SGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007

Koko: px
Aloita esitys sivulta:

Download "SGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007"

Transkriptio

1 SGN-3010: Digitaalinen kuvankäsittely I Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007

2 ii

3 Esipuhe Digitaalinen kuvankäsittely on nopeasti kehittynytsignaalinkäsittelyn osa-alue, jolla on moninaisia sovelluskohteita. Tietokoneella tapahtuvassa kuvankäsittelyssä ollaan kuitenkin edelleen kaukana siitä, miten ihmissilmä näkemäänsä kuvainformaatiota käsittelee. Tämä ihmisen kuvankäsittelyjärjestelmä asettaakin suuria haasteita digitaaliselle kuvankäsittelylle, eikä kaikkiin näihin haasteisiin ole edes mahdollista vastata nykytekniikan keinoilla. Tämän monisteen tarkoituksena on tutustuttaa lukija digitaalisen kuvankäsittelyn peruskäsitteisiin ja käytäntöihin. Tarkemmin monisteessa keskitytään kuvien ehostukseen tila- ja taajuustasossa, entistykseen sekä lopussa laajennetaan käsittelyaluetta harmaasävykuvista värikuviin. Kuvankäsittelyssä tehtävien operaatioiden yksikäsitteinen esittäminen vaatii niiden matemaattisen formuloinnin, mutta muutoin monisteessa on pyritty matemaattisesti kevyeen esitykseen. Monisteen ohella lisälukemistona voi käyttää kirjaa: Gonzalez C.G. & Woods R.E.: Digital Image Processing (2. painos, Prentice Hall), jonka kuuteen ensimmäiseen lukuun moniste pohjautuu. Tämä moniste on syntynyt tarpeesta saada suomenkielinen luentokalvoja monisanaisempi materiaali käytettäväksi Tampereen teknillisen yliopiston Signaalinkäsittelyn laitoksen kurssilla SGN-3010 Digitaalinen kuvankäsittely I, jonka luennoitsijana olen toiminut vuodesta Monisteen kuvat ovat pääosin Mikko Västilän tekemiä. Harjoitusassistentti Antti Niemistön huomiot monisteesta ovat olleet hyödyksi sen kehittämisessä. Näistä suuri kiitos heille. Pyynnöstä voidaan myöntää lupa tämän monisteen käytölle muualla. Korjausja parannusehdotuksia voi lähettää sähköpostitse osoitteeseen Tampereella, elokuussa 2007 Sari Peltonen

4 iv Digitaalinen kuvankäsittely I

5 Sisältö Esipuhe iii 1 Johdanto Digitaalinen kuvankäsittely Katsaus historiaan Sovellusalueita Perusteita Ihmisen näköjärjestelmä Kirkkaudenerottelujasopeutuminenvalaistukseen Kuvanmuodostus Näytteenottojakvantisointi Kuvien ehostus tilatasossa Taustaa Pisteoperaatiot Histogrammin käsittely Histogrammintasoitus Histogrammin määräys Paikallinen ehostus histogrammin avulla Aritmeettiset/loogisetoperaatiot Suodatusoperaatiot Pehmennystilatasonsuodatuksella Terävöittäminen tilatason suodatuksella Kuvien ehostus taajuustasossa Fourier-muunnos Suodatustaajuustasossa Pehmennys taajuustason suodatuksella Ideaalinen alipäästösuodin Butterworth-alipäästösuodin Gaussinen alipäästösuodin Terävöittäminentaajuustasonsuodatuksella Homomorfinensuodatus DFT:ntoteuttamisesta... 65

6 vi SISÄLTÖ 5 Kuvien entistäminen Kohinamalleja Entistäminentilatasossa Keskiarvosuotimia Järjestysfunktioon perustuvia suotimia Adaptiivisiasuotimia Jaksollisen kohinan poisto taajuustasossa Huononnusfunktionestimointi Käänteissuodatus Wiener-suodatus Värikuvien käsittely Perusteita Värimallit RGB-värimalli CMY(K)-värimalli HSI-värimalli CIELAB-värimalli Väärävärikuvat Värimuunnokset Värikuvien pehmennys ja terävöitys

7 Luku 1 Johdanto Kuvankäsittely voidaan karkeasti jakaa kahteen pääsovellusalueeseen sen mukaan, onko kuvan tulkitsija ihminen vai kone. Ihmisen tulkittavaksi kuvia muokattaessa pääpaino on visuaalisella miellyttävyydellä ja haluttavan informaation erottumisella muusta kuvadatasta sillä tavoin,että ihmisen on se helppo havaita. Koneellista tulkintaa varten kuvia muokataan niin, että koneellisilla menetelmillä niistä saadaan parhaimmalla tavalla irti haluttava informaatio. Keskitytään aluksi harmaasävykuviin, joissa esiintyy eri harmaan sävyjä mustasta valkoiseen, mutta ei värejä. Myöhemmin luvussa 6 käsittelyalue laajennetaan myös värikuviin. 1.1 Digitaalinen kuvankäsittely Kuva on kaksiulotteinen funktio f(x, y), missä x ja y ovat tilatason (spatiaalitason) koordinaatteja ja funktion f arvoa kussakin pisteessä (x, y) kutsutaan harmaasävyksi tai intensiteetiksi. Kun funktion f(x, y) arvotsekä koordinaatit x ja y kaikki saavat vain äärellisiä diskreettejä arvoja, kuvaa kutsutaan digitaaliseksi kuvaksi. Digitaalinen kuvankäsittely puolestaan on näiden digitaalisten kuvien käsittelyä digitaalisella tietokoneella. Kuvassa 1.1 on digitaalinen kuva vasemmalla. Oikealla näkyy pieni osa tästä kuvasta suurennettuna. Tästä suurennoksesta voi erottaa kuvan yksittäiset pisteet Kuva 1.1: Vasemmalla on digitaalinen kuva ja oikealla näkyy pieni osa tästä kuvasta suurennettuna.

8 2 Digitaalinen kuvankäsittely I eli pikselit, joista digitaalinen kuva koostuu. Vasemmalla puolestaan pisteiden koko ja vierekkäisten pisteiden väliset etäisyydet ovat niin pieniä, että ihmissilmällä ei erota tästä kuvasta yksittäisiä pisteitä, vaan kuva näyttää meistä jatkuvalta. Näköaisti on kehittynein ihmisen aisteista ja visuaalinen havainnointi muodostaakin erittäin suuren osan ihmisen havainnointijärjestelmästä. Arviolta 3/4 ihmisen havainnoinnista perustuu näköhavaintoihin. Ihmisen visuaalinen järjestelmä on erittäin sopeutumiskykyinen vaihteleviin olosuhteisiin. Näköjärjestelmämme toiminta on kuitenkin rajoittunut vain pienelle sähkömagneettisenspektrin taajuusalueelle, jota kutsutaan näkyvän valon alueeksi. Koneilla ei tällaista rajoitetta ole, vaan erilaisilla koneilla voidaan havainnoida lähestulkoon koko sähkömagneettisen spektrin alueella, aina gamma-aalloista radioaaltoihin. Koneilla kuvia voidaan tuottaa myös muista lähteistä kuin sähkömagneettisesta säteilystä, kuten esim. ääniaalloista tai elektronimikroskopiasta. Lisäksi myös tietokoneella voidaan luoda synteettisiä kuvia. Tässä monisteessa digitaaliseen kuvankäsittelyyn luetaan kuuluviksi 1) kaikki sellaiset prosessit, joiden syötteet ja ulostulot ovat kuvia sekä 2) prosessit, jotka irrottavat kuvista tietoa (aina yksittäisten esineiden tunnistamiseen asti). Tämän määritelmän perusteella esim. tekstintunnistuksessa merkkien tunnistaminen kuuluu digitaaliseen kuvankäsittelyyn, mutta tekstin merkityksen selvittäminen ei enää kuulu sen piiriin. Kuvankäsittelyä ei kuitenkaan voida rajata tiukasti omaksi erilliseksi alakseen, vaan sillä on liittymäkohtia lukuisiin muihin aloihin, kuten esim. signaalinkäsittelyyn, fysiikkaan, matematiikkaan ja tietojenkäsittelytieteisiin. Sovellukset ovat myös moninaisia, sisältäen mm. sään ennustamista, avaruuden tutkimusta, lääketieteellisiä sovelluksia ym. 1.2 Katsaus historiaan Lehtikuvien siirto merikaapelilla Lontoon ja New Yorkin välillä 1920-luvulla oli ensimmäisiä kuvankäsittelyn sovelluksia. Tämän Bartlanen kaapelisiirtojärjestelmän ansiosta kuvien siirtäminen nopeutui alle kolmeen tuntiin aikaisemmasta yli viikosta. Vaikka kuvat olivatkin digitaalisia, niin käyttämämme määritelmän mukaan ne eivät ole digitaalisen kuvankäsittelyn tuloksena saatuja, koska niiden luomiseen ei käytetty tietokoneita. Digitaalisen kuvankäsittelyn kehitysaskeleet kulkevat kiinteästi tietokoneiden kehityksen vanavedessä. Tämä johtuu siitä, että digitaalisessa muodossa olevat kuvat vaativat paljon tallennustilaa ja niiden käsittely vaatii tietokoneelta suurta laskennallista tehoa. Tietokoneiden sekä tiedon tallennus-, siirto- ja näyttölaitteiden kehitysaskeleet ovat tuoneet mukanaan aina uusia mahdollisuuksia digitaaliselle kuvankäsittelylle. Ensimmäiset mielekkäitä kuvankäsittelyoperaatioita suorittamaan kykenevät tietokoneet ajoittuvat 1960-luvulle ja tuo ajanjakso nähdään digitaalisen kuvankäsittelyn syntyhetkenä. Alkuaikojen kehityksen moottorina toimivat avaruuden tutkimuksen mukanaan tuomat kuvankäsittelylliset tarpeet ja lukujen taitteessa digitaalista kuvankäsittelyä alettiin käyttää myös lääketieteen, kaukokartoituksen ja astronomian sovelluksissa. Nykypäivänä digitaalinen kuvankä-

9 1.3 Sovellusalueita 3 sittely on digitaalisten kameroiden yleistyessä ja internetin kautta saatavilla olevan valtaisan kuvallisen informaation myötä tullut lähestulkoon jokaisen ulottuville. Seuraavassa aliluvussa on joitakin esimerkkejä digitaalista kuvankäsittelyä käyttävistä sovellusalueista. 1.3 Sovellusalueita Digitaalisen kuvankäsittelyn sovellukset eri aloilla ovat niin moninaiset, että niitä on mahdoton tässä listata millään tavoin kattavasti. Tästä johtuen alla onkin annettu vain joitakin yksittäisiä esimerkkejäsähkömagneettisen säteilyn eri aallonpituusalueilta. Sähkömagneettinen säteily voidaan ajatella etenevinä siniaaltoina, joilla on aallonpituus λ, tai massattomina hiukkasina, jotka etenevät aaltomaisesti valon nopeudella. Sähkömagneettisella säteilyllä on siis sekä aalto- että hiukkasluonne ja sähkömagneettisen vuorovaikutuksen välittäjähiukkanen fotoni voidaan ajatella erilliseksi aaltopaketiksi. Fotonin energia riippuu säteilyn aallonpituudesta kaavan E = hc/λ = hν mukaisesti, missä h on Plankin vakio, ν taajuus ja c valon nopeus. Kuvassa 1.2 näkyy, miten eri taajuusvälit on nimetty. Radioaalloilla on pienin taajuus (pienin energia ja suurin aallonpituus) ja gammasäteillä puolestaan suurin taajuus (suurin energia ja pienin aallonpituus). Säteilyluokat menevät osittain päällekkäin rajaalueilla, mitä kuvassa on havainnollistettu harmaasävyillä. Tästä kuvastanähdään myös, miten kapea osa näkyvän valon alue on koko esitetystä sähkömagneettisen spektrin alueesta. Kuva 1.2: Sähkömagneettisen säteilyn jaottelu taajuuden mukaan.

10 4 Digitaalinen kuvankäsittely I Sovellusalueita sähkömagneettisen säteilyn aallonpituuden mukaan: Gammasäteily isotooppilääketiede (esim. positroniemissiotomografia (PET)), astronomia Röntgensäteily lääketieteellinen diagnostiikka (esim. röntgenkuvaus, varjoaineröntgenkuvaus ja tietokonetomografia (TT)), teollinen tuotteiden tarkastus, astronomia Ultraviolettisäteily fluoresenssimikroskopia, teollinen tuotteiden tarkastus, astronomia Näkyvä valo(eniten sovelluksia) mikroskopia, satelliittikuvat, kuviin perustuva tarkkailu, tunnistus, laskeminen jne. Infrapuna satelliittikuvat, pimeäkuvaus Mikroaallot tutkakuvaus Radioaallot lääketiede (magneettiresonanssikuvaus (MRI)), astronomia Vaikkakin sähkömagneettisen säteilyn avulla tapahtuva kuvantaminen on sovelluksiltaan laaja-alaisin ja moninaisin, on myös joitakin muita tärkeitä kuvantamismenetelmiä. Tällaisia ovat mm. ääniaaltojen, elektronimikroskopian ja täysin tietokoneiden avulla tapahtuva kuvantaminen. Ääniaaltojen avulla tuotetaan mm. seismografisia kuvia, ultraäänikuvia ja kaikuluotainkuvia. Elektronimikroskopian avulla päästään huomattavasti valomikroskopiaa (1000 ) suurempiin suurennoksiin (jopa yli ). Elektronimikroskopia jaotellaan kahteen luokkaan: läpäisyelektronimikroskopiaan (transmission electron microscopy) ja pyyhkäisyelektronimikroskopiaan (scanning electron microscopy). Näistä ensimmäisessä kohdetta tarkastellaan sen läpi menevien elektronien avulla ja jälkimmäisessä sen pinnasta sinkoavan sekundaarisäteilyn perusteella, kun liikkuvan elektronisuihkun annetaan osua kohteeseen kohta kohdalta. Edellisissä esimerkeissä kuvantaminen perustuu jonkin fyysisen maailman ilmiön mittaustulosten kuvamuotoiseen esittämiseen. Kuva voi olla myös kokonaan tietokoneella aikaansaatu eli synteettinen. Fraktaalit ovat tästä yksi esimerkki ja toinen ovat malleista tehdyt kuvat, joita voidaan käyttää menetelmien testaukseen, mallinnukseen ja harjoittelutarkoituksiin.

11 Luku 2 Perusteita 2.1 Ihmisen näköjärjestelmä Tavallisesti kuvankäsittelymenetelmä valitaan havaittujen tulosten perusteella käyttäen subjektiivista analyysiä. Tämän vuoksi onkin tärkeää ymmärtää ihmisennäköjärjestelmästä joitakin perusasioita. Kuvassa 2.1 näkyy yksinkertaistettu poikkileikkauskuva ihmissilmästä. Silmä on muodoltaan lähestulkoon pallo, jonka halkaisija on noin 2 cm. Valo tulee silmään etuosan läpinäkyvän sarveiskalvon läpi ja sädelihaksella linssiä säätelemällä setarkennetaan silmän takaosan verkkokalvolle. Iiriksen tehtävä onsäädellä silmään tulevan valon määrää niin, että silmän keskiaukeama (pupilli) vaihtelee halkaisijaltaan välillä n.2 8 mm. Kuva piirtyy ylösalaisin verkkokalvolle, jossa on kahdentyyppisiä reseptoreita: tappisoluja (cones) ja sauvasoluja (rods). Tappisoluja on kummassakin silmässä 6 7 miljoonaa ja ne sijoittuvat pääosin verkkokalvon keskikuopan (fovean) lähistölle, Kuva 2.1: Ihmissilmä ja yksinkertaistettu piirroskuva sen poikkileikkauksesta.

12 6 Digitaalinen kuvankäsittely I missä sijaitsee silmän tarkan näön alue. Tappisoluja on kolmea eri lajia, joista kukin on herkkä näkyvän valon tietylle aallonpituudelle eli värille. Nämä kolmen lajin tappisolut ovat yhteisvastuussa värien näkemisestä. Myös yksityiskohtiennäkeminen on tappisolujen ansiota pääosin siitä syystä, että jokaisella tappisolulla on oma hermopäätteensä. Tappisolujen avulla tapahtuvaa näkemistä kutsutaan kirkasnäöksi (photopic vision) siitä syystä, että tappisolujen toimintaedellytys on riittävän kirkas valaistus. Sauvasolujen määrä on huomattavasti tappisolujen määrää suurempi. Niitä on silmässä miljoonaa levinneenä lähestulkoon koko verkkokalvolle. Suuremmalle alueelle jakautuminen ja useamman kuin yhden sauvasolun liittyminen yhteen hermopäätteeseen saavat aikaan heikomman yksityiskohtien erottelun sauvasolujen avulla. Sauvasolujen tehtävänä onkin auttaa yleiskuvan muodostamisessa koko näkökentän alueelta. Ne myös vastaavat hämäränäöstä (scotopic vision), sillä ne ovat herkkiä matalillekin valaistustasoille. Tästä tappi- ja sauvasolujen työnjaosta yksinkertainen esimerkki on päivänvalossa kirkasväristen esineiden muuttuminen värittömiksi muodoiksi katsellessamme niitä kuunvalossa. Tämä johtuu siitä, että päivänvalossa näkemisestä päävastuussa ovat tappisolut ja heikossa kuunvalossa puolestaan sauvasolut. Esimerkiksi kissoilla, joilla on huomattavasti ihmistäparempi hämäränäkö, on paljon enemmän sauvasoluja verkkokalvollaan. Kuvassa 2.2 on esitetty tappi- ja sauvasolujen jakautuminen verkkokalvolle. Sininen käyrä esittää tappisolujen ja punainen sauvasolujen lukumäärää neliömillimetrillä läpileikkauskohdan kulkiessa sokean pisteen (näköhermon alkukohdan) kautta. Sokean pisteen kohdalla reseptoreita ei ole lainkaan, mutta tätä kohtaa lukuun ottamatta reseptorit ovat jakautuneet likimain symmetrisesti keskikuopan ollessa symmetrian keskipisteenä. Vaaka-akselin asteluvut tarkoittavat verkkokalvon kohtaa, jossa optisen akselin kanssa asteluvun osoittamaan kulmaan piirretty linssin keskipisteen kautta kulkeva suora leikkaa verkkokalvon (ks. kuvasta 2.1 siihen piirretty 45 asteen suora). Kuvasta 2.2 näkyy selvästi tappisolujen tihentymä keskikuopan alueella sekä sauvasolujen suurempi määrä ja jakautuminen koko muulle alueelle. Kuva 2.2: Tappi- (sin.) ja sauvasolujen (pun.) jakautuminen verkkokalvolle.

13 2.2 Kirkkauden erottelu ja sopeutuminen valaistukseen 7 Kuva 2.3: Valon taittuminen kuperassa linssissä. Kuvassa 2.3 on kupera linssi sopivalla etäisyydellä oikealla olevasta varjostimesta, jolloin linssi taittaa siihen tulevan valon niin, että varjostimella näkyy vasemmalla olevan valonlähteen ylösalaisin oleva kuva. Samalla periaatteella toimii myös ihmisen silmä, jossa varjostimena toimii verkkokalvo. Silmän erona optisiin linsseihin on silmän linssin taittovoimakkuuden muuntelumahdollisuus sädelihaksen avulla. Tästä syystä voimme nähdä tarkastierietäisyyksillä olevia kohteita. Samanaikaisesti silmä voi kuitenkin nähdä tarkasti vain yhdellä etäisyydellä olevia kohteita muiden näkyessä sumentuneina. Näkemämme esineiden värit määräytyvät sen mukaan, mitä sähkömagneettisen säteilyn aallonpituuksia kukin esine heijastaa. Esimerkiksi vihreä esine heijastaa pääasiassa aallonpituuksia väliltä µm vaimentaen muut aallonpituudet. Kaikkia aallonpituuksia tasaisesti heijastava esine näyttää meistävalkoiselta.väreihin palaamme tarkemmin luvussa Kirkkauden erottelu ja sopeutuminen valaistukseen Digitaaliset kuvat esitetään jollakin diskreetillä harmaasävytasojen määrällä, joten niiden esittämisen kannalta on tärkeää tietää, millainen on ihmissilmän kyky erottaa eri harmaasävytasoja toisistaan. Ihmissilmän sopeutumiskyky eri valaistusolosuhteisiin on erittäin hyvä ja kykenemme erottamaan harmaasävyjä aina hämäräkynnykseltä häikäisyrajalle saakka. Tällä välillä erottamiemme harmaasävytasojen määrä on luokkaa tasoa. Samanaikaisesti emme kuitenkaan pysty tätä valtaisaa harmaasävytasojen määrää erottamaan, vaan silmä voi sopeutua kullakin ajanhetkellä vain tietylle kirkkausalueelle. Kun katsomme jonkin kuvapisteen ympäristöä, niin yhdellä ajanhetkellä pystymme havaitsemaan vain harmaasävytasoa. Katseen vaeltaessa eri alueilla kuvassa silmä sopeutuu aina kuhunkin paikalliseen ympäristöön, jolloin kokonaiserottelualue on kuitenkin edellistä suurempi. Melko tasaiselle kuvalle se on yli 100 harmaasävytasoa. Silmän kykyä erottaa harmaasävyjä toisistaan tietyllä kirkkausalueella voidaan tutkia seuraavanlaisen klassisen koejärjestelyn avulla. Koehenkilö katsoo koko näkökentän kattavaa tasasävyistä aluetta, jonka harmaasävy on I. Tämän alueen kes-

14 8 Digitaalinen kuvankäsittely I Kuva 2.4: Koejärjestely, jolla testataan harmaasävyjen erottamista toisistaan. kellä näytetään lyhyen hetken ympyränmuotoista aluetta, joka on arvon I verran taustaa kirkkaampi (ks. kuva 2.4). Koe aloitetaan käyttäen pientä muutosta I. Tämän jälkeen koehenkilöltä kysytään, havaitsiko hän mitään muutosta keskellä. Jos muutosta ei havaittu kasvatetaan arvoa I ja toistetaan kysymys. Näin jatketaan kunnes muutos on sellainen, että koehenkilö sen havaitsee ja vastaa myöntävästi kysymykseen. Weberin suhde on I c /I, jossa I c on pienin muutos, joka havaittiin puolessa kokeista. Pieni Weberin suhde tarkoittaa pienien suhteellisten muutosten havaitsemista ja siis hyvää erottelukykyä. Suuri suhde puolestaan kertoo huonommasta erottelusta, jolloin vain suuret muutokset havaitaan. Tummemmalle taustalle erottelukyky on heikompi kuin vaaleammalle. Silmän suhteellinen erottelukyky onkin suurempi kirkkaassa valaistuksessa kuin pimeässä. Havaittu kirkkaus ei ole yksinkertainen intensiteetin funktio. Tätä havainnollistetaan tavallisesti kahdella esimerkillä: simultaanikontrastilla ja Machin nauhoilla. Kuvassa 2.5 kaikkien pienempien neliöiden intensiteetti on sama, mutta taustan intensiteetin ollessa pienempi sisempi neliö näyttää vaaleammalta. Tätä ilmiötä kutsutaan simultaanikontrastiksi. todellinen harmaasävy Kuva 2.5: Esimerkki simultaanikontrastista.

15 2.2 Kirkkauden erottelu ja sopeutuminen valaistukseen 9 todellinen harmaasävy havaittu kirkkaus Kuva 2.6: Esimerkki Machin nauhoista. Kuvan 2.6 yläosassa ovat Ernst Machin mukaan nimetyt nauhat, joista kullakin on oma vakiointensiteettinsä. Kuitenkin näyttää siltä kuin kukin nauha olisi vaaleampi tummemman nauhan vieressä olevalta puoleltaan kuin vaaleamman vieressä olevalta. Kuvan alaosassa näkyy todellisen harmaasävyn ja havaitun kirkkauden ero, mutta tässä on huomattava, että kummallakin käyrällä nauhojen keskiosat saavat samoja arvoja. Tässä kuvassa toinen käyrä on siis vain nostettu korkeammalle, jotta erot näkyisivät selvemmin.

16 10 Digitaalinen kuvankäsittely I 2.3 Kuvanmuodostus Tavallisimmin kuvat muodostuvat valonlähteen valaistessa kuvattavia kohteita, jotka heijastavat ja absorboivat valonlähteen energiaa. Kuten aikaisemmin on mainittu, kuvia voidaan muodostaa myös muilla tavoin, kuten esimerkiksi keräämällä röntgenfilmille esineen/ihmisen läpi kulkeneita röntgensäteitä. Kuvassa 2.7 on esitetty tyypillisiä sensorirakenteita, joilla valoenergia voidaan muuntaa digitaaliseksi kuvaksi. Näistä on vasemmalla esitetty yksittäissensori ja oikealla matriisisensori. Näiden lisäksi käytetään myös viivasensoreita, joissa on suorassa rivissä useita sensoreita. Sensorielementillä on sen materiaalista riippuva herkkyysjakauma, jonka mukaisesti se on herkkä halutuille aallonpituuksille ja se muuntaa valoenergian herkkyysjakaumalla painottaen jännitteeksi. Tämä muunnetaan edelleen digitaaliseen muotoon kvantisoimalla se diskreeteille tasoille. Tällöin tuloksena on yksi digitaalisen kuvan piste. Yksittäissensoreita käytetään harvoin kuvien muodostamisessa, mutta kaksi muuta sensorirakennetta ovat yleisemmin käytössä. Viivasensorilla saadaan kerralla kuvan yhden rivin (tai sarakkeen) pisteet. Tämäsensorityyppi on käytössä esim. tasoskannereissa. Matriisisensoreissa saadaan kerralla kaikki kuvan pisteet ja sitä käytetään mm. digitaalikameroissa. Niissä yleisimmin käytetty sensorirakennetyyppi on CCD (Charge Coupled Device) eli varauskytketty komponentti. Kun sensoreiden avulla muodostetaan kuvia, on lopputuloksena digitaalinen kuva f(x, y), jonka arvot ovat positiivisia ja äärellisiä. Kuva voidaan jakaa kahteen komponenttiin eli valaistuskomponenttiin i(x, y) jaheijastuskomponenttiin r(x, y). Näiden tulona saadaan digitaalinen kuva f(x, y) =i(x, y)r(x, y), Kuva 2.7: Vasemmalla yksittäissensori ja oikealla yksittäissensoreista muodostuva matriisisensori.

17 2.4 Näytteenotto ja kvantisointi 11 missä 0< i(x, y) < ja 0 < r(x, y) < 1. Valaistuskomponentin määrää valonlähteen luonne ja heijastuskomponentin kuvattavan esineen ominaisuudet. Käytännössä harmaasävyarvot f(x, y) ovat jollakin välillä [L min,l max ], missä 0 < L min <L max <. Harmaasävykuvat usein esitetään niin, ettäväli [L min,l max ] siirretään alkamaan nollasta, jolloin saadaan väli [0,L 1]. Tällä viimeisimmällä merkintätavalla 0 tarkoittaa mustaa kuvapistettä jal 1valkoista.Näiden ääripäiden väliin jäävät harmaan eri sävyt harmaasävytasojen kokonaismäärän ollessa L. Toinen yleinen esitystapa saadaan normalisoimalla arvot välille [0, 1]. 2.4 Näytteenotto ja kvantisointi Useimmiten luotaessa digitaalisia kuvia tarvitaan muunnos analogisesta muodosta digitaaliseen. Kuville tämä muunnos sisältää kaksi prosessia: näytteenoton ja harmaatasokvantisoinnin. Jos kuva on jatkuva-aikaisessa muodossa x- jay-koordinaattien suhteen, niin digitaaliseen muotoon muunnettaessa kuva näytteistetään näiden molempien koordinaattien suhteen. Tätä kutsutaan kaksiulotteiseksi näytteenotoksi tai spatiaaliseksi kvantisoinniksi. Jos kuvan amplitudi on jatkuva-aikainen, on sille tehtävä harmaataso- eli intensiteettikvantisointi. Kuvassa 2.8 vasemmalla oleva kuva esittää jatkuva-aikaista kuvaa ja oikealla sama kuva on esitetty näytteistettynä x- ja y-koordinaattien suhteen sekä amplitudi on kvantisoitu muutamalle diskreetille harmaasävytasolle. Aina ei tarvita näytteistystä molempien tai kummankaan koordinaatin suhteen. Yksittäisensoria käytettäessä voidaan mekaanisesti siirtää sensoria halutun askeleen verran ja aktivoida sensori kussakin yksittäisessä kohdassa erikseen sen sijaan, että mitattaisiin sensorin ulostuloa tasaisen liikkeen aikana. Viivasensoria käytettäessä sensorien lukumäärä määrittää resoluution toiseen koordinaattisuuntaan ja toiseen suuntaan voidaan jälleen edetä askeleittain. Matriisisensorin tapauksessa näytteistystä ei tarvita, koska matriisin dimensiot määräävät kuvan dimensiot. Kuva 2.8: Jatkuvan kuvan näytteistys koordinaattien x ja y suhteen sekä harmaatasokvantisointi.

18 12 Digitaalinen kuvankäsittely I Yllä esitetynnäytteistyksen ja kvantisoinnin tuloksena oleva digitaalinen kuva voidaan esittää matriisimuodossa seuraavasti: f(x, y) = f(0, 0) f(0, 1)... f(0,n 1) f(1, 0) f(1, 1)... f(1,n 1)... f(m 1, 0) f(m 1, 1)... f(m 1,N 1), kun kuvassa on M riviä jan saraketta. Kvantisointitasojen määrä L, eli erilaisten mahdollisten harmaasävyjen määrä, on tavallisesti jokin kahden potenssi L =2 k. Tällöin puhutaan k-bittisestä kuvasta ja esim. 8-bittisessä kuvassa on siis 2 8 = 256 mahdollista harmaasävyarvoa. Käytetyin k:n arvo on 8 bittiä, mutta myös arvoja 10, 12, 14 ja 16 bittiä käytetään. Spatiaaliresoluutio kertoo pienimmän erottuvan yksityiskohdan kuvassa. Harmaasävyresoluutio viittaa vastaavasti pienimpään huomattavissa olevaan harmaasävymuutokseen. Kuten luvussa 2.2 jo todettiin, tämä on kuitenkin hyvin riippuvaista havaitsijasta, jolloin voidaan antaa vain toistokokeissa saatuja keskimääräisiäarvoja. Tästä syystä termiä resoluutio käytetäänkin usein hieman eri merkityksessä. Tällöin L:llä harmaasävytasolla esitetyllä M N-kokoisella kuvalla sanotaan olevan M N pisteen spatiaaliresoluutio ja harmaasävyresoluutio L. Kuvassa 2.9 on vasemmalla kuva, josta viereinen kuva on saatu poistamalla joka toinen rivi ja sarake. Tästä kuvasta on edelleen saatu samalla tavoin poistamalla joka toinen rivi ja sarake kuva. Näin on jatkettu kunnes on päädytty oikean reunan kuvaan. Tässä kuvassa kuvien koon pieneneminen hankaloittaa kuvapisteiden määrän vähentämisen vaikutuksien havaitsemista. Vertailun helpottamiseksi kuvassa 2.10 kaikki kuvan 2.9 kuvat on esitetty samankokoisina. Kahdella suurimmalla resoluutiolla kuvat ovat visuaalisesti samanlaisia esitettäessä kuvatässä koossa kuin se monisteessa on. Seuraavassa kuvassa näkyy hieman huonontumista ja siitä eteenpäin kuvat ovat yhä huonompia Kuva 2.9: Sama 8-bittinen kuva spatiaaliresoluutioilla , , , , ja

19 2.4 Näytteenotto ja kvantisointi 13 Kuva 2.10: Kuvan 2.9 kuvat esitettynä kaikki samassa koossa (lähimmän naapurin interpolaatiota käyttäen). ja viimeisistä kuvista on vaikea nähdä, mitä needesesittävät. Kuvassa 2.11 on havainnollistettu harmaasävyresoluution merkitystä. Ylärivin harmaasävyresoluutiot 256 ja 32 näyttävät melko samanlaisilta, mutta jälkimmäisessä laajemmille harmaille alueille on muodostunut tasasävyisiä osa-alueita,joiden välillä näkyy valereunoja. Alarivissä ovat harmaasävyresoluutiot 8 ja 2, joista ensimmäisessä valereunat näkyvät vielä selkeämmin. Kuva 2.11: Sama kuva harmaasävyresoluutioilla 256 (ylh. vas.), 32 (ylh. oik.), 8 (alh. vas.) ja 2 (alh. oik.).

20 14 Digitaalinen kuvankäsittely I Edelliset kuvat havainnollistivat, mitä kuvalle tapahtuu, kun sen spatiaaliresoluutiota tai harmaasävyresoluutiota muutetaan toisen pysyessä vakiona. Tämä ei kerro mitään siitä, onko näiden kahden resoluutiotyypin välilläjokinyh- teys vai ovatko ne täysin toisistaan riippumattomia. Kuvan subjektiivista laatua voidaan tutkia isopreferenssikäyrien avulla. Oletetaan yksinkertaisuuden vuoksi, että M = N. Isopreferenssikäyrä saadaan tehtyä kuvalle niin, että tehdään samasta kuvasta monta eri versiota vaihtelemalla parametrien N ja k arvoja pitäen esitettävän kuvan fyysinen koko samana. Testihenkilöitä pyydetään lajittelemaan kuvajoukko subjektiivisen laadun mukaiseen järjestykseen. Testien tuloksista voidaan piirtää isopreferenssikäyriä Nk-tasoon. Tässä tasossa samalla isopreferenssikäyrällä olevat pisteet vastaavat saman kuvan niitä versioita, joille testien keskiarvona on saatu sama subjektiivinen laatu. Erilaisille kuville saatuja isopreferenssikäyriä vertaamalla on havaittu, että käyrät ovat pystysuorempia (pystyakselin ollessa k) enemmän yksityiskohtia sisältäville kuville. Tämän havainnon käytännön merkitys on se, että kuvansisältäessä enemmän yksityiskohtia voi olla mahdollista vähentää harmaasävytasojen määrää kuvan subjektiivisen laadun pysyessä muuttumattomana. Kuvassa 2.12 on esimerkki isopreferenssikäyristä. Käyristä vasemmanpuoleinen on yksi paljon yksityiskohtia sisältävän kuvan ja oikeanpuoleinen vähän niitäsisältävän kuvan isopreferenssikäyristä. Kuva 2.12: Yksi paljon yksityiskohtia sisältävän kuvan isopreferenssikäyrä (vas.)ja yksi vähän yksityiskohtia sisältävän kuvan isopreferenssikäyrä (oik.).

21 2.4 Näytteenotto ja kvantisointi 15 Kuva 2.13: Esimerkki pisteen (x,y ) arvon laskemisesta bilineaarisella interpoloinnilla. Joskus on tarpeen muuttaa digitaalisen kuvan spatiaaliresoluutiota suuremmaksi tai pienemmäksi. Kuvaa suurennettaessa on määritettävä, missä kohdissa suurennetun kuvan pisteet ovat alkuperäisen kuvan pisteisiin nähden ja mikä on kunkin uuden pisteen harmaasävy. Yksinkertaisin tapa on antaa kullekin suurennetun kuvan pisteelle harmaasävyksi sitä tilatasossa kaikkein lähinnä olevan alkuperäisen kuvan pisteen harmaasävy. Tämä lähimmän naapurin interpolointi aiheuttaa kuviin kuitenkin helposti vääristymiä. Tavallisesti käytetäänkin hieman monimutkaisempaa bilineaarista interpolaatiota, jossa kunkin uuden pisteen arvo saadaan alkuperäisen kuvan neljän uutta pistettä tilatasossa lähinnä olevan pisteen avulla. Tämä on yksiulotteisen interpoloinnin yleistys, jossa ensin interpoloidaan lineaarisesti vaaka- ja sitten pystysuuntaan (tai päinvastoin). Kuvassa 2.13 on havainnollistus, jossa (x,y ) ovat suurennetun kuvan yhden pisteen koordinaatit ja (x 1,y 1 ), (x 1,y 2 ), (x 2,y 1 )ja (x 2,y 2 )ovatalkuperäisen kuvan neljän lähimmän pisteen koordinaatit. Suurennetun kuvan pisteen arvo v(x,y ) saadaan interpoloimalla ensin lineaarisesti vaakasuuntaan, jolloin saadaan arvot v(x,y 1 )jav(x,y 2 ), ja sen jälkeen näistä arvoista lineaarisesti interpoloimalla pystysuuntaan. Yleisemmässä muodossa voidaan kirjoittaa, että v(x,y )=ax + by + cx y + d, missä kertoimet a, b, c ja d saadaan ratkaisuna neljän yhtälön yhtälöryhmästä, joka voidaan kirjoittaa käyttäen pisteen (x,y )neljää tilatasossa lähinnä olevaa alkuperäisen kuvan pistettä.

22 16 Digitaalinen kuvankäsittely I Kuva 2.14: Kuvakoista , ja kokoon lähimmän naapurin (ylärivissä) ja bilineaarisella (alarivissä) interpolaatiolla suurennettuja kuvia. Kuvasta 2.14 voi vertailla, miten lähimmän naapurin ja bilineaarisella interpoloinnilla saadut tuloksen eroavat toisistaan. Selvästi alarivin bilineaarisella interpoloinnilla saadut kuvat ovat visuaalisesti miellyttävämpiä kuin niiden yläpuolella olevat lähimmän naapurin interpoloinnilla saadut. Viimeisen kuvan kohdalla suurennoskerroin on 16, joten kovin hyvää tulosta ei voi odottaa miltään menetelmältä. Samalla tavoin digitaalisia kuvia pienennettäessä voidaan pienennetyn kuvan pisteiden harmaasävyarvot saada lähimmän naapurin tai bilineaarista interpolaatiota käyttäen. Tässä tapauksessa voi kuitenkin tapahtua häiritsevää laskostumista, jota voidaan ehkäistä pehmentämällä eli alipäästösuodattamalla kuvaa hieman ennen pienentämistä. Menetelmiä tämän suodatuksen toteuttamiseen löytyy monisteen seuraavista luvuista. Bilineaarista interpolointia parempiin tuloksiin päästään käyttämällä suurempaa määrää lähimpiä pisteitä (esim. bicubic interpolointi käyttää 16 pistettä). Hyviä tuloksia saadaan myös splini-interpoloinnilla, jossa tunnettuihin pisteisiin sovitetaan paloittain määriteltyjä polynomeja eli splinejä.

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4

1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4 1. Johdanto Kuvanprosessointi tai käsittely juontaa juurensa kahdesta pääasiallisesta alueesta, jotka ovat kuvainformaation parantaminen ihmisen tulkintaa varten ja kuvadatan käsittely talletusta, siirtoa

Lisätiedot

1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on

1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on 1467S Digitaalinen kuvankäsittely 1 Johdanto 1.1 Mitä digitaalinen kuvankäsittely on Kuva voidaan ajatella kaksiulotteiseksi funktioksi f(x, y), jossa x ja y ovat koordinaatit ja f:n arvo pisteessä (x,

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 2 visuaalinen prosessointi Treismanin FIT Kuva 1. Kuvassa on Treismanin kokeen ensimmäinen osio, jossa piti etsiä vihreätä T kirjainta.

Lisätiedot

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen Lääketieteellinen kuvantaminen Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen 1 Muista ainakin nämä Kuinka energia viedään kuvauskohteeseen? Aiheuttaako menetelmä kudostuhoa? Kuvataanko anatomiaa

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan

Lisätiedot

Digitaalinen kuvankäsittely T-61.5100 (5 op) L. Syksy 2005

Digitaalinen kuvankäsittely T-61.5100 (5 op) L. Syksy 2005 Digitaalinen kuvankäsittely T-61.5100 (5 op) L Syksy 2005 Luennot: Laskuharjoitukset: Jorma Laaksonen Jukka Iivarinen OPETUSMONISTE 2005 Luento #1 14.9.2005 2 1. Yleistä kurssista.......................

Lisätiedot

CCD-kamerat ja kuvankäsittely

CCD-kamerat ja kuvankäsittely CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate

Lisätiedot

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys 10.2. Säteenjäljitys ja radiositeettialgoritmi Säteenjäljitys Säteenjäljityksessä (T. Whitted 1980) valonsäteiden kulkema reitti etsitään käänteisessä järjestyksessä katsojan silmästä takaisin kuvaan valolähteeseen

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA Juha Lehtonen 20.3.2002 Joensuun yliopisto Tietojenkäsittelytiede Kandidaatintutkielma ESIPUHE Olen kirjoittanut tämän kandidaatintutkielman Joensuun yliopistossa

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä.

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä. 3-D ANAGLYFIKUVIEN TUOTTAMINEN Fotogrammetrian ja kaukokartoituksen laboratorio Teknillinen korkeakoulu Petri Rönnholm Perustyövaiheet: A. Ota stereokuvapari B. Poista vasemmasta kuvasta vihreä ja sininen

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Digitaalinen kuvankäsittely T-61.247 (3 ov) L

Digitaalinen kuvankäsittely T-61.247 (3 ov) L 9.3 Lineaarinen alipäästösuodatus (3.6.)........ 7 Digitaalinen kuvankäsittely T-6.247 (3 ov) L Luento #3 24.9.24 9.4 Kuvan terävöittäminen ylipäästösuodatuksella (3.7). 75. Fourier-muunnoksen perusteet................

Lisätiedot

Luku 3. Kuvien ehostus tilatasossa. 3.1 Taustaa

Luku 3. Kuvien ehostus tilatasossa. 3.1 Taustaa Luku 3 Kuvien ehostus tilatasossa Kuvan ehostamisessa päätavoitteena on käsitellä kuvaa siten, että saatu tulos soveltuu paremmin haluttuun käyttötarkoitukseen kuin alkuperäinen kuva. On siis sovelluskohtaista,

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

Digitaalisen kuvankäsittelyn perusteet

Digitaalisen kuvankäsittelyn perusteet Digitaalisen kuvankäsittelyn perusteet Jukka Teuhola Turun yliopisto Tietojenkäsittelytiede Syksy 2010 http://staff.cs.utu.fi/kurssit/digitaalisen_kuvankasittelyn_perusteet/syksy_2010/index.htm DKP-1 J.

Lisätiedot

Riemannin pintojen visualisoinnista

Riemannin pintojen visualisoinnista Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Visibiliteetti ja kohteen kirkkausjakauma

Visibiliteetti ja kohteen kirkkausjakauma Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

2016/07/05 08:58 1/12 Shortcut Menut

2016/07/05 08:58 1/12 Shortcut Menut 2016/07/05 08:58 1/12 Shortcut Menut Shortcut Menut Shortcut menut voidaan aktivoida seuraavista paikoista. Shortcut menun sisältö riippuu siitä, mistä se aktivoidaan. 1. Shortcut menu suunnitellusta linjasta

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI TEORIA Spektroskopia on erittäin yleisesti käytetty analyysimenetelmä laboratorioissa, koska se soveltuu

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Valo, valonsäde, väri

Valo, valonsäde, väri Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon,

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Digikuvan peruskäsittelyn. sittelyn työnkulku. Soukan Kamerat 22.1.2007. Soukan Kamerat/SV

Digikuvan peruskäsittelyn. sittelyn työnkulku. Soukan Kamerat 22.1.2007. Soukan Kamerat/SV Digikuvan peruskäsittelyn sittelyn työnkulku Soukan Kamerat 22.1.2007 Sisält ltö Digikuvan siirtäminen kamerasta tietokoneelle Skannaus Kuvan kääntäminen Värien säätö Sävyjen säätö Kuvan koko ja resoluutio

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Opetusmateriaalin visuaalinen suunnittelu. Kirsi Nousiainen 27.5.2005

Opetusmateriaalin visuaalinen suunnittelu. Kirsi Nousiainen 27.5.2005 Opetusmateriaalin visuaalinen suunnittelu Kirsi Nousiainen 27.5.2005 Visuaalinen suunnittelu Ei ole koristelua Visuaalinen ilme vaikuttaa vastaanottokykyyn rauhallista jaksaa katsoa pitempään ja keskittyä

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi) Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen!

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen! Kasvihuoneongelma Valon ja aineen vuorovaikutus Herra Brown päätti rakentaa puutarhaansa uuden kasvihuoneen. Liian tavallinen! Hänen vaimonsa oli innostunut ideasta. Hän halusi uuden kasvihuoneen olevan

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR Risto Vehmas, Juha Jylhä, Minna Väilä ja prof. Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Myönnetty rahoitus: 50 000 euroa Esityksen

Lisätiedot

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Kuvien ehostus taajuustasossa

Kuvien ehostus taajuustasossa Luku 4 Kuvien ehostus taajuustasossa Ranskalainen matemaatikko Jean Babtiste Joseph Fourier esitti 1807, että mikä tahansa jaksollinen funktio voidaan esittää eritaajuisten sinien ja kosinien painotettuna

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

13. Värit tietokonegrafiikassa

13. Värit tietokonegrafiikassa 13.1. Värijoukot tietokonegrafiikassa 13. Värit tietokonegrafiikassa Tarkastellaan seuraavaksi värien kvantitatiivista pohjaa. Useimmiten käytännön tilanteissa kiinnitetään huomiota kvalitatiiviseen. Värien

Lisätiedot

EPMAn tarjoamat analyysimahdollisuudet

EPMAn tarjoamat analyysimahdollisuudet Top Analytica Oy Ab Laivaseminaari 27.8.2013 EPMAn tarjoamat analyysimahdollisuudet Jyrki Juhanoja, Top Analytica Oy Johdanto EPMA (Electron Probe Microanalyzer) eli röntgenmikroanalysaattori on erikoisrakenteinen

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1)

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) Johdanto Maito on tärkeä eläinproteiinin lähde monille ihmisille. Maidon laatu ja sen sisältämät proteiinit riippuvat useista tekijöistä ja esimerkiksi meijereiden

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

NEX-3/NEX-5/NEX-5C A-DRJ-100-12(1) 2010 Sony Corporation

NEX-3/NEX-5/NEX-5C A-DRJ-100-12(1) 2010 Sony Corporation NEX-3/NEX-5/NEX-5C Tässä esitteessä on kuvattu tämän laiteohjelmapäivityksen sisältämät 3Dtoiminnot. Lisätietoja on Käyttöoppaassa ja mukana toimitetun CD-ROMlevyn α Käsikirjassa. 2010 Sony Corporation

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

matalan tason kuvankäsittelyyn. Ylemmän tason prosessointi on jätetty toiseen seminaariaiheeseen.

matalan tason kuvankäsittelyyn. Ylemmän tason prosessointi on jätetty toiseen seminaariaiheeseen. Kuvankäsittelytekniikat Kari Pihkala TKK Kari.Pihkala@hut.fi Tiivistelmä Tämä artikkeli käsittelee tietokonenäön tasoa tällä hetkellä. Artikkelissa keskitytään matalan tason tietokonenäköön, kuvankäsittelyyn.

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Digitaalinen signaalinkäsittely Johdanto, näytteistys Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn

Lisätiedot

VALAISTUSSUUNNITTELUN RESTORATIIVISET VAIKUTUKSET RAKENNETUSSA YMPÄRISTÖSSÄ

VALAISTUSSUUNNITTELUN RESTORATIIVISET VAIKUTUKSET RAKENNETUSSA YMPÄRISTÖSSÄ VALAISTUS- JA SÄHKÖSUUNNITTELU Ky VALAISTUSSUUNNITTELUN RESTORATIIVISET VAIKUTUKSET RAKENNETUSSA YMPÄRISTÖSSÄ 1 VALAISTUS- JA SÄHKÖSUUNNITTELU Ky VALAISTUSSUUNNITTELUN RESTORATIIVISET VAIKUTUKSET RAKENNETUSSA

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Toiminnallinen testaus

Toiminnallinen testaus 1 / 7 Toiminnallinen testaus Asiakas: Okaria Oy Jousitie 6 20760 Piispanristi Tutkimussopimus: ref.no: OkariaTakomo ta021013hs.pdf Kohde: Holvi- ja siltavälike, Tuotenumero 1705 Kuvio 1. Holvi- ja siltavälike

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

KUVAMUOKKAUS HARJOITUS

KUVAMUOKKAUS HARJOITUS KUVAMUOKKAUS HARJOITUS PUNASILMÄISYYS, VÄRI, KUVAKOKO, RAJAUS PUNASILMÄISYYS Kuvien punasilmäisyyden joutuu kohtaamaan usein huolimatta kameroiden hyvistä ominaisuuksista. Ohjelma tarjoaa hyvän työvälineen

Lisätiedot

T-75.4100 Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi

T-75.4100 Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi T-75.4100 Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi Palautus: 1.3.2015 1 1 Tavoite Työssä tutkitaan kolmea kameran kuvanprosessointiketjun vaihetta: tarkennusta, mosaiikkikuvan

Lisätiedot

Kuvan pakkaus JPEG (Joint Photographic Experts Group)

Kuvan pakkaus JPEG (Joint Photographic Experts Group) Kuvan pakkaus JPEG (Joint Photographic Experts Group) Arne Broman Mikko Toivonen Syksy 2003 Historia 1840 1895 1920-luku 1930-luku Fotografinen filmi Louis J. M. Daguerre, Ranska Ensimmäinen julkinen elokuva

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja.

12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja. 1.5. Vertailua Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 1.8. luonnehtii vaihtoehtoja. (1)Esisuodatus äärettömästi näytteitä pikseliä kohti Lasketaan projisoidun kohteen palojen

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään

Lisätiedot