkaudeltaan erilaisiin yksityiskohtiin vaan ainoastaan keskimääräiseen kirkkauteen. Mielivaltaissa kuvapisteympäristössä havaitaan intensiteettitasoa. Kuvan eri osissa adaptaatio muuttuu ja havaitaan eri intensiteettejä ja siten suurempi kokonaiserottelualue. Tasaisissa kuvissa vaaditaan yleensä yli 100 intensiteettitasoa.

31 Machin nauhat (2.1.3) Vakiointensiteetti näyttää viereisen muutoksen vuoksi vaihtelevalta. = Kynnykset korostuvat entisestään. Selitys: meksikolainen hattu -funktio, jolla kuva konvoloituu verkkokalvolla * =

32 Valo fysikaalisena suureena (2.2) Taajuus ν Aallonpituus λ = c ν Fotonin energia E = hν akromaattinen (achromatic), valoa karakterisoi vain sen intensiteetti eli määrä. Esim. musta-valko-tv. kromaattinen (chromatic), huomioi energian jakautumisen sähkömagneettisen säteilyn kaistalla nm. radianssi (radiance) valolähteen kokonaisenergia, mittayksikkö watti (W). luminanssi (luminance) mittaa havainnoijan havaitsemaa energiamäärää, esimerkiksi infrapunalähteen luminanssi on lähes nolla, mittayksikkö lumen (lm). kirkkaus (brightness) subjektiivinen mitta.

33 4. Kuvanmuodostus Kuvanmuodostusvälineitä (2.3) hopeafilmi puolijohdesensorit yksittäissensorit viivasensorit matriisisensorit

34 4.2 Yksittäissensori (2.3.1) 34

35 4.3 Viivasensorit (2.3.2) 35

36 4.4 Matriisisensori (2.3.3) 36

37 Kuvamalli (2.3.4) f(x, y) vastaa valoenergiaa 0 < f(x, y) < Havaittu kuva jaetaan valaistuskomponenttiin i(x, y) ja heijastuskomponenttiin r(x, y): f(x, y) = i(x, y) r(x, y) joille pätee: 0 < i(x, y) < 0 < r(x, y) < 1 Digitoidun monokromaattisen kuvan harmaataso l on usein kokonaisluku, l = 0 vastaa mustaa l = L 1 vastaa valkoista l [0, L 1]

38 5. Digitaalisen kuvan esitysmuoto Koordinaatit (2.4.2) Digitaalinen kuva esitetään yleensä x- ja y-koordinaattien funktiona. Koordinaattijärjestelmän asettaminen vaihtelee. x y y y x x matemaattinen perinteinen Gonzalez&Woods

39 5.2 Näytteenotto ja kvantisointi (2.4.2) Digitointi xy-koordinaattien suhteen vastaa kaksiulotteista näytteenottoa, jota kutsutaan myös spatiaaliseksi kvantisoinniksi. Valaistusamplitudin digitointia kutsutaan harmaataso- eli intensiteettikvantisoinniksi. Digitaalinen kuva esitetään N N matriisina: f(0, 0) f(0, 1) f(0, N 1) f(1, 0) f(1, 1) f(1, N 1) f(x, y)... f(n 1, 0) f(n 1, 1) f(n 1, N 1) Valittava spatiaaliresoluutio N ja harmaatasoresoluutio G. Yleensä kahden potensseja: N = 2 n, G = 2 m. Täten kuvan tallettamiseen tarvitaan bittejä: b = N N m. Televisiokuvan tasoon päästään, kun N = 512 ja m = 7. 39

40 Digitaalinen kuva näytteenoton ja kvantisoinnin jälkeen (2.4.1) 5 40

41 b = b = b = b = b = b = b = b = b = 6144

42 Kuvan subjektiivinen laatu (2.4.3) Resoluutioluvut ja bittimäärät eivät suoraan vastaa ihmisen kokemusta kuvan laadusta. Subjektiivisia arvioita voidaan tutkia isopreferenssikäyrillä. Tasaisia alueita (eli alhaisia taajuuksia) sisältävissä kuvissa ihmissilmä haluaa paljon intensiteettikvantisointitasoja. Sen sijaan paljon yksityiskohtia (eli korkeita taajuuksia) sisältävissä kuvissa tarvitaan hyvää spatiaalista resoluutiota.

43 Digitaalikuvien suurentaminen ja pienentäminen (2.4.5) Kuvia suurennettaessa, so. niiden spatiaaliresoluutiota parannettaessa tehdään interpolaatiota uusien harmaa-arvojen laskemiseksi olemassaolevista. Yksinkertaisin interpolaation muoto on ns. nollannen kertaluvun eli lähimmän naapurin irterpolointi. Jos suurennuskerroin on jokin kokonaisluku, interpolointi yksinkertaistuu entisestään pikseleiden monistamiseksi. Yleisempi ja vääristymien kannalta parempi vaihtoehto on bilineaarinen interpolaatio: v(x, y ) = ax + by + cx y + d Se on anti-aliasoiva suodatus, joka poistaa joskus kuvaa suurennettaessa syntyviä häiritseviä pykäliä. Kuvia pienennettäessä voidaan käyttää analogisesti samoja menetelmiä kuin interpolointiin myös desimointiin.

44 6. Kuva-alkioiden yhteyksiä Naapuruus (2.5.1) Kuva-alkiolla eli pikselillä p, jolla on koordinaatit (x, y), on neljä naapuria vaaka- ja pystysuunnissa pisteissä (x+1, y), (x 1, y), (x, y+1) ja (x, y 1). Niitä kutsutaan p:n 4-naapureiksi ja merkitään N 4 (p). p:n neljä diagonaalinaapuria ovat (x+1, y +1), (x 1, y +1), (x+1, y 1) ja (x 1, y 1) ja niitä merkitään N D (p). p:n 8-naapurusto muodostuu N 4 (p):n ja N D (p):n yhdisteenä: N 8 (p) = N 4 (p) N D (p). Kuvan reunoilla naapurustot ovat vajaita.

45 (x-1,y-1) (x,y-1) (x+1,y-1) (x-1,y) p (x,y) (x+1,y) (x-1,y+1) (x,y+1) (x+1,y+1) 45

46 Liitännäisyys (2.5.2) Pikseleiden liitännäisyys eli yhtenevyys eli konnektiivisuus (connectivity) on tärkeä käsite kuvan kohteiden reunaviivojen määrittelyssä ja alueiden määräämisessä. Kaksi kuva-alkiota ovat liitännäisiä, jos ne ovat jossakin mielessä naapureita ja lisäksi harmaatasoarvoiltaan riittävän samankaltaisia. Harmaatasojen samankaltaisuus voidaan määritellä joukolla V. Esimerkiksi, jos vain kuva-alkiot, joiden intensiteetit ovat 59, 60 tai 61, ovat kiinnostavia, niin määritellään V = {59, 60, 61}. Määritellään pikseleille p ja q kolme eri liitännäisyystyyppiä: 4-liitännäisyys: p V q V q N 4 (p) 8-liitännäisyys: p V q V q N 8 (p) m-liitännäisyys eli sekaliitännäisyys: p V q V (q N 4 (p) q N D (p) N 4 (p) N 4 (q) = )

47 47 Sekaliitännäisyys eliminoi 8-liitännäisyydestä usein seuraavat monikäsitteiset polut m Kaksi kuva-aluetta S 1 ja S 2 ovat vierekkäisiä (adjacent), joss p, q : p S 1 q S 2 p ja q liitännäisiä

48 Erilliset yhtenäiset komponentit ovat toisiinsa nähden pistevieraita, so. niillä ei ole yhteisiä jäseniä, so. niiden leikkaus on tyhjä Polut (2.5.2) Polku kuva-alkiosta p, jonka koordinaatit ovat (x, y), kuva-alkioon q, jonka koordinaatit ovat (s, t), on pikselijono: (x, y) = (x 0, y 0 ), (x 1, y 1 ),, (x n, y n ) = (s, t) Jonossa jokainen (x i+1, y i+1 ), i = 1,..., n, on liitännäinen (x i, y i ):n kanssa. n on polun pituus. Jono voidaan määritellä 4-, 8- ja m-liitännäisyyden mukaan. Kuvan osajoukkoon S kuuluvat alkiot p ja q ovat S:ssä liitännäisiä, joss on olemassa p:stä q:hun polku, jonka kaikki kuva-alkiot kuuluvat S:ään. Jos p on S:n kuva-alkio, p:n kanssa liitännäiset S:n alkiot muodostavat S:n yhtenäisen komponentin (connected component). Kaikki yhtenäisen komponentin pikselit ovat toisiinsa nähden liitännäisiä.

49 Etäisyysmitat (2.5.3) Olkoon p, q, ja z kuva-alkioita, joiden koordinaatit ovat vastaavasti (x, y), (s, t) ja (u, v). Etäisyysfunktio (metriikka) D toteuttaa seuraavat ehdot: D(p, q) 0 ja D(p, q) = 0 p = q D(p, q) = D(q, p) D(p, z) D(p, q) + D(q, z) Yleisesti käytettyjä etäisyysmäärittelyjä: D e (p, q) = (x s) 2 + (y t) 2 D 4 (p, q) = x s + y t D 8 (p, q) = max( x s, y t ) euklidinen etäisyys D 4 -etäisyys (city-block/manhattan) D 8 -etäisyys (šakkilauta)

50 50 e 8 4 Kahden pisteen välinen D 4 -etäisyys on lyhimmän niiden välisen 4-polun pituus. Vastaavasti D 8 -etäisyys ja 8-polku. Pisteestä etäisyydellä D 4 = 1 olevat kuva-alkiot ovat kyseisen pisteen 4- naapurit. Vastaavasti D 8 = 1 ja 8-naapurit. m-liitännäisyyttä vastaava etäisyys on polun pituus ja riippuu polun varrella olevien kuva-alkioiden arvoista ja niiden naapureista. Etäisyyttä kahden pikselin välillä voidaan tarkastella myös riippumatta niiden liitännäisyydestä.

51 Lineaariset operaatiot ja operaattorit (2.6) Keskeinen käsite myöhemmissä vaiheissa on jonkin operaation tai operaattorin lineaarisuus. Operaattorin H sanotaan olevan lineaarinen, joss H(af + bg) = ah(f) + bh(g) Operaatio, joka ei ole lineaarinen, on määritelmällisesti epälineaarinen.

52 7. Kuvien ehostaminen pisteoperaatioin Käytännön sovelluksessa voidaan yhdistää kaikkien lajien menetelmiä. 52 Kuvan ehostamisen (enhancement) päämääränä on käsitellä kuvaa siten, että lopputulos on alkuperäistä kuvaa parempi tietyssä mielessä tai sovelluksessa. Esimerkiksi voidaan kiinnittää huomiota kuvan visuaaliseen miellyttävyyteen, kuten terävyyteen tai kohinattomuuteen. Ehostamiskeinot ovat yleisesti sovelluskohtaisia. Tekniikat ovat myös hyvin heuristisia, koska on vaikea määritellä matemaattisesti, millainen olisi esim. ihmissilmin tarkastellen hyvä kuva. Ehostusmenetelmät voidaan jakaa kahteen kolmeen pääluokkaan: taajuusaluemenetelmät spatiaalialuemenetelmät pisteoperaatiot koko kuvan operaatiot maskioperaatiot

53 7.1 Spatiaalialuemenetelmät ehostuksessa (3.1) Käsitellään pikseleitä kuvatasossa g(x, y) = T [f(x, y)] f(x, y) on alkuperäinen kuva g(x, y) on käsitelty kuva T [ ] on kuvaan f kohdistuva operaattori pisteen (x, y) ympäristössä T -operaattori voidaan kohdistaa myös joukkoon keskinäisesti riippuvia ja kohdistettuja syötekuvia pikseleittäin. Tällöin pitäisikin kirjoittaa skalaarin f(x, y):n sijaan vektori f(x, y). Jos T :n vaikutusalue on vain itse (x, y)-pikseli yksin, kyseessä on pisteoperaatio, muutoin maskioperaatio. Ensinmainitut voidaan tulkita myös viimemainittujen yhdeksi erikoistapaukseksi. Toisaalta pisteoperaatioina voidaan toteuttaa menetelmiä, joille ei löydy suoraa vastinetta tai yleistystä maskioperaationa. 53

54 Harmaataso-operaatiot (3.2) Harmaataso-operaatioiksi kutsutaan pisteoperaatioita, joissa lähdekuvasta f(x, y) muodostetaan tuloskuva g(x, y) käyttäen muunnosfunktiota s = T (r), missä r = f(x, y) on harmaa-arvo lähdekuvan tietyssä pisteessä ja s = g(x, y) harmaa-arvo vastaavassa tuloskuvan pikselissä. Harmaataso-operaatioita ovat esim. kontrastin muuttaminen s = T (r) binarisointi s = T (r) s r r t r

55 55 kuvan negatointi s = T (r) dynamiikan kompressointi s = T (r) r logaritmointi s = c log(1 + r) s = T (r) r gammakorjaus s = cr γ s = T (r) r r

56 7 56 harmaatasoviipalointi s = T (r) s = T (r) bittitasoviipalointi s = T (r) r s = T (r) r s = T (r) s = T (r) r r r r

57 7.3 Harmaa-arvohistogrammioperaatiot (3.3) Histogrammioperaatiot ovat merkittävä pisteoperaatioiden ryhmä. Kuvan histogrammi muodostetaan laskemalla, kuinka monta kerta kukin harmaataso esiintyy kuvassa: p(r k ) = r k :n esiintymistod.näk.estim. = n k n r k [0, L 1] on k:s diskreetti harmaataso n k on k:nnen harmatason lukumäärä kuvassa n on pikselien lukumäärä koko kuvassa Histogrammin muodosta voidaan päätellä kuvan ominaisuuksia ja mahdollisesti tarvittavia ehostustoimenpiteitä. 57

58 58 Esimerkkejä harmaa-arvohistogrammin muodosta (3.3) p(r k ) p(r k ) p(r k ) p(r k ) tumma kuva r k vaalea kuva r k heikko kontrasti r k r k voimakas kontrasti Usein on helpointa ajatella r:n saavan reaalilukuarvoja välillä [0, 1], missä 0 vastaa mustaa ja 1 valkoista.

59 Harmaa-arvohistogrammin muuntaminen (3.3) Histogrammin muuntamisessa käytettävät harmaa-arvo-operaatiot ovat yleensä muotoa s = T (r), missä T (r) on yksikäsitteinen ja monotonisesti kasvava välillä 0 r 1, jolloin harmaa-arvojen järjestys säilyy 0 T (r) 1, kun 0 r 1, jolloin harmaa-arvot säilyvät sallituissa rajoissa Samat ominaisuudet on myös käänteismuunnoksella r = T 1 (s). Jatkuvassa tapauksessa voidaan tutkia differentiaaleja: [ p s (s) = p r (r) dr ] ds r=t 1 (s) Siten muunnetun kuvan harmaa-arvohistogrammi p s (s) voidaan saada halutuksi sopivalla T (r):n valinnalla. 59

60 Harmaa-arvohistogrammin tasoitus (3.3.1) Tarkastellaan muunnosfunktiota: s = T (r) = r 0 p r (w) dw, 0 r 1 Yhtälön oikea puoli esittää r:n kumulatiivista jakautumafunktiota (CDF). CDF kasvaa kasvaa monotonisesti 0:sta 1:een. s:n derivaatta r:n suhteen: ds dr = p r(r) Sijoitetaan dr aiempaan lausekkeeseen: ds [ p s (s) = p r (r) dr ] [ ] 1 = p r (r) ds r=t 1 (s) p r (r) = 1, 0 s 1 r=t 1 (s) Joten muunnos s = T (r) tuottaa tasaisen histogrammin p s (s). 60

61 Käytännössä kuitenkin toimitaan diskreeteillä jakaumilla. Se onkin itse asiassa helpompaa, koska jatkuvassa tapauksessa G 1 (s):n analyyttinen muodostaminen on useimmiten hankalaa. Diskreetissä tapauksessa sen sijaan voidaan taulukoida muunnosarvot kaikille harmaa-arvoille. 61 Harmaa-arvohistogrammin määräys (3.3.2) Histogrammin määräys (specification) tarkoittaa, että kuvan harmaa-arvojakauma muunnetaan halutunlaiseksi. Histogrammin määrääminen voidaan toteuttaa analogisesti histogrammin tasoituksen kanssa. Tasoitushan tehtiin käyttämällä alkuperäisen kuvan harmaaarvojen kertymäfunktiota s = T (r) = r 0 p r(w)dw. Mielivaltaisesta harmaaarvojakaumasta p z (w) päästään samoin tasajakaumaan käyttäen muunnosta v = G(z) = z 0 p z(w)dw. Tämän muunnoksen käänteismuunnoksella z = G 1 (v) voidaan taas muuntaa tasajakauma halutuksi jakaumaksi p z (w). Histogrammi voidaan siis määrätä mieleiseksi muunnoksella: z = G 1 (s) = G 1 (T (r)) missä T (r) alkuperäinen ja G(s) haluttu todennäisyystiheyden kertymäfunktio.

62 62 Esimerkki: Marsin kuu Phobos (3.3.2) Ongelmana liian voimakas kontrasti, keskivaiheen harmaa-arvot puuttuvat lähes kokonaan. alkuperäinen tasoitettu määrätty

63 63 Paikallinen ehostaminen histogrammin tasoituksella (3.3.3) Edellä esitellyt menetelmät ovat kohdistuneet koko kuva-alan harmaa-arvojakaumaan. Usein on kuitenkin tarpeen parannella yksityiskohtia kuvan pienehköissä osa-alueissa. Koska jokaisen pienehkön kuva-alueen pikseleillä on vain pieni vaikutus kokonaisharmaatasojakaumaan, ei globaali muunnos välttämättä kykene huomioimaan paikallisia parannustarpeita. Sekä histogrammin tasoitus että histogrammin määräys voidaan toteuttaa paikallisesti M N-ikkunassa, jossa keskipisteen uusi harmaa-arvo lasketaan käyttäen ympäröiviä pikseleitä harmaatasohistogrammin estimointiin.

64 Muunnos voimistaa paikallisia vaihteluita. Keskihajonta nimittäjässä saa aikaan, että alhaisen kontrastin eli pienen varianssin alueita kuvassa muutetaan eniten Muita paikallisen ehostuksen tilastollisia menetelmiä (3.3.4) Paitsi histogrammeihin, paikalliset ehostusmenetelmät voivat perustua myös paikalliseen harmaatasojen keskiarvoon ja varianssiin. Siten saadaan kuvassa kirkkaus ja kontrasti vakioitua paikallisesti. Tyypillisesti muunnos voi olla: g(x, y) = km ( ) f(x, y) m(x, y) + m(x, y), missä σ(x, y) g(x, y) = alkion (x, y) uusi harmaatasoarvo f(x, y) = alkion (x, y) vanha harmaatasoarvo m(x, y) = alkion (x, y) tietyn ympäristön paikallinen harmaatasokeskiarvo σ(x, y) = alkion (x, y) saman ympäristön paikallinen harmaatasovarianssi M = alkuperäisen kuvan f(x, y) kokonaisharmaatasokeskiarvo k = vakio, 0 < k < 1

65 8. Kokonaisiin kuviin kohdistuva ehostus Aritmeettiset ja loogiset operaatiot (3.4) Kuvien välillä voidaan määritellä tavanomaiset aritmeettiset (+,,*,/) ja loogiset (,, ) operaatiot. Kuvien täytyy tällöin useimmiten olla keskenään saman kokoisia ja jotkut määrittelyt ovat mielekkäitä vain binaarisille kuville. Esimerkki: Kuvan osa voidaan erottaa ympäristöstään joko loogisella JA-operaatiolla (yllä) tai TAI-operaatiolla (alla).

66 66 Erotuskuvat (3.4.1) Kuvien f(x, y) ja h(x, y) erotus saadaan vähentämällä vastaavat kuvapisteiden harmaasävyt toisistaan: g(x, y) = f(x, y) h(x, y) Erotuskuvissa voidaan havaita muutokset tai liike. Sovellutuksia: 1) ehostus, 2) segmentointi Esimerkki: Liikennevirran havainnointi: vähennetään peräkkäiset kuvat toisistaan ja otetaan itseisarvo. Tällöin paikoillan pysyvä ja siksi arvoiltaan vakio tausta muuttuu mustaksi. Varjoaineen etenemisen seuraaminen verenkierrossa: vähennetään varjoaineen ruiskuttamisen jälkeen otetut röntgen- tms. kuvat ennen varjoaineen antoa otetusta kuvasta.

67 Käytännössä kaikissa sovelluksissa ei voida saadaan peräkkäisiä identtisiä otoksia. Myös kuvien täsmällinen kohdistaminen päällekäin on vaikeaa, jos tapahtuu pientäkin liikettä kuvien välillä. Keskiarvoistusta voidaan kuitenkin soveltaa valo- ja elektronimikroskopiassa sekä astronomiassa. 67 Keskiarvo useista kuvista (3.4.2) Jos on mahdollista ottaa useita identtisiä kuvia samasta kohteesta, voidaan kuvassa esiintyvää kohinaa ratkaisevasti vähentää. Oletetaan kohinamalli g(x, y) = f(x, y) + η(x, y) missä kohina η(x, y) on korreloimatonta ja nollakeskiarvoista. Lasketaan pisteittäinen keskiarvokuva K:stä kuvasta {g i (x, y); i = 1, 2,..., K}: g(x, y) = 1 K K g i (x, y) Nyt E{g(x, y)} = f(x, y) ja σg(x,y) 2 = 1 K σ2 η(x,y). K:n kasvaessa pikseliarvojen varianssi pienenee ja g(x, y) lähestyy f(x, y):tä. i=1

68 9. Kuvien ehostaminen spatiaalisuodatuksella Spatiaaliset ympäristöoperaatiot (3.5) Suuri osa digitaalisen kuvankäsittelyn menetelmistä perustuu aritmeettisten (tai loogisten) operaatioiden suorittamiseen kunkin kuva-alkion määrätyssä ympäristössä. Operaatioita kutsutaan eri nimillä: maskioperaatiot, templaattioperaatiot, ikkunaoperaatiot, suodatusoperaatiot, konvoluutio-operaatiot,... Aritmeettiset ympäristöoperaatiot voidaan lausua pikseleiden harmaa-arvojen z i ja maskin kertoimien w i avulla. z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 Esimerkiksi 3 3-kokoinen maski, jolla lasketaan ympäristön keskiarvo: z = 1 9 (z 1 + z z 9 ) = i=1 z i

69 69 Yleisemmässä tapauksessa voidaan maskin avulla laskea painotettu summa: z = 9 w i z i i=1 Operaatio vastaa vektorimuotoista sisä- eli pistetuloa: z = w T z, missä w ja z ovat painokertoimista ja kuva-alkion ympäristöstä muodostetut vektorit. Sisätulomuotoiset ympäristöoperaatiot ovat lineaarisia.

70 Spatiaalinen pehmennys ehostuksessa (3.6) Jo aiemmin esitellyt menetelmät ovat olleet spatiaalisia, mutta niissä käsittely on kohdistunut kuvaan pikseli kerrallaan. Spatiaalimenetelmien yleisessä tapauksessa pikselin uusi harmaa-arvo määräytyy pikselin ja sen tietyn spatiaalisen ympäristön alkuperäisistä harmaa-arvoista. Spatiaalisuodatuksen tärkein alaluokka on lineaariset suotimet. siirtofunktio on impulssivasteen (pisteen leviämisfunktion) Fouriermuunnos alipäästösuodin vaimentaa korkeataajuisia komponentteja ja päästää lävitse matalat taajuudet ylipäästösuodin vaimentaa matalataajuisia komponentteja ja päästää lävitse korkeat taajuudet kaistanpäästösuodin vaimentaa sekä matala- että korkeataajuisia komponentteja ja päästää lävitse tietyllä kaistalla olevat taajuudet

71 71 Yleensä lineaariset suotimet ovat ympyräsymmetrisiä sekä spatiaali- että taajuustasossa. Impulssivasteen poikkileikkausmuoto spatiaalitasossa antaa käsityksen suotimen taajuustaso-ominaisuuksista taajuustaso alipäästö ylipäästö kaistanpäästö spatiaalitaso 0 0 0

72 Pisteet, joiden poikkeama ympäristönsä keskiarvosta on positiivista kynnysarvoa T suurempi, jäävät muuttumatta. Voimaakkaat muutokset, esim. reunat ja nurkat, eivät muutu. Siten sumentumiselle herkät yksityiskohdat säilyvät paremmin kuin puhtaasti lineaarisella suodatuksella Lineaarinen alipäästösuodatus (3.6.1) Kohinaa voidaan siis tehokkaasti poistaa kuvista, mikäli olemassa on kuvasarja samasta kohteesta. Koska näin ei useimmiten ole, tarvitaan muita keinoja kohinan poistamiseksi. Kuvaa voidaan pehmentää spatiaalisella suotimella, joka keskiarvoistaa tietyn kokoisen maskin alalla, jolloin korreloimaton additiivinen kohina vaimenee. Samalla valitettavasti kuvan yksityiskohdat hämärtyvät, tapahtuu alipäästösuodatus. Mitä suurempaa maskia käytetään, sitä voimakkaampaa on sumentuminen. Sumeutumista voidaan rajoittaa käyttämällä epälineaarista kynnystystä: { 1 M (m,n) S g(x, y) = f(m, n), f(x, y) 1 M (m,n) S f(m, n) < T f(x, y), muulloin

73 73 Esimerkki lineaarisesta pehmennyksestä (3.6.1) (500x500) 3x3 5x5 9x9 15x15 35x35

74 74 Järjestysfunktioon perustuvat suotimet (3.6.2) Epälineaariset suotimet toimivat kuten lineaariset, mutta maskin keskipisteen uusi harmaa-arvo ei ole lineaarikombinaatio maskin pikseliarvoista. Yleisimpiä epälineaarisia operaatioita ovat järjestysfunktioon perustuvat operaatiot: mediaani maksimi minimi Epälineaarisilla menetelmillä kuten mediaanisuodatuksella ei ole määriteltyä impulssivastetta eikä myöskään siirtofunktiota. Siten esim. mediaanisuodatus on jokaiselle kuvalle omanlaisensa.

75 75 Kohinanpoisto mediaanisuodatuksella (3.6.2) Naapurikeskiarvoistuksen huono puoli on reunojen ja muiden terävien yksityiskohtien sumeneminen. Mediaanisuodatuksella pyritään välttämään tätä ongelmaa. Myös mediaanisuodatus hävittää yksityiskohtia, mutta useinkaan ei niin paljon kuin vastaavankokoinen lineaarinen suodatus. Mediaanisuodatusta käytetään kohinan poistoon pitkälti samoin kuin alipäästösuodatustakin. Mediaanisuodatus on optimaalinen menetelmä voimakkaan pisteittäisen impulssikohinan, ns. suola ja pippuri -kohinan, poistamiseksi.

76 Kuvan terävöittäminen ylipäästösuodatuksella (3.7) Kuvan terävöittämisellä pyritään korostamaan kuvan yksityiskohtia tai ehostamaan sumentuneita detaljeja. Terävöittäminen voidaan tulkita myös keskiarvoistamisen käänteisoperaatioksi. Terävöittäminen perustuu pikseleiden välisten erojen korostamiseen. Derivaatat (tai paremminkin differenssit) sopivat havainnoimaan pikseleiden välisiä muutoksia. Ensimmäinen differenssi yksiulotteisessa tapauksessa: f x = f(x + 1) f(x) Toinen differenssi yksiulotteisessa tapauksessa: 2 f = f(x + 1) + f(x 1) 2f(x) x2

77 Esimerkki yksityiskohdista kuvassa (3.7.1) 77

78 Laplace-operaattorilla derivointi (3.7.2) Jatkuvalle kaksidimensioiselle funktiolle Laplace-operaattori määritellään: f(x, y) = 2 f(x, y) = 2 f x f y 2 Havaitaan, että Laplace-operaattori on lineaarinen. Diskreettinä approksimointina käytettiin jo aiemmin: 2 f = f(x + 1, y) + f(x 1, y) 2f(x, y) x2 2 f = f(x, y + 1) + f(x, y 1) 2f(x, y) y2 2 f(x, y) = f(x + 1, y) + f(x 1, y) + f(x, y + 1) + f(x, y 1) 4f(x, y) Maskimuodossa: tai

79 Laplace-suodatus ehostuksessa (3.7.2) Laplace-suodatus korostaa pieniä yksityiskohtia ja on nolla tasaisille ja tasaisesti muuttuville alueille. Laplace-suodatettu kuva voidaan sellaisenaan lisätä alkuperäiseen: g(x, y) = f(x, y) 2 f(x, y) = 5f(x, y) f(x + 1, y) f(x 1, y) f(x, y + 1) f(x, y 1) = tai: =

80 Laplace-suodatus ehostuksessa, esimerkki (3.7.2) 10 80

81 Epäterävä maskaus (3.7.2) Epäterävä maskaus on vanha filmivalokuvien terävöintikikka. Alkuperäistä kuvaa terävämpi ylipäästösuodatettu kuva voidaan muodostaa vähentämällä alkuperäisestä kuvasta alipäästösuodatettu kuva: f s (x, y) = f(x, y) f(x, y) Korkeiden taajuuksien korostus (3.7.2) Yleisemmässä tapauksessa voidaan kirjoittaa korkeiden taajuuksien korostus eli High-boost-suodatus kertoimella A: f hb (x, y) = Af(x, y) f(x, y) = (A 1)f(x, y) + f s (x, y) Sijoittamalla f s (x, y) = f(x, y) 2 f(x, y) : A+4-1 tai -1 A

82 Korkeiden taajuuksien korostus, esimerkki (3.7.2) Sopivalla A:n arvolla saadaan aikaan haluttu korkeiden taajuuksien korostus: 82 A = 1 A = 1.7

83 Gradienttioperaattori reunojen vahvistajana (3.7.3) Gradienttivektorin yleinen määritelmä: [ ] Gx f = = G y Gradienttivektorin pituutta kutsutan usein gradientiksi ja se voidaan laskea: f x f y f = f = [G 2 x + G 2 y] 1 2 G x + G y Robertsin ristigradientti, G x = z 9 z 5, G y = z 8 z 6 : -1 0 ja Sobel-operaattorit: G x = ja G y =

84 84 Spatiaalisten ehostusten yhdistely (3.8) Hyvää ehostustulosta ei useinkaan voida saavuttaa vain yhtä operaatiota käyttämälllä. Kirja esittää kuvissa 3.46a h, kuinka: 1) röntgenkuvaa terävöitetään Laplace-operaattorilla 2) alkuperäisen kuvan reunoja vahvistetaan Sobel-operaattoreilla 3) gradienttikuvaa pehmennetään ja se kerrotaan terävöitetyllä kuvalla 4) tuloskuva lisätään alkuperäiseen 5) kuvan dynamiikkaa parannetaan gammakorjauksella

85 10. Fourier-muunnoksen perusteet 85 Fourier-muunnokset digitaalisen kuvankäsittelyn kannalta tärkein 2-dimensioisten kuvamuunnosten laji. Muita esim. kosini-, Walsh-, Hadamard-, Haar-, Slantja Hotelling- eli Karhunen-Loève-muunnokset. Kuvamuunnoksia tarvitaan: ehostuksessa entistämisessä koodauksessa sisällön kuvailussa

86 Fourier-muunnospari jatkuvassa tapauksessa (4.2.1) F{f(x)} = F (u) = F 1 {F (u)} = f(x) = F{f(x, y)} = F (u, v) = F 1 {F (u, v)} = f(x, y) = f(x) e j2πux dx F (u) e j2πux du f(x, y) e j2π(ux+vy) dx dy F (u, v) e j2π(ux+vy) du dv

87 10.2 Diskreetti Fourier-muunnos, DFT (4.2.1) Lukusekvenssille {f(0), f(1), f(2),..., f(m 1)} määritellään diskreetti Fourier-muunnos- ja -käänteismuunnospari: F (u) = 1 M M 1 x=0 f(x) e j2πux/m, u = 0, 1,..., M 1 M 1 f(x) = F (u) e j2πux/m, x = 0, 1,..., M 1 u=0 Taajuustason ominaisuuksia (4.2.1) F (u) on kompleksinen: F (u) = R(u) + ji(u) = F (u) e jφ(u). F (u) = R 2 (u) + I 2 (u) φ(u) = tan 1 I(u) R(u) P (u) = F (u) 2 = R 2 (u) + I 2 (u) Fourier-spektri, magnitudispektri vaihekulma, vaihespektri tehospektri, spektritiheys 87

88 Diskreetin lukusekvenssin muodostaminen (4.2.1) Diskreetin lukusekvenssin muodostamista jatkuvasta funktiosta kutsutaan näytteistämiseksi. Jatkuva-argumenttinen funktio f(x) voidaan diskretoida tasaväliseksi sekvenssiksi: {f(x 0 ), f(x 0 + x), f(x x),..., f(x 0 + (M 1) x)} Merkinnät saadaan yksinkertaisemmiksi sopimalla, että diskreettiä funktiota voidaan merkitä kuten aiemmin merkittiin jatkuvaa: f(x) f(x 0 + x x), x = 0, 1,..., M 1 Diskretointiväleille pätee tällöin: F (u) F (u u) u = 1 M x 11 88

89 Kaksiulotteinen diskreetti Fourier-muunnos (4.2.2) Kaksiulotteisessa tapauksessa: F (u, v) = 1 MN f(x, y) = M 1 x=0 N 1 y=0 f(x, y) e j2π(ux/m+vy/n), u = 0, 1,..., M 1, v = 0, 1,..., N 1 M 1 N 1 u=0 v=0 F (u, v) e j2π(ux/m+vy/n), x = 0, 1,..., M 1, y = 0, 1,..., N 1 Huomattava, että muunnospari on vakiokertoimien osalta epäsymmetrinen. Joskus muunnospari esitetään myös symmetrisenä, jolloin molemmissa on kerroin 1/MN. Toisaalta, jos kyseessä on neliömuotoinen kuva, so. M = N, voidaan kaavat kirjoittaa symmetrisiksi kertoimilla 1/N.

90 90 2-dimensioisen Fourier-muunnoksen ominaisuuksia (4.2.2) F (u, v) on kompleksinen: F (u, v) = R(u, v) + ji(u, v) = F (u, v) e jφ(u,v) F (u, v) = R 2 (u, v) + I 2 (u, v) φ(u, v) = tan 1 I(u,v) R(u,v) Fourier-spektri vaihekulma P (u, v) = F (u, v) 2 = R 2 (u, v) + I 2 (u, v) tehospektri F (0, 0) = 1 M 1 N 1 MN x=0 y=0 f(x, y) keskiarvo F (u, v) = F ( u, v) konjugaattisymmetria F (u, v) = F ( u, v) spektrin symmetria

91 2-dimensioisen kuvan Fourier-muunnos, esimerkki (4.2.2) Fourier-muunnoksen origo on visualisoinnin vuoksi siirretty keskelle kuvaa. Suurin osa muunnoksen energiasta keskittynyt origoon ja akseleille. sin bu sin cv Muunnos on muotoa a. Palikan muoto on kiertynyt 90. u v 91

92 Analyyttinen, reaalinen, lähellä origoa positiivinen, (u, v)-rajoittamaton, dimensioisen maskin Fourier-muunnos, esimerkki Olkoon alipäästösuodin muotoa h(x, y) = h(x, y) = 1 5 H(u, v) = 1 MN ( δ(x, y) + δ(x 1, y) + δ(x + 1, y) + δ(x, y 1) + δ(x, y + 1) ) = 1 5MN = 1 5MN M 1 x=0 N 1 y=0 h(x, y) e j2π(ux/m+vy/n), u = 0, 1,..., M 1, v = 0, 1,..., N 1 ( 1 + e j2πu/m + e j2πu/m + e j2πv/n + e j2πv/n) ( cos 2πu ) 2πv + 2 cos M N

93 10.4 Taajuustasossa suodattaminen (4.2.3) Taajuusalueessa suodattaminen perustuu konvoluutioteoreemaan: kuvan ja maskin spatiaalista konvoluutiota vastaa taajuusaluessa Fourier-muunnosten tulo. g(x, y) = h(x, y) f(x, y) G(u, v) = H(u, v) F (u, v) lasketaan kuvan f(x, y) Fourier-muunnos F (u, v) valitaan siirtofunktio H(u, v), jolla F (u, v) kerrotaan muodostetaan ehostettu kuva g(x, y) käänteisellä Fourier-muunnoksella Kohinan väheneminen, sumeneminen korkeiden taajuuksien redusointi. Yksityiskohtien korostus, terävöitys korkeiden taajuuksien korostus. 93

94 Esimerkki ali- ja ylipäästösuodatuksista (4.2.3) 94

95 Konvoluutio (4.2.4) Lineaariset suodatusoperaatiot voidaan tulkita konvoluutioina. Konvoluution määritelmä: f(x, y) h(x, y) = 1 MN M 1 N 1 m=0 n=0 f(m, n)h(x m, y n) Konvoluutio on vaihdannainen: f(x, y) h(x, y) = h(x, y) f(x, y) Konvoluutioteoreema: f(x, y) h(x, y) F (u, v) H(u, v) f(x, y) h(x, y) F (u, v) H(u, v) 95

96 11. Kuvien ehostaminen taajuustasossa Kaikki taajuustason suodattaminen perustuu taajuustasossa tehtävään kuvan Fourier-muunnoksen kertomiseen suodatuksen siirtofunktiolla: G(u, v) = H(u, v) F (u, v) 11.1 Alipäästösuodatus (4.3) Alipäästösuodatuksella vaimennetaan korkeita taajuuksia, mikä sumentaa kuvaa, koska korkeat taajuudet vastaavat harmaatasojen nopeita muutoksia kuten ääriviivoja ja kohinaa.

97 97 Ideaalinen alipäästösuodin (ILPF) (4.3.1) Ideaalisen alipäästösuotimen vaste on yksi D 0 -säteisen taajuustason ympyrän sisällä ja nolla sen ulkopuolella, D 0 on rajataajuus: { 1, D(u, v) D 0 H(u, v) = 0, D(u, v) > D 0 D(u, v) = ( u 2 + v 2) 1 2 H(u, v) on ympyräsymmetrinen origon suhteen. Alipäästösuotimen aiheuttamaa sumentumaa voidaan tutkia tarkastelemalla suotimen siirtofunktion käänteis-fourier-muunnosta, so. suotimen impulssivastetta eli pisteenleviämisfunktiota. Ideaalisen alipäästösuotimen impulssivaste on muodoltaan:

98 Jokainen alkuperäinen piste leviää ja sekoittuu ympäröivien pikseleiden kanssa. On huomattava ideaaliselle alipäästösuotimelle ominaiset renkaat, jotka aiheuttavat kuvassa rengastumista. Rengastumisen vuoksi voimakkaat pikselit saavat ympärilleen renkaita ja vastaavasti voimakkaat rajat kuvassa monistuvat tai toistuvat heikompina kaikuina. h(x, y):n samankeskisten renkaiden säteet ovat kääntäen verrannolliset rajataajuuteen D 0. Voimakas suodatus eli pieni D 0 aiheuttaa voimakkaan rengastumisen. Esimerkki ideaalisesta alipäästösuodatuksesta (4.3.1) 98 D 0 : P %:

99 99 alkuperäinen D 0 = 5, -8% D 0 = 15, -5.4% D 0 = 30, -3.6% D 0 = 80, -2% D 0 = 230, -0.5%

100 Butterworth-alipäästösuodin (4.3.2) Erilaisista alipäästösuodatuksista tärkeimpiä on Butterworth-suodin: 1 H(u, v) = 1 + ( ) 2n D(u, v)/d 0 n = suotimen asteluku D 0 = rajataajuus D(u, v) = ( u 2 + v 2) 1 2 Rajataajuudella: H(u, v) = 0.5 H(u, v) D(u,v) D 0 Butterworth-suodin sumentaa kuvaa vähemmän kuin ideaalinen suodin, koska suuritaajuiset komponentit pääsevät vaimennettuina vaikuttamaan tulokseen. Lisäksi renkaita ei muodostu yhtä helposti kuin ideaalisella suotimella.

101 101 Esimerkki Butterworth-alipäästösuodatuksesta (4.3.2) alkuperäinen D 0 = 5, -8% D 0 = 15, -5.4% D 0 = 30, -3.6% D 0 = 80, -2% D 0 = 230, -0.5%

102 Gaussinen alipäästösuodin (4.3.3) Alipäästösuodin voidaan toteuttaa myös Gaussin kellokäyrän mukaisesti: H(u, v) = e D2 (u,v)/2d 2 0 D 0 = rajataajuus D 2 (u, v) = u 2 + v 2 Rajataajuudella: H(u, v) = e Gaussisen suotimen erityisominaisuus on, että sen impulssivaste on myös gaussinen: h(x, y) = 2πD 0 e 2π2 D 2 0 (x2 +y 2 ) Siksi taajuustasossa gaussinen suodin ei voi tuottaa lainkaan rengastumisilmiötä spatiaalitasossa. Verrataessa H(u, v):tä ja h(x, y):tä huomataan, että D 0 :n luonne on niissä käänteinen. Siten leveää taajuusvastetta vastaa kapea impulssivaste ja päinvastoin, kuten kaikilla alipäästörakenteilla aina onkin. 102

103 103 Esimerkki gaussisesta alipäästösuodatuksesta (4.3.3) alkuperäinen D 0 = 5, -8% D 0 = 15, -5.4% D 0 = 30, -3.6% D 0 = 80, -2% D 0 = 230, -0.5%

104 Alipäästösuodatuksen sovelluskohteita (4.3.4) Alipäästösuodatus on lähinnä kosmeettinen prosessi, jolla voidaan poistaa tai ainakin vähentää kohinaa tai joitakin muita kuvan vääristymiä kuvan terävyyden kustannuksella. Esim. tekstin digitoimisen jälkeen voidaan kirjainten epäpuhtauksia vähentää alipäästösuodatuksella. Kuvanmuodostuksessa syntyneitä esim. vaakasuuntaisia viivoja voidaan samoin vähentää taajuustason suodatuksella. Alipäästösuodatusta tarvitaan myös, kun halutaan vähentää käsiteltävän datan määrää esim. osana kuva-analyysin piirreirrotusta.

105 Ylipäästösuodatus (4.4) Korkeiden taajuuksien korostaminen vahvistaa ääriviivoja ja pieniä yksityiskohtia. Yleisesti: H hp (u, v) = 1 H lp (u, v) Ideaalinen ylipäästösuodin (4.4.1) Ideaalinen ylipäästösuodin on ideaalisen alipäästösuotimen komplementti: { 0, D(u, v) D 0 H(u, v) = 1, D(u, v) > D 0 Butterworth-ylipäästösuodin (4.4.2) Myös ylipäästösuodin voidaan toteuttaa Butterworth-rakenteella. Tällöin: H(u, v) = ( D 0 /D(u, v) ) 2n

106 Kyseessä on siis ilmeinen ylipäästösuodin, jonka vaste origossa on nolla. 4π 2 (u 2 +v 2 ):n käänteis-fourier-muunnoksesta saadaan likipitäen tuttu spatiaalinen Laplace-maski. 106 Gaussinen ylipäästösuodin (4.4.3) H(u, v) = 1 e D2 (u,v)/2d 2 0 Gaussisia ylipäästösuotimia voidaan myös toteuttaa myös kahden gaussisen alipäästösuotimen erotuksena: H(u, v) = e D2 (u,v)/2d 2 1 e D 2 (u,v)/2d 2 2 Laplace-operaattori taajuustasossa (4.4.4) Reunanetsinnässä usein käytettävä Laplace-operaattori voidaan jatkuvana lausua kaksidimensioisen Fourier-muunnoksen avulla: 2 f(x, y) = 2 f x f y 2 F{ 2 f(x, y)} = 4π 2 (u 2 + v 2 )F (u, v)

107 107 Kirjan kuvassa 4.23 virhe? (4.4) Ilmeisesti kirjan kuvassa 4.23 on virhe, koska gaussisen ylipäästösuotimen impulssivaste eli pisteenleviämisfunktio näyttää impulssifunktiolta. Kyseessä lienee virhe kuvan kaikkien ei-positiivisten lukuarvojen esittämisessä mustana.

108 Muita ylipäästösuodatuksen muotoja (4.4.5) Puhdasta ylipäästösuodatusta tarvitaan kuva-analyysisovelluksissa, joissa etsitään kuvista reunoja ja pyritään segmentoimaan kuvassa olevat kohteet kuvan taustasta. Ihmisen katsottavaksi tarkoitetuissa kuvissa käytetään enemmänkin korkeiden taajuuksien korostusta. Tällöin esim. ylipäästösuotimen ulostulo lisätään vakiolla kerrottuna alkuperäiseen kuvaan. Tämä vastaa aiemmin esiteltyä High-boost-suodatusta: H hp (u, v) = 1 H lp (u, v) H hb (u, v) = (A 1) + H hp (u, v) Voidaan myös toteuttaa ns. korkeiden taajuuksien korostus (high-frequency emphasis): H hfe (u, v) = a + bh hp (u, v) 108

109 Kuvanmuodostuksessa on luontevaa ajatella, että valaistuksen i(x, y) vaihtelut ovat hitaita verrattuna heijastuksen r(x, y) vaihteluihin. Siten haitallisia valaistusvaihteluja voidaan vähentää ylipäästösuodattamalla linearisoitua kuvaa high-boost-suotimella Homomorfinen suodatus (4.5) Homomorfiseksi suodatukseksi kutsutaan menetelmiä, joissa kuvanmuodostuksessa vaikuttavat epälineaariset tekijät ensin linearisoidaan, sitten käsitellään kuva lineaarisesti ja lopuksi palautetaan kuva alkuperäiseen epälineaariseen esitysmuotoon. Jo aiemmin esitettiin, kuinka kuva f(x, y) voidaan ajatella muodostuneeksi valaistuskomponentista i(x, y) ja heijastuskomponentista r(x, y): f(x, y) = i(x, y) r(x, y) Kuvanmuodostus linearisoidaan logaritmoimalla yhtälön molemmat puolet: ln f(x, y) = ln i(x, y) + ln r(x, y)

110 110 Linearisoitu kuva palautetaan tässä tapauksessa eksponentioimalla takaisin alkuperäiseen esitysmuotoon. Koko prosessointi voidaan esittää kaaviolla: f(x, y) ln FFT H(u, v) FFT 1 exp g(x, y)

111 12. Lisää Fourier-muunnoksesta Siirto eli translaatio (4.6.1) f(x, y)e j2π(u 0x/M+v 0 y/n) F (u u 0, v v 0 ) f(x x 0, y y 0 ) F (u, v)e j2π(ux 0/M+vy 0 /N) Siirto toisessa tasossa vastaa vaihekulman muutosta toisessa tasossa. Translaatio ei vaikuta Fourier- eikä tehospektriin, koska eksponenttitermin itseisarvo on aina yksi. Visualisointitarkoituksessa usein siirretään Fourier-tason origo muunnoskuvan vasemmasta yläkulmasta keskelle, u 0 = M/2, v 0 = N/2: e j2π(u 0x/M+v 0 y/n) = e jπ(x+y) = ( 1) (x+y) f(x, y)( 1) (x+y) F (u M/2, v N/2) (Kuva ( 1) (x+y) itse asiassa vastaa kaksiulotteista Nyquist-taajuutta.) 111

Digitaalinen kuvankäsittely T-61.247 (3 ov) L

Digitaalinen kuvankäsittely T-61.247 (3 ov) L 9.3 Lineaarinen alipäästösuodatus (3.6.)........ 7 Digitaalinen kuvankäsittely T-6.247 (3 ov) L Luento #3 24.9.24 9.4 Kuvan terävöittäminen ylipäästösuodatuksella (3.7). 75. Fourier-muunnoksen perusteet................

Lisätiedot

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

Digitaalinen kuvankäsittely T (3 ov) L

Digitaalinen kuvankäsittely T (3 ov) L Digitaalinen kuvankäsittely T-61.247 (3 ov) L Syksy 2004 Luennot: Laskuharjoitukset: Jorma Laaksonen Jukka Iivarinen OPETUSMONISTE Luento #1 15.9.2004 1. Yleistä kurssista....................... 11 1.1

Lisätiedot

Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Alipäästösuotimen muuntaminen muiksi perussuotimiksi Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-

Lisätiedot

Digitaalinen kuvankäsittely T (3 ov) L. Syksy 2002

Digitaalinen kuvankäsittely T (3 ov) L. Syksy 2002 Digitaalinen kuvankäsittely T-61.247 (3 ov) L Syksy 2002 Luennot: Laskuharjoitukset: Jorma Laaksonen Jukka Iivarinen Syksyn 2002 kalvokopio 16. syyskuuta 2003 Luento #1 10.9.2002 1. Yleistä kurssista.......................

Lisätiedot

Kuvien ehostus taajuustasossa

Kuvien ehostus taajuustasossa Luku 4 Kuvien ehostus taajuustasossa Ranskalainen matemaatikko Jean Babtiste Joseph Fourier esitti 1807, että mikä tahansa jaksollinen funktio voidaan esittää eritaajuisten sinien ja kosinien painotettuna

Lisätiedot

6.6. Tasoitus ja terävöinti

6.6. Tasoitus ja terävöinti 6.6. Tasoitus ja terävöinti Seuraavassa muutetaan pikselin arvoa perustuen mpäristön pikselien ominaisuuksiin. Kuvan 6.18.a nojalla ja Lukujen 3.4. ja 3.5. harmaasävjen käsittelssä esitellillä menetelmillä

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Luku 3. Kuvien ehostus tilatasossa. 3.1 Taustaa

Luku 3. Kuvien ehostus tilatasossa. 3.1 Taustaa Luku 3 Kuvien ehostus tilatasossa Kuvan ehostamisessa päätavoitteena on käsitellä kuvaa siten, että saatu tulos soveltuu paremmin haluttuun käyttötarkoitukseen kuin alkuperäinen kuva. On siis sovelluskohtaista,

Lisätiedot

Digitaalinen kuvankäsittely Tik (3 ov) L. Syksy 1999

Digitaalinen kuvankäsittely Tik (3 ov) L. Syksy 1999 Digitaalinen kuvankäsittely Tik-61.247 (3 ov) L Syksy 1999 Luennot: Laskuharjoitukset: Jorma Laaksonen Patrik Hoyer 1. Luento 14.9.1999 4 1. Yleistä kurssista.............................................

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on

1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on 1467S Digitaalinen kuvankäsittely 1 Johdanto 1.1 Mitä digitaalinen kuvankäsittely on Kuva voidaan ajatella kaksiulotteiseksi funktioksi f(x, y), jossa x ja y ovat koordinaatit ja f:n arvo pisteessä (x,

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Digitaalisen kuvankäsittelyn perusteet

Digitaalisen kuvankäsittelyn perusteet Digitaalisen kuvankäsittelyn perusteet Jukka Teuhola Turun yliopisto Tietojenkäsittelytiede Syksy 2010 http://staff.cs.utu.fi/kurssit/digitaalisen_kuvankasittelyn_perusteet/syksy_2010/index.htm DKP-1 J.

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

Kuvanlaadunparantaminen. Mikko Nuutinen 21.3.2013

Kuvanlaadunparantaminen. Mikko Nuutinen 21.3.2013 Kuvanlaadunparantaminen Mikko Nuutinen 21.3.2013 Luennon sisältö Termistöä Kuvanentisöinti Terävyys unsharp masking Kohina non-local means Linssivääristymän korjaus Kuvanlaadunehostaminen Kontrasti Auto-levels

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

2D piirrelaskennan alkeet, osa I

2D piirrelaskennan alkeet, osa I 2D piirrelaskennan alkeet, osa I Ville Tirronen aleator@jyu.fi University of Jyväskylä 18. syyskuuta 2008 Näkökulma Aiheet Tarkastellaan yksinkertaisia 2D kuvankäsittelyoperaattoreita Näkökulmana on tunnistava

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

SGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007

SGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007 SGN-3010: Digitaalinen kuvankäsittely I Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007 ii Esipuhe Digitaalinen kuvankäsittely on nopeasti kehittynytsignaalinkäsittelyn osa-alue,

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4

1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4 1. Johdanto Kuvanprosessointi tai käsittely juontaa juurensa kahdesta pääasiallisesta alueesta, jotka ovat kuvainformaation parantaminen ihmisen tulkintaa varten ja kuvadatan käsittely talletusta, siirtoa

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

HAHMONTUNNISTUKSEN PERUSTEET

HAHMONTUNNISTUKSEN PERUSTEET HAHMONTUNNISTUKSEN PERUSTEET T-61.3020, 4 op., Kevät 2007 Luennot: Laskuharjoitukset: Harjoitustyö: Erkki Oja Tapani Raiko Matti Aksela TKK, Informaatiotekniikan laboratorio 1 FOREIGN STUDENTS Lectures

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

1 Johdanto Mitä digitaalinen kuvankäsittely on Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuvankäsittelyn vaiheet 3

1 Johdanto Mitä digitaalinen kuvankäsittely on Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuvankäsittelyn vaiheet 3 Sisältö 1 Johdanto 1 1.1 Mitä digitaalinen kuvankäsittely on 1 1.2 Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä 2 1.3 Kuvankäsittelyn vaiheet 3 2 Digitaalisen kuvan perusteet 5 2.1 Havaitseminen

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

1 Vastaa seuraaviin. b) Taajuusvasteen

1 Vastaa seuraaviin. b) Taajuusvasteen Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?

Lisätiedot

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS AI-TUTKIJAN URANÄKYMIÄ AJATUSTENLUKUA COMPUTER VISION SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot