Usean muuttujan differentiaalilaskenta

Koko: px
Aloita esitys sivulta:

Download "Usean muuttujan differentiaalilaskenta"

Transkriptio

1 Usean muuttujan differentiaalilaskenta Taneli Huuskonen 19. syyskuuta Merkintöjä ja käytäntöjä Seuraavassa listassa on lueteltu merkintöjä ja ilmauksia, joiden kohdalla eri teksteissä on erilaisia käytäntöjä. Hakasuluissa on mainittu vaihtoehtoisia merkintöjä. N luonnollisten lukujen joukko, {0, 1, 2,...} [N 0 ] N + positiivisten luonnollisten lukujen joukko, {1, 2, 3,...} [N] osajoukko [ ] aito osajoukko [ ] a, b järjestetty pari [(a, b)] a 1,..., a n järjestetty n-jono [(a 1,..., a n )] Tekstissä on pienellä kirjasinkoolla ladottuja kappaleita, joiden sisältö ei suoranaisesti kuulu kurssiin. Muistutukset ovat asioita, jotka pitäisi tällä kurssilla jo tietää mutta jotka ovat saattaneet jäädä joillekuille epäselviksi. Lisätiedot on tarkoitettu tiedonhaluisille opiskelijoille, joita kiinnostaa oppia jotakin asioista, joita ei tällä kurssilla vaadita osattaviksi. 2 Euklidinen avaruus R n Koko tässä osiossa n on positiivinen luonnollinen luku. Avaruus R n on n- alkioisten reaalilukujonojen joukko, siis R n = { x 1, x 2,..., x n x i R kun i = 1, 2,..., n}. Avaruuden R n alkioita kutsutaan vektoreiksi tai pisteiksi näkökulman mukaan. Vektorille x 1,..., x n käytetään lyhenysmerkintää x. Vektorin x alkiota x i kutsutaan sen i:nneksi koordinaatiksi. Kun pisteiden välille määritellään etäisyys alempana esitetyllä tavalla, saadaan n-ulotteinen euklidinen avaruus. 1

2 Aluksi määritellään vektoreiden yhteenlasku sekä vektorin kertominen skalaarilla, joka tässä tapauksessa on reaaliluku. Olkoot x, ȳ R n, r R. Tällöin x + ȳ = x 1 + y 1,..., x n + y n, r x = rx 1,..., rx n. Nollavektorin 0 kaikki koordinaatit ovat nollia. Selvästi kaikille vektoreille x pätee x + 0 = x ja 0 x = 0. Enintään kolmiulotteisessa avaruudessa nämä määritelmät voi helposti perustella geometrisen intuition avulla. Yleisessä tapauksessa voi helposti tarkistaa, että näin määritellyt operaatiot toteuttavat n-ulotteisen reaalisen (eli reaalikertoimisen) vektoriavaruuden määritelmän. Muistutus: Kertaa tarvittaessa vektoriavaruuden määritelmä ja tarkista, että se toteutuu. Kertaa myös vektoriavaruuden perusominaisuudet. Vektoreiden x ja ȳ pistetulo (eli sisätulo) määritellään kaavalla x ȳ = x 1 y x n y n. Pistetulo toteuttaa vaihdanta- ja osittelulait: x ȳ = ȳ x, x (ȳ + z) = x ȳ + x z. Lisäksi on voimassa seuraava liitäntälakia muistuttava yhtälö pistetulolle ja skalaarilla kertomiselle: (r x) ȳ = r( x ȳ). Lisätietoa: Liitäntälaki ei ole pistetulolle mielekäs, koska pistetulon arvo ei ole vektori. On helppo löytää esimerkki vektoreista x, ȳ, z R 2, joille liitäntälain kaltainen yhtälö ei ole voimassa eli seuraava epäyhtälö pätee: ( x ȳ) z (ȳ z) x. Vektorit ovat eri järjestyksessä epäyhtälön eri puolilla, koska skalaarin ja vektorin tulossa skalaari on aina tapana kirjoittaa ensin. 2

3 Vektorin pituus eli normi määritellään kaavalla x = x x. Selvästi kaikille x R n pätee, että x 0 ja että x = 0 tasan silloin, kun x = 0. Vektoreiden etäisyys on niiden erotuksen normi: d( x, ȳ) = x ȳ. Lisätietoa: Tässä on määritelty vain yksi, ns. euklidinen etäisyys. Lineaarialgebrassa tutkitaan paljon eri tavoin määriteltyjä normeja, joista oletetaan vain, että ne toteuttavat tietyt aksioomat. Usein käytettyjä vaihtoehtoisia normeja avaruudessa R n ovat koordinaattien itseisarvojen summa ja maksimi: x 1 = x x n, x = max( x 1,..., x n ). Voit miettiä, millaisten avaruuden R 2 vektorien normi on 1 näissä esimerkeissä, eli miltä vaihtoehtoinen yksikköympyrä näyttää. Etäisyys määritellään yleensä erotuksen normina. Seuraava lause on hyödyllinen tekninen aputulos, jolle on myös intuitiivinen geometrinen tulkinta. Lause tunnetaan Cauchyn-Schwarzin epäyhtälön nimellä. Lause 2.1. Kaikilla x, ȳ pätee x ȳ x ȳ. Todistus. Väite on selvästi tosi, jos x = 0. Oletetaan siis, että x 0. Tällöin x 0. Tarkastellaan lauseketta r x+ȳ 2, missä r R. Normin määritelmän ja edellä esitettyjen laskusääntöjen perusteella r x + ȳ 2 = (r x + ȳ) (r x + ȳ) = r x r x + ȳ r x + r x ȳ + ȳ ȳ = x 2 r 2 + 2( x ȳ)r + ȳ 2. Koska x 0, voi yhtälö r x + ȳ = 0 toteutua enintään yhdellä muuttujan r arvolla. Niinpä toisen asteen yhtälöllä r 2 x 2 +2( x ȳ)r + ȳ 2 = 0 on enintään yksi ratkaisu, joten yhtälön diskriminantti on epäpositiivinen. Siispä 2 2 ( x ȳ) 2 4 x 2 ȳ 2 0, 3

4 mikä sievenee muotoon Niinpä x ȳ x ȳ. ( x ȳ) 2 x 2 ȳ 2. Cauchyn-Schwarzin epäyhtälöllä on tasossa yksinkertainen geometrinen tulkinta. Jokainen vektori voidaan ilmaista pituuden ja suunnan avulla, ja tasossa suunnan määrää vektorin ja positiivisen x-akselin välinen kulma, joka perinteisesti lasketaan x-akselista vastapäivään. Jos vektorin x pituus on r ja kulma α, niin tunnetusti x = r cos α, r sin α. Tarkastellaan vektoreita x = r cos α, r sin α ja ȳ = s cos β, s sin β. Nyt x ȳ = rs cos α cos β + rs sin α sin β = rs cos(α β) = rs cos(β α). Toisaalta vektoreiden x ja ȳ välinen kulma on α β, joten tasovektorien pistetulolle saadaan lauseke x ȳ = x ȳ cos ϕ, missä ϕ on vektoreiden välinen kulma. Tällöin Cauchyn-Schwarzin epäyhtälö saadaan muotoon x ȳ cos ϕ x ȳ, mikä on suora seuraus siitä, että cos ϕ 1 mille tahansa kulmalle ϕ. Cauchyn-Schwarzin epäyhtälön nojalla vektoreiden x, ȳ R n välinen kulma ϕ voidaan määritellä yleistyksenä kaksiulotteisesta tapauksesta seuraavasti: 1, jos x ȳ = 0, cos ϕ = x ȳ muuten. x ȳ Tämä määrää kulman ϕ yksikäsitteisesti, kun vaaditaan lisäksi 0 ϕ π. Cauchyn-Schwarzin epäyhtälön avulla voidaan helposti todistaa kolmioepäyhtälö: x + ȳ x + ȳ. Tämä jätetään harjoitustehtäväksi. Kolmioepäyhtälö yleistyy suoraan myös useammille yhteenlaskettaville: Väite 2.2. x + ȳ w x + ȳ w. x ȳ x ȳ x + ȳ. Todistus. Vasen epäyhtälö on selvä. Toisaalta kolmioepäyhtälön mukaan x = ( x + ȳ) + ( ȳ) x + ȳ + ȳ, joten x ȳ x + ȳ. Vastaavasti ȳ x x + ȳ. Niinpä x ȳ x + ȳ. 4

5 Vektoriavaruuden R n standardit yksikkövektorit ē i ovat seuraavat: e 1 = 1, 0, 0,..., 0, e 2 = 0, 1, 0,..., 0,. e n = 0, 0, 0,..., 1. Nämä muodostavat standardikannan, jonka avulla jokainen vektori x R n voidaan esittää muodossa x = x 1 ē 1 + x 2 ē x n ē n. Väite 2.3. Jokaiselle vektorille x R n ja jokaiselle i {1, 2,..., n} pätee x i x x 1 + x x n. Todistus. Ensimmäinen epäyhtälö on selvä. Jälkimmäinen seuraa kolmioepäyhtälöstä n yhteenlaskettavalle sekä siitä, että e i = 1: x = x 1 ē 1 + x 2 ē x n ē n x 1 ē 1 + x 2 ē x n ē n = x 1 + x x n. Tarkastellaan seuraavaksi pistejonon suppenemista avaruudessa R n. Olkoon x 1, x 2,... ääretön jono pisteitä avaruudessa R n siis ääretön jono, jonka alkiot ovat n-alkioisia äärellisiä reaalilukujonoja. Vektorin x i alkiot ovat x i,1, x i,2,..., x i,n. Koko äärettömästä vektorijonosta käytetään merkintää ( x i ). Jono ( x i ) suppenee (eli konvergoi) kohti pistettä ȳ R n, joss 1 jokaisella positiivisella reaaliluvulla r on olemassa sellainen k N +, että kaikilla i > k pätee x i ȳ < r. Tästä käytetään merkintää lim i x i = ȳ tai x i ȳ. Huomaa, että tavallinen reaalilukujonon suppenemisen määritelmä on ylläolevan määritelmän erikoistapaus, jossa n = 1. Toisaalta vektorijonon suppenemisen voisi määritellä yhtäpitävästi myös reaalilukujonon suppenemisen avulla: x i ȳ joss x i ȳ 0. 1 Perinteisesti määritelmissä käytetään sanaa jos, vaikka ilmaus jos ja vain jos tai sen lyhenne joss olisi johdonmukaisempi. 5

6 Pistejonon suppeneminen on yhtäpitävää sen kanssa, että jokainen koordinaattijono suppenee erikseen. Seuraava lause ilmaisee asian täsmällisemmin. Lause 2.4. Olkoon ( x i ) jono pisteitä avaruudessa R n sekä ȳ R n. Tällöin lim i x i = ȳ jos ja vain jos jokaiselle j {1, 2,..., n} pätee lim i x i,j = y j. Todistus. Oletetaan ensin, että lim i x i = ȳ. Olkoon j {1, 2,..., n}, ja olkoon r > 0. Määritelmän mukaan on olemassa sellainen k N +, että kaikilla i > k pätee x i ȳ < r. Väitteen 2.3 perusteella x i,j y j x i ȳ, joten kaikilla i > k pätee x i,j y j < r. Siispä lim i x i,j = y j. Oletetaan sitten, että lim i x i,j = y j kaikilla j {1, 2,..., n}. Olkoon r > 0. Oletuksen mukaan kullakin j {1, 2,..., n} voidaan valita sellainen k j N +, että x i,j y j < r/n kaikilla i > k j. Olkoon k suurin luvuista k 1, k 2,..., k n, ja olkoon i > k. Nyt jokaiselle j {1, 2,..., n} pätee, että i > k j, joten x i,j y j < r/n. Väitteen 2.3 nojalla Siispä x i ȳ. x i ȳ x i,1 y 1 + x i,2 y x i,n y n < n r n = r. Sanotaan, että avaruuden R n vektorijono ( x i ) suppenee, joss on olemassa jokin sellainen ȳ R n, että x i ȳ. Muussa tapauksessa jono ( x i ) hajaantuu eli divergoi. Lauseen 2.4 perusteella vektorijono ( x i ) hajaantuu täsmälleen silloin, kun ainakin yksi koordinaattijono (x i,j ) hajaantuu. Kuten reaalilukujen tapauksessa, raja-arvo on yksikäsitteinen aina, kun se on olemassa. Tämä seuraa reaalilukujonon raja-arvon yksikäsitteisyydestä ja lauseesta 2.4, mutta oleellisesti sama todistus toimii vektoreille kuin reaaliluvuillekin. Lause 2.5. Olkoon ( x i ) avaruuden R n vektorijono, ja olkoot ȳ, z R n sellaiset, että x i ȳ ja x i z. Tällöin ȳ = z. Todistus. Tehdään vastaoletus: ȳ z. Tällöin ȳ z 0, joten ȳ z > 0. Olkoon r = ȳ z /2. Nyt r > 0, joten on olemassa sellaiset k 1, k 2 N +, että kaikilla i > k 1 pätee x i ȳ < r ja kaikilla i > k 2 pätee x i z < r. Olkoon i = max(k 1, k 2 ) + 1. Tällöin i > k 1 ja i > k 2, joten x i ȳ < r ja x i z < r. Niinpä kolmioepäyhtälön nojalla ȳ z ȳ x i + x i z < r + r = ȳ z, mikä on mahdotonta. Siispä vastaoletus ei voi toteutua, joten ȳ = z. 6

7 3 Avaruuden R n metristä topologiaa Olkoot x R n ja r > 0. Joukkoa B( x, r) = {ȳ R n ȳ x < r} kutsutaan avaruuden R n x-keskiseksi r-säteiseksi avoimeksi kuulaksi. 2 Joukko B( 0, 1) on avoin yksikkökuula. Määritelmä 3.1. Joukko A R n on sulkeinen, joss jokaisella suppenevalla jonolla ( x i ), jolle x i A kaikilla i, pätee lim i x i A. Huomaa, että erityisesti tyhjä joukko on sulkeinen. Myös koko avaruus R n on sulkeinen. Määritelmä 3.2. Joukko A R n on avoin, joss R n \ A on sulkeinen. Tyhjä joukko ja koko R n ovat siis sekä avoimia että sulkeisia. Nämä ovat ainoat avaruuden R n avoinsulkeiset osajoukot. Toisaalta joukko ei välttämättä ole kumpaakaan. Lisätietoa: Yleisessä tapauksessa joukon avoimuus tai sulkeisuus riippuu siitä, minkä avaruuden osajoukkona sitä tarkastellaan. Esimerkiksi reaaliakselin avoin yksikköväli ]0, 1[ on reaalilukujen osajoukkona avoin mutta ei avoin eikä sulkeinen kompleksilukujen osajoukkona. Yleisessä topologiassa asia käy vielä monimutkaisemmaksi. Lause 3.3. Joukko A R n on avoin, jos ja vain jos jokaisella x A on sellainen r > 0, että B( x, r) A. Todistus. Oletetaan, että jokaisella x A on sellainen r > 0, että B( x, r) A. Osoitetaan, että A on avoin eli että R n \ A on sulkeinen. Tehdään vastaoletus: R n \A ei ole sulkeinen. On siis olemassa sellainen suppeneva jono ( x i ), että x i R n \ A kaikilla i ja että lim i x i / R n \ A. Olkoon ȳ = lim i x i. Vastaoletuksen perusteella ȳ A. On siis olemassa sellainen r > 0, että B(ȳ, r) A. Toisaalta x i ȳ, joten on olemassa sellainen k N +, että kaikilla i > k pätee x i ȳ < r. Erityisesti x k+1 ȳ < r, joten x k+1 B(ȳ, r) A, vastoin oletusta x i R n \ A kaikilla i. Tämä ristiriita osoittaa, että vastaoletus on väärä eli että A on avoin. Käänteinen suunta jätetään harjoitustehtäväksi. 2 Myös nimitystä avoin pallo ja merkintää B r ( x) käytetään. 7

8 Määritelmä 3.4. Joukon A R n reuna A on joukko A = { x R n r > 0 (B( x, r) A B( x, r) (R n \ A) )}. Joukon A reuna on siis niiden pisteiden joukko, joiden jokainen palloympäristö leikkaa sekä joukkoa A että joukon A komplementtia. Jos A on avoin, niin lauseen 3.3 nojalla A A =. Jos taas A on sulkeinen, niin A A (harjoitustehtävä). Lisäksi A ja A A ovat sulkeisia. Joukkoa A A kutsutaan joukon A sulkeumaksi, ja siitä käytetään merkintää A. Tarkastellaan joitakin esimerkkejä ylläolevien määritelmien havainnollistamiseksi. Esimerkki 3.5. Olkoon A avaruuden R 3 avoin yksikkökuula A = B( 0, 1) = { x R 3 x < 1}. Joukko A on nimensä mukaisesti avoin. Itse asiassa kaikki avoimet kuulat ovat avoimia, minkä todistaminen jätetään harjoitustehtäväksi. Joukon A reuna on A = { x R 3 x = 1} ja sulkeuma A = { x R 3 x 1}. Esimerkki 3.6. Olkoon A avaruuden R 1 puoliavoin yksikköväli [0, 1[. Joukko A ei ole avoin eikä sulkeinen, minkä voi todeta siitä, että A = {0, 1} ja että 0 A ja 1 / A. Joukon A sulkeuma on A = [0, 1]. Määritelmä 3.7. Joukko A R n on rajallinen, 3 joss on olemassa sellainen r R, että A B( 0, r). Muistutus: Käsitteillä rajallinen ja raja-arvo välillä ei ole suoraa yhteyttä. Esimerkki 3.8. Avaruuden R 1 osajoukko A = {1/k k N + } on rajallinen, koska A B(0, 2). Esimerkki 3.9. Olkoon A avaruuden R 2 osajoukko { x 1, x 2 x 2 0}. Joukko A ei ole rajallinen, koska kaikilla r > 0 pätee, että r, 0 A mutta r, 0 / B( 0, r). 3 Myös ilmausta rajoitettu käytetään. 8

9 Määritelmä Joukko A R n on kompakti, joss jokaisella sellaisella äärettömällä jonolla ( x i ), että x i A kaikilla i, on sellainen suppeneva ääretön osajono ( x ij ), että lim j x ij A. Kompaktius on erittäin hyödyllinen käsite, mutta sen perusominaisuuksien todistaminen on teknisesti jonkin verran monimutkaista. Kerrataan ensin kaksi suppenevia reaalilukujonoja koskevaa lausetta, jotka on todistettu aikaisemmalla kurssilla. Lause Olkoon (x i ) suppeneva ääretön reaalilukujono, ja olkoon (x ij ) sen ääretön osajono. Tällöin (x ij ) suppenee, ja lim j x ij = lim i x i. Lause 3.12 (Bolzanon-Weierstrassin lause). Olkoon (x i ) rajallinen ääretön reaalilukujono. Tällöin jonolla (x i ) on ääretön suppeneva osajono (x ij ). Molemmat lauseet voidaan melko helposti yleistää vektorijonoille. Lause Olkoon ( x i ) suppeneva ääretön vektorijono avaruudessa R n ja ( x ij ) sen ääretön osajono. Tällöin ( x ij ) suppenee, ja lim j x ij = lim i x i. Todistus. Tämä seuraa helposti lauseista 2.4 ja Lause Olkoon ( x i ) ääretön rajallinen vektorijono avaruudessa R n. Tällöin jonolla ( x i ) on suppeneva ääretön osajono ( x ij ). Todistus. Todistuksen idea on se, että jonolle ( x i ) voidaan valita osajono, jonka ensimmäisten koordinaattien muodostama jono suppenee, tälle edelleen osajono, jonka toisten koordinaattien jono suppenee ja niin edelleen. Kun kaikki koordinaattipositiot on käyty läpi, on löydetty vektorijono, johon voidaan soveltaa lausetta 2.4. Tämän todistusidea voidaan muotoilla täsmällisemmin induktiotodistukseksi luvun n suhteen. Perustapauksessa n = 1 todistettava väite on Bolzanon-Weierstrassin lause. Tehdään sitten induktio-oletus: n on sellainen positiivinen luonnollinen luku, että väite pätee avaruudelle R n. Olkoon ( x i ) ääretön rajallinen jono avaruudessa R n+1. Tällöin ensimmäisten koordinaattien muodostama jono (x i,1 ) on rajallinen reaalilukujono, joten Bolzanon-Weierstrassin lauseen mukaan jonolla (x i,1 ) on ääretön suppeneva osajono (x ij,1). Määritellään avaruuden R n jono (ȳ j ) seuraavasti: ȳ j = x ij,2, x ij,3,..., x ij,n+1. Nyt (ȳ j ) on avaruuden R n ääretön rajallinen jono, joten sillä on induktiooletuksen nojalla suppeneva ääretön osajono (ȳ jk ). Tarkastellaan jonon ( x ijk ) 9

10 koordinaattien jonoja. Jono (x ijk,1) on suppenevan jonon (x ij,1) osajonona suppeneva lauseen 3.11 perusteella. Jonot (x ijk,m), missä m {2, 3,..., n + 1}, suppenevat lauseen 2.4 nojalla. Siispä jono ( x ijk ) on jonon ( x i ) suppeneva osajono, mikä nähdään soveltamalla lausetta 2.4 toiseen suuntaan. Ylläoleva todistus voidaan tulkita seuraavasti: Tutkitaan avaruuden R m rajallista ääretöntä pistejonoa. Tapaus m = 1 on alkuperäinen Bolzanon- Weierstrassin lause, joten keskitytään tapaukseen m = n + 1, missä n N +. Bolzanon-Weierstrassin lauseen perusteella jonosta voidaan valita osajono, jonka ensimmäiset koordinaatit lähestyvät jotakin rajaa. Tämän jälkeen ensimmäiset koordinaatit voidaan käytännössä unohtaa ja tulkita loput koordinaatit avaruuden R n pisteiksi. Dimensio siis pienenee yhdellä. Tätä toistetaan, kunnes päästään yksiulotteiseen tapaukseen. Yllä todistettujen lauseiden avulla voidaan osoittaa, että kompaktiudelle on euklidisissa avaruuksissa yksinkertainen riittävä ja välttämätön ehto. Lause Joukko A R n on kompakti, jos ja vain jos A on sulkeinen ja rajallinen. Todistus. Oletetaan, että A on kompakti. Todistetaan ensin, että A on sulkeinen. Olkoon ( x i ) sellainen suppeneva jono, että x i A kaikilla i. Koska oletuksen mukaan A on kompakti, on jonolla ( x i ) sellainen ääretön suppeneva osajono ( x ij ), että lim j x ij A. Lauseen 3.13 mukaan lim i x i = lim j x ij, joten lim i x i A. Siispä A on sulkeinen. Todistetaan sitten, että A on rajallinen. Tehdään vastaoletus: A ei ole rajallinen. Tällöin jokaisella i N + voidaan valita sellainen piste x i A, että x i > i. Nyt on selvää, että jokainen jonon ( x i ) ääretön osajono hajaantuu, mikä on vastoin oletusta, että A on kompakti. Niinpä jokainen kompakti A R n on sulkeinen ja rajallinen. Oletetaan sitten, että A on sulkeinen ja rajallinen. Olkoon ( x i ) sellainen ääretön vektorijono, että x i A kaikilla i N +. Tällöin ( x i ) on rajallinen, joten lauseen 3.14 mukaan jonolla ( x i ) on suppeneva ääretön osajono ( x ij ). Nyt x ij A kaikilla j N +, joten lim j x ij A, koska A on sulkeinen. Siispä A on kompakti. Esimerkki Olkoon A kuten esimerkissä 3.8. Helposti nähdään, että 0 A mutta 0 / A, joten joukko A ei ole sulkeinen. Siispä A ei ole kompakti. Sama voidaan todeta suoraan määritelmän perusteella valitsemalla x i = 1/i. Tällöin x i A kaikilla i N +, mutta jokaiselle jonon (x i ) äärettömälle osajonolle (x ij ) pätee, että lim j x ij = lim i x i = 0 / A. Toisaalta joukko A = A {0} on kompakti, koska se on selvästi rajallinen ja myös sulkeinen. 10

11 Esimerkki Olkoon A kuten esimerkissä 3.9. Joukko A ei ole kompakti, koska A ei ole rajallinen. Jälleen voidaan myös vedota suoraan määritelmään. Olkoon x i = i, 0. Selvästi mikään jonon ( x i ) ääretön osajono ei ole rajallinen eikä siis suppene. Esimerkki Joukot B = { x R 2 x 42} ja C = { x R 2 x = 42} ovat selvästi sulkeisia ja rajallisia, joten molemmat ovat kompakteja. Lisätietoa: Kompaktiudella on yleisessä topologiassa määritelmä, joka on intuitiivisesti vaikeatajuisempi mutta toimii tapauksissa, joissa raja-arvon käsite on epäselvä. Määritelmä Olkoon A R n. Piste ā A on joukon A erakkopiste, joss on olemassa sellainen r > 0, että B(ā, r) A = {ā}. Esimerkki Olkoon A = {1/k k N + } {0}. Piste 0 ei ole joukon A erakkopiste, mutta kaikki muut ovat, sillä jokaisella k N + pätee B(1/k, 1/(k 2 + k)) A = {1/k}. 4 Avaruuden R n reaaliarvoisten funktioiden differentiaalilaskentaa 4.1 Raja-arvo ja jatkuvuus Määritelmä 4.1. Olkoot A R n joukko ja f : A R funktio. Olkoon edelleen x 0 A piste, joka ei ole joukon A erakkopiste. Luku a R on funktion f raja-arvo pisteessä x 0, joss jokaiselle sellaiselle jonolle ( x i ), että x i A ja x i x 0 kaikilla i N + sekä lisäksi x i x 0, pätee f( x i ) a. Ylläolevaan määritelmään on valittu ehdot, jotka varmistavat mm. sen, että mahdollinen raja-arvo on yksikäsitteinen. Lause 4.2. Olkoot A R n ja x 0 R n. Tällöin on olemassa sellainen jono ( x i ), että x i A ja x i x 0 kaikilla i N + sekä lisäksi x i x 0, joss x 0 A ja x 0 ei ole joukon A erakkopiste. Todistus. : Oletetaan, että ( x i ) on kuten väitteessä. Tällöin jokaisella r > 0 on jokin sellainen i N +, että x i B( x 0, r). Toisaalta x i A ja x i x 0, joten B( x 0, r) A. Siispä x 0 A tai x 0 A, joten x 0 A. Lisäksi B( x 0, )A { x 0 }, joten x 0 ei ole joukon A erakkopiste. 11

12 : Oletetaan, että x 0 A ja x 0 ei ole joukon A erakkopiste. Tällöin jokaisella r > 0 pätee, että B( x 0, r) A { x 0 }. Siispä jokaisella i N + voidaan valita sellainen x i B(1/i, x 0 ) A, että x i x 0. Nyt selvästi x i x 0, joten jono ( x i ) toteuttaa kaikki vaaditut ehdot. Seuraus 4.3. Olkoot A R n, f : A R, x 0 R n ja a, b R sellaiset, että sekä a että b ovat funktion f raja-arvoja pisteessä x 0. Tällöin a = b. Todistus. Ylläolevan lauseen nojalla on olemassa sellainen vektorijono ( x i ), että a = lim i f( x i ) = b. Avaruuden R n osajoukossa määritellyn funktion raja-arvolle voidaan siis käyttää tavanomaista merkintää lim x x0 f( x). Reaalilukujonojen raja-arvoja koskevat tutut laskusäännöt ovat voimassa. Lause 4.4. Olkoot A R n, f, g : A R sekä x 0 R n sellaiset, että rajaarvot lim x x0 f( x) ja lim x x0 g( x) ovat olemassa. Tällöin seuraavat yhtälöt ovat voimassa: lim (f( x) + g( x)) x x 0 = lim f( x) + lim x x0 lim (f( x) g( x)) x x 0 = lim f( x) lim x x0 lim (f( x)g( x)) x x 0 = lim f( x) lim g( x). x x0 x x0 x x0 g( x), x x0 g( x), Jos lisäksi lim x x0 g( x) 0, niin f( x) lim x x 0 g( x) = lim x x 0 f( x) lim x x0 g( x). Erityisesti siis yhtälöiden vasemmalla puolella esiintyvät raja-arvot ovat olemassa. Todistus. Olkoon ( x i ) kuten raja-arvon määritelmässä. Tällöin lim (f( x i) + g( x i )) = lim f( x i ) + lim g( x i ) = lim f( x) + lim g( x), i i i x x0 x x0 joten määritelmän mukaan lim (f( x) + g( x)) = lim f( x) + lim g( x). x x 0 x x0 x x0 Muut laskusäännöt todistetaan samalla tavalla vastaavien reaalilukujonon raja-arvoa koskevien sääntöjen avulla. 12

13 Raja-arvon määritelmässä oli tarpeen sulkea pois funktion määrittelyjoukon erakkopisteet, jotta raja-arvo olisi yksikäsitteinen. Muuten kaikki reaaliluvut olisivat funktion raja-arvoja sen määrittelyjoukon erakkopisteessä. Jatkuvuudelle puolestaan käytetään määritelmää, jossa erakkopisteitä ei käsitellä muodollisesti mitenkään erityisinä. Määritelmä 4.5. Olkoot A R n joukko ja f : A R funktio. Funktio f on jatkuva pisteessä x A, joss jokaiselle sellaiselle äärettömälle jonolle ( x i ), että x i A kaikilla i ja x i x 0, pätee, että f( x i ) f( x 0 ). Huomaa, että ylläoleva määritelmä poikkeaa sisällöltään kurssimateriaalin vanhassa versiossa esitetystä. Jokainen joukon A pisteiden jono, joka suppenee kohti erakkopistettä, on vakio äärellisen monta poikkeusta lukuunottamatta. Täsmällisemmin: Jos x 0 on joukon A erakkopiste ja ( x i ) sellainen jono, että x i A kaikilla i N + ja x i x 0, niin on olemassa sellainen k N +, että x i = x 0 kaikilla i > k. Tällöin triviaalisti f( x i ) f( x 0 ) millä tahansa funktiolla f : A R. Jokainen funktio on siis jatkuva jokaisessa määrittelyjoukkonsa erakkopisteessä. Vanhan määritelmän mukaan mikään funktio ei ole jatkuva missään määrittelyjoukkonsa erakkopisteessä. Uusi määritelmä on sikäli intuitiivisempi, että sen mukaan esimerkiksi kaikki vakiofunktiot ovat koko määrittelyjoukossaan jatkuvia. Erakkopisteitä lukuunottamatta määritelmät ovat yhtäpitävät. Lause 4.6. Olkoot A R n ja f : A R. Olkoon x 0 A piste, joka ei ole joukon A erakkopiste. Tällöin funktio f on jatkuva pisteessä x 0, joss f( x 0 ) = lim x x0 f( x). Todistus. : Oletetaan, että f on jatkuva pisteessä x 0. Olkoon ( x i ) sellainen jono, että x i A ja x i x 0 kaikilla i sekä lisäksi x i x 0. Tällöin f( x i ) f( x 0 ) jatkuvuusoletuksen nojalla. Lisäksi x 0 A A, eikä x 0 ole joukon A erakkopiste, joten lim x x0 f( x) = f( x 0 ). : Oletetaan, että lim x x0 f( x) = f( x 0 ). Olkoon ( x i ) sellainen jono, että x i A kaikilla i ja x i x 0. Jos x i x 0 vain äärellisen monella indeksillä i, niin on sellainen k N +, että x i = x 0 kaikilla i > k. Tällöin f( x i ) = f( x 0 ) kaikilla i > k, joten triviaalisti f( x i ) f( x 0 ). Oletetaan sitten, että x i x 0 äärettömän monella indeksillä i. Olkoon (i j ) tällaisten indeksien jono kasvavassa järjestyksessä. Lauseen 3.13 perusteella lim j x ij = lim i x i = x 0, joten määritelmän mukaan lim j f( x ij ) = f( x 0 ). Olkoon nyt r > 0 mielivaltainen. Yllä todetun nojalla on olemassa sellainen k N +, että kaikilla j > k pätee f( x ij ) f( x 0 ) < r. Olkoon i > i k. Jos i = i j jollakin j, niin j > k, joten f( x i ) f( x 0 ) < r. Jos millään j ei päde i = i j, niin x i = x 0, joten 13

14 f( x i ) f( x 0 ) = 0 < r. Niinpä f( x i ) f( x 0 ). Tämä pätee kaikille jonoille ( x i ), joilla x i A kaikilla i ja x i x 0, joten f on jatkuva pisteessä x 0. Määritelmä 4.7. Olkoot A R n ja f : A R. Funktio f on jatkuva joukossa B A, joss f on jatkuva jokaisessa joukon B pisteessä. Seuraavat lauseet ovat esimerkkejä kompaktiuden käsitteen hyödyllisyydestä. Lause 4.8. Olkoot A R n kompakti ja f : A R funktio, joka on jatkuva koko joukossa A. Tällöin joukko B = {f( x) x A} on kompakti. Todistus. Olkoon (y i ) sellainen jono, että y i B kaikilla i N +. Valitaan kullakin i N + sellainen piste x i A, että f( x i ) = y i. Joukko A on kompakti, joten jonolla ( x i ) on sellainen suppeneva ääretön osajono ( x ij ), että lim j x ij A. Merkitään x 0 = lim j x ij. Funktio f on jatkuva koko joukossa A ja siis erityisesti pisteessä x 0, joten ja f( x 0 ) B. lim j y i j = lim j f( x ij ) = f( x 0 ), Lause 4.9. Olkoon A R epätyhjä kompakti joukko. Tällöin joukossa A on suurin ja pienin alkio. Todistus. Joukko A on epätyhjä ja lauseen 3.15 nojalla rajallinen, joten on olemassa sup(a) ja inf(a). Valitaan kullakin i N + sellaiset joukon A alkiot a i ja b i, että a i < inf(a) + 1/i ja b i > sup(a) 1/i. Nyt on helppo todeta suoraan lukujonon raja-arvon määritelmän perusteella, että a i inf(a) ja b i sup(a). Koska A on lauseen 3.15 perusteella sulkeinen, niin inf(a) = lim i a i A ja sup(a) = lim i b i A. Seuraus Olkoon A R n epätyhjä kompakti joukko ja f : A R jatkuva koko joukossa A. Tällöin funktiolla f on suurin ja pienin arvo joukossa A. 4.2 Osittaisderivaatat Tarkastellaan seuraavaksi osittaisderivaatan käsitettä. Intuitiivisesti osittaisderivaatat saadaan määrittämällä tavallinen derivaatta yhden muuttujan suhteen pitäen muita muuttujia vakioina seuraavan esimerkin tapaan. Esimerkki Olkoon A = { x R 2 x < 1}, ja olkoon f : A R, f(x 1, x 2 ) = x 1 + 2x 1 x 2 x 3 2. Tällöin 1 f(x 1, x 2 ) = 1 + 2x 2, 2 f(x 1, x 2 ) = 2x 1 3x

15 Täsmällisempää määritelmää varten oletetaan, että A R n on avoin joukko, f : A R funktio ja x 0 A. Koska A on avoin, on lauseen 3.3 perusteella olemassa sellainen r > 0, että B( x 0, r) A. Tarkastellaan koordinaattia k {1,..., n}. Kaikilla h ] r, r[ pätee, että x 0 + hē k B( x 0, r) A, joten voidaan määritellä funktio g : ] r, r[ R, g(h) = f( x 0 + hē k ). Nyt funktion f osittaisderivaatta muuttujan x k suhteen pisteessä x 0, jota merkitään symbolilla k f( x 0 ), on tavallinen derivaatta g (0), jos tämä on olemassa. Siis k f( x 0 ) = g (0) = lim h 0 g(h) g(0) h f( x 0 + hē k ) f( x 0 ) = lim. h 0 h Funktion osittaisderivaattojen olemassaolo ja arvo annetussa pisteessä riippuvat siis vain funktion arvoista pisteen kautta kulkevilla koordinaattiakselien suuntaisilla suorilla. Niinpä usean muuttujan funktiolla voi olla kaikki ensimmäisen kertaluvun osittaisderivaatat pisteessä, jossa funktio ei ole jatkuva, kuten seuraava yksinkertainen esimerkki osoittaa. Esimerkki Olkoon f : R 2 R, { 0, jos x 1 x 2 = 0, f(x 1, x 2 ) = 1, muuten. Nyt f on selvästi epäjatkuva origossa, sillä jos asetetaan x i = 1/i, 1/i, niin x i 0 mutta f( x i ) = 1 kaikilla i N +, joten f( x i ) 0 = f( 0). Toisaalta 1 f( 0) = 2 f( 0) = 0. Epäjatkuvalla funktiolla voi olla jopa kaikki ensimmäisen kertaluvun osittaisderivaatat kaikkialla. Esimerkki Olkoon f : R 2 R, 0, jos x 1 = x 2 = 0, f(x 1, x 2 ) = x 1 x 2, muuten. x x 2 2 Harjoitustehtäväksi jätetään funktion f osittaisderivaattojen määrittäminen sekä sen osoittaminen, että f on epäjatkuva origossa. 4.3 Differentioituvuus Kuvaajan yleistetty tangentti Olkoot k, q R. Tarkastellaan funktiota f : R R, jonka määrittelee yhtälö f(x) = q + kx. (1) 15

16 Funktion f kuvaaja on suora, joka leikkaa y-akselia pisteessä 0, q ja jonka kulmakerroin on k. Intuitiivisesti kulmakerroin ilmaisee, kuinka nopeasti funktion f arvo kasvaa tai vähenee, kun argumentti muuttuu. Siirryttäessä pisteestä x 0 pisteeseen x funktion f arvon muutos on f(x) f(x 0 ) = k(x x 0 ). (2) Olkoot sitten k 1, k 2, q R. Tarkastellaan vastaavalla tavalla määriteltyä funktiota g : R 2 R, g(x, y) = q + k 1 x + k 2 y. (3) Tämän funktion kuvaaja on taso, joka leikkaa z-akselia pisteessä 0, 0, q ja jonka asennon k 1 ja k 2 määräävät. Kerroin k 1 ilmaisee, kuinka nopeasti z- koordinaatti muuttuu, kun x-koordinaatti muuttuu ja y-koordinaatti pysyy samana, ja kerroin k 2 vastaavasti toisinpäin. Kaavoilla tämän voi ilmaista seuraavasti: f(x, y 0 ) f(x 0, y 0 ) = k 1 (x x 0 ), f(x 0, y) f(x 0, y 0 ) = k 2 (y y 0 ), ja yleisemmin f(x, y) f(x 0, y 0 ) = k 1 (x x 0 ) + k 2 (y y 0 ). (4) Kun merkitään k = k 1, k 2, yhtälö 3 voidaan kirjoittaa seuraavaan muotoon, joka on analoginen yhtälön 1 kanssa: g( x) = q + k x. (5) Yhtälöstä 4 saadaan puolestaan seuraava vastine yhtälölle 2: g( x) g( x 0 ) = k ( x x 0 ). (6) Yllä vektorimuodossa esitetyt yhtälöt 5 ja 6 ovat itse asiassa voimassa aina, kun g on funktio, jonka kuvaaja on n-ulotteinen hypertaso avaruudessa R n+1. Tällöin yhtälöissä esiintyvät vektorit ovat n-ulotteisia, siis esim. x = x 1,..., x n. Tapauksessa n = 1 saadaan yhtälöt 1 ja 2. Palataan yksiulotteiseen tapaukseen. Olkoon f : R R funktio, joka on derivoituva pisteessä x 0 R. Määritelmän mukaan f (x 0 ) = lim x x0 f(x) f(x 0 ) x x 0. 16

17 Olkoon p: R R seuraava funktio: f(x) f(x 0 ) f (x 0 ), jos x x 0, p(x) = x x 0 0, jos x = x 0. Funktio p ilmaisee siis, millainen virhe syntyy, jos derivaatta korvataan erotusosamäärällä. Suoraan määritelmien perusteella on helppo todeta, että lim x x0 p(x) = 0. Toisaalta funktiolle f saadaan seuraava esitys: f(x) = f(x 0 ) + (x x 0 )f (x 0 ) + (x x 0 )p(x). (7) Yleistämistä varten määritellään funktio v : R R seuraavasti: { p(x), kun x x 0, v(x) = p(x), muuten. Nyt lim x x0 v(x) = 0, ja yhtälö 7 saadaan muotoon f(x 0 + h) = f(x 0 ) + hf (x 0 ) + h v(x 0 + h). (8) Kääntäen voidaan todeta, että jos g on funktio, jolle on esitys g(x 0 + h) = g(x 0 ) + ah + h w(x 0 + h), missä lim x x0 w(x) = 0, niin g on derivoituva pisteessä x 0 ja g (x 0 ) = a. Näiden tarkastelujen perusteella voidaan motivoida seuraava määritelmä. Määritelmä Olkoot A R n avoin joukko ja f : A R funktio. Funktio f on differentioituva pisteessä x 0 A, joss on olemassa sellaiset k R n ja v : A R, että lim x x0 v( x) = 0 ja kaikille x A pätee f( x) = f( x 0 ) + k ( x x 0 ) + x x 0 v( x). (9) Oleellinen osa määritelmää on ehto lim x x0 v( x) = 0, sillä jos f : A R on mielivaltainen funktio ja k R n mielivaltainen vektori, niin yhtälö 9 pätee, kun valitaan f( x) f( x 0 ) k ( x x 0 ), kun x x 0, v( x) = x x 0 0, kun x = x 0. Yhtälössä 9 esiintyvä vektori k on funktion kuvaajan tangenttihypertason yleistetty kulmakerroin. Jos se on olemassa, se on yksikäsitteinen. 17

18 Lause Olkoot A R n avoin joukko, x 0 A, v, w : A R sekä k 1, k 2 R n sellaiset, että lim x x0 v( x) = lim x x0 w( x) = 0 ja Tällöin k 1 = k 2. k 1 ( x x 0 ) + x x 0 v( x) = k 2 ( x x 0 ) + x x 0 w( x). Todistus. Määritellään funktio g : R n R, ( k 1 k 2 ) x, kun x 0, g( x) = x 0, kun x = 0. Nyt kaikilla x A pätee g( x x 0 ) = w( x) v( x). Koska A on avoin, on olemassa sellainen r > 0, että B( x 0, r) A, joten lim g( x) = lim (w( x) v( x)) = 0. x 0 x x0 Harjoitustehtäväksi jää osoittaa, että tästä seuraa k 1 k 2 = 0 eli k 1 = k 2. Määritelmä Olkoon f funktio, joka on differentioituva pisteessä x 0 R n. Määritelmän mukaisessa esityksessä esiintyvä yleistetty kulmakerroin k on funktion f gradientti pisteessä x 0, ja sitä merkitään symbolilla f( x 0 ). Gradientti on siis vektori. Pistetulo gradientin kanssa määrittelee lineaarikuvauksen, jota merkitään symbolilla f ( x 0 ) seuraavasti: Gradientin ominaisuuksia f ( x 0 )( x) = f( x 0 ) x. Lause Olkoon A R n avoin joukko ja f : A R funktio, joka on differentioituva pisteessä x 0 A. Tällöin funktiolla f on kaikki ensimmäisen kertaluvun osittaisderivaatat pisteessä x 0, ja f( x 0 ) = 1 f( x 0 ), 2 f( x 0 ),..., n f( x 0 ). Todistus. Merkitään k = f( x 0 ). Olkoon j {1,..., n}. Määritelmän mukaan f( x 0 + hē j ) f( x 0 ) j f( x 0 ) = lim h 0 h k hēj + hē j v( x 0 + hē j ) = lim h 0 h = lim( k ē j + v( x 0 + hē j )) h 0 = k j. 18

19 Aiemmin todettiin (esimerkki 4.13), ettei osittaisderivaattojen olemassaolosta seuraa jatkuvuutta. Seuraava lause osoittaa, että differentioituvuus on vahvempi ominaisuus. Lause Olkoon A R n avoin ja f : A R funktio. Jos f on differentioituva pisteessä x 0 A, niin f on jatkuva pisteessä x 0. Todistus. Merkitään k = f( x 0 ). Olkoon ( x i ) sellainen jono, että x i A kaikilla i ja x i x 0. Nyt yhtälön 9 sekä Cauchyn-Schwarzin epäyhtälön perusteella kaikilla i N + pätee f( x i ) f( x 0 ) k x i x 0 + x i x 0 v( x i ) = x i x 0 ( k + v( x i ) ), joten f( x i ) f( x 0 ) 0 ja siis f( x i ) f( x 0 ). Pisteessä x 0 differentioituvaa kuvausta f voidaan approksimoida kuvauksella t( x) = f( x 0 ) + f( x 0 ) ( x x 0 ) pisteen x 0 ympäristössä. Tämä on hyödyllinen ominaisuus monissa sovelluksissa, koska kuvausta t on teknisesti helppo käsitellä. Geometrisesti kuvauksen t kuvaaja on kuvauksen f kuvaajan tangenttihypertaso pisteessä x 0, f( x 0 )). Kaksipaikkaisen funktion tapauksessa kyseessä on tietysti tavallinen tangenttitaso. 4.4 Suunnattu derivaatta Osittaisderivaatat kertovat funktion f käyttäytymisestä pisteen x 0 kautta kulkevalla koordinaattiakselien suuntaisilla suorilla. Suunnatun derivaatan avulla funktion kulkua voi tarkastella myös muissa suunnissa. Määritelmä Olkoot A R n avoin joukko, f : A R funktio, x 0 A sekä ū R n yksikkövektori, siis sellainen vektori, että ū = 1. Funktion f suunnattu derivaatta pisteessä x 0 suuntaan ū on raja-arvo mikäli tämä on olemassa. f( x 0 + tū) f( x 0 ) ūf( x 0 ) = lim, t 0 t Suunnattu derivaatta kertoo funktion muuttumisesta pisteen x 0 ympäristössä vektorin ū määräämässä suunnassa. Osittaisderivaatat ovat erikoistapauksia suunnatuista derivaatoista. On helppo nähdä suoraan määritelmästä, että j f on täsmälleen sama asia kuin ēj f. Myös lause 4.17 on erikoistapaus seuraavasta lauseesta. 19

20 Lause Olkoot A R n avoin joukko, f : A R funktio, joka on differentioituva pisteessä x 0 A, sekä ū R n yksikkövektori. Tällöin ūf( x 0 ) = f( x 0 ) ū ja ūf( x 0 ) f( x 0 ). Todistus. Ensimmäinen väite voidaan todistaa oleellisesti samalla tavoin kuin lause 4.17, ja jälkimmäinen seuraa tästä Cauchyn-Schwarzin epäyhtälön perusteella, koska ū = 1. Ylläoleva lause paljastaa gradientin keskeisen ja mielenkiintoisen ominaisuuden. Oletetaan, että f : A R on differentioituva pisteessä x 0 A, missä A R 2, ja että f( x 0 ) 0. Olkoon ū = (1/ f( x 0 ) ) f( x 0 ). Tällöin ū = 1, ja ū osoittaa samaan suuntaan kuin f( x 0 ). Nyt lauseen 4.20 nojalla pätee ūf( x 0 ) = f( x 0 ) ū = f( x 0 ) (1/ f( x 0 ) ) f( x 0 ) = f( x 0 ). Jos v on mikä tahansa muu yksikkövektori, niin vektorien v ja f( x 0 ) välinen kulma ϕ on nollasta poikkeava ja siis v f( x 0 ) = v f( x 0 ) = f( x 0 ) cos ϕ < f( x 0 ). Niinpä vektorin f( x 0 ) suunta ilmaisee, mihin suuntaan funktio kasvaa nopeimmin pisteestä x 0 lähtien, ja sen pituus f( x 0 ) ilmaisee puolestaan kasvunopeuden. 4.5 Derivointisääntöjä Määritelmä Olkoon A R n avoin. Funktio f : A R on jatkuvasti derivoituva joukossa A, joss kaikki osittaisderivaatat j f ovat määriteltyjä ja jatkuvia koko joukossa A. Joukossa A jatkuvasti derivoituvien funktioiden luokkaa merkitään symbolilla L 1 (A). Jatkuvuudelle käytetään usein toista määritelmää, joka on seuraavan lauseen perusteella yhtäpitävä määritelmän 4.5 kanssa. Lause Olkoot A R n, f : A R, x 0 A. Tällöin f on jatkuva pisteessä x 0, joss jokaisella ε > 0 on sellainen δ > 0, että kaikilla x A B( x 0, δ) pätee f( x) f( x 0 ) < ε. Todistus. : Oletetaan, että f on jatkuva pisteessä x 0. Olkoon ε > 0. Tehdään vastaoletus: Ei ole olemassa sellaista δ > 0, että kaikilla x A B( x 0, δ) pätisi f( x) f( x 0 ) < ε. Valitaan kullakin i N + sellainen x i A B( x 0, 1/i), että f( x i ) f( x 0 ) ε. Tällöin x i x 0, mutta f( x i ) x 0, mikä on ristiriidassa sen oletuksen kanssa, että f on jatkuva pisteessä x 0. 20

21 : Oletetaan, että jokaisella ε > 0 on olemassa sellainen δ > 0, että kaikilla x A B( x 0, δ) pätee f( x) f( x 0 ) < ε. Olkoon ( x i ) sellainen jono, että x i A kaikilla i ja x i x 0. Olkoon ε > 0. Valitaan δ kuten oletuksessa. Koska x i x 0, on olemassa sellainen k N +, että kaikille i > k pätee x i x 0 < δ. Siispä x i A B( x 0, δ) kaikilla i > k, joten luvun δ valinnan perusteella f( x i ) f( x 0 ) < ε kaikilla i > k. Niinpä f( x i ) f( x 0 ). Tämä pätee kaikille sellaisille jonoille ( x i ), että x i A kaikilla i N + ja x i x 0. Siispä f on jatkuva pisteessä x 0. Seuraava lemma toteaa, että jokainen avaruuden R n kuula on geometrisesti kupera eli konveksi, ts. sisältää minkä tahansa kahden pisteensä yhdysjanan. Väite vaikuttaa intuitiivisesti selvältä, mutta korkeiden dimensioiden geometriassa ei kannata luottaa liikaa intuitioon. Lemma Olkoot x 0 R n, r > 0, x, ȳ B( x 0, r) sekä 0 t 1. Tällöin t x + (1 t)ȳ B( x 0, r). Todistus. Harjoitustehtävä. Differentiaalilaskennan väliarvolause voidaan esittää monessa yhtäpitävässä muodossa. Seuraava muotoilu on varsin yksinkertainen. Lause Olkoot A R joukko, f : A R funktio ja a, b R sellaiset, että a < b, [a, b] A, f on jatkuva välillä [a, b] ja derivoituva välillä ]a, b[. Tällöin on olemassa sellainen c ]a, b[, että f(b) f(a) = (b a)f (c). Tämän lauseen todistus kuuluu aiemmalle kurssille. Joissakin todistuksissa tapauksiin jakoa voidaan vähentää, kun väliarvolause esitetään seuraavalla tavalla, jossa välin päätepisteiden järjestyksestä ei oleteta mitään. Lause Olkoot A R joukko, f : A R funktio ja a, b A sellaiset, että f on jatkuva jokaisessa pisteessä ta+(1 t)b, missä t [0, 1], ja derivoituva jokaisessa pisteessä ta + (1 t)b, missä t ]0, 1[. Tällöin on olemassa sellainen θ ]0, 1[, että f(b) f(a) = (b a)f (a + θ(b a)) = (b a)f ((1 θ)a + θb). Todistus. Jos a = b, väite pätee mielivaltaiselle θ ]0, 1[. Jos a < b, väite pätee, kun valitaan θ = (c a)/(b a), missä c on kuten lauseen yksinkertaisemmassa muotoilussa. Jos a > b, voidaan vaihtaa a ja b keskenään. 21

22 Ennen seuraavaa yleistä tulosta tarkastellaan sen erikoistapausta teknisesti vaativan todistuksen hahmottamisen helpottamiseksi. Olkoon f : R 2 R jatkuvasti derivoituva joukossa R 2. Oletetaan lisäksi merkintöjen yksinkertaistamiseksi, että f( 0) = 1 f( 0) = 2 f( 0). Tällöin funktion f differentioituvuus origossa merkitsee sitä, että f( h) lim h 0 h = 0. Olkoon ε > 0. Valitaan sellainen δ > 0, että kaikille ȳ B( 0, δ) pätee 1 f(ȳ) < ε/2 ja 2 f(ȳ) < ε/2. Olkoon h = h 1, h 2 B( 0, δ), h 0. Määritellään nyt g 1 : R R, g 1 (t) = f( 0 + tē 1 ) = f(t, 0). Osittaisderivaatan määritelmän perusteella on helppo todeta, että g 1 on kaikkialla derivoituva ja että g 1(t) = 1 f(t, 0) kaikilla t R. Niinpä soveltamalla lausetta 4.25 voidaan todeta, että f(h 1, 0) f( 0) = g 1 (h 1 ) g 1 (0) = (h 1 0)g 1((1 θ 1 )0+θ 1 h 1 ) = h 1 1 f(θ 1 h 1, 0) jollakin θ 1 ]0, 1[. Määritellään sitten g 2 : R R, g 2 (t) = f( h 1, 0 + tē 2 ) = f(h 1, t). Jälleen voidaan päätellä, että g 2(t) = 2 f(h 1, t) ja että f( h) f(h 1, 0) = h 2 2 f(h 1, θ 2 h 2 ) jollakin θ 2 ]0, 1[. Merkitään ȳ 1 = θ 1 h 1, 0 ja ȳ 2 = h 1, θ 2 h 2. Tällöin ȳ 1, ȳ 2 B( 0, δ), joten f( h) = f( h) f( 0) = (f( h) f(h 1, 0)) + (f(h 1, 0) f( 0)) = h 1 1 f(ȳ 1 ) + h 2 2 f(ȳ 2 ) h 1 1 f(ȳ 1 ) + h 2 2 f(ȳ 2 ) h 1 f(ȳ 1 ) + h 2 f(ȳ 2 ) = h ( 1 f(ȳ 1 ) + 2 f(ȳ 2 ) ) < h (ε/2 + ε/2) = h ε. Niinpä lim h 0 f( h)/ h = 0, joten f on differentioituva origossa. Ylläolevassa päättelyssä ainoa epätriviaali oletus oli se, että funktion f osittaisderivaatat ovat olemassa ja jatkuvia jossakin origon ympäristössä. Muut oletukset tehtiin vain merkintöjen yksinkertaistamiseksi. Päättely voidaan myös yleistää mielivaltaiseen dimensioon. Koska osittaisderivaattojen olemassaolo ja jatkuvuus on usein käytännössä helppo todeta tavanomaisten yhden muuttujan funktioita koskevien derivointisääntöjen avulla, seuraava lause on sovellusten kannalta hyödyllinen. 22

23 Lause Olkoon A R n avoin. Jos funktio f : A R on jatkuvasti derivoituva joukossa A, niin f on differentioituva joukon A jokaisessa pisteessä. Todistus. Olkoon x 0 A, ja olkoon k = 1 f( x 0 ),..., n f( x 0 ). Määritellään v : A R seuraavasti: f( x) f( x 0 ) k ( x x 0 ), kun x x 0, v( x) = x x 0 0, kun x = x 0. Nyt yhtälö (9) pätee, joten on vain osoitettava, että lim x x0 v( x) = 0 = v( x 0 ). Olkoon ε > 0. Lauseen 4.22 mukaan riittää löytää sellainen δ > 0, että v( x) < ε kaikilla x A B( x 0, δ). Valitaan sellainen δ, että seuraavat ehdot ovat voimassa: 1. B( x 0, δ) A, 2. j f( x) j f( x 0 ) < ε/n kaikilla x B( x, δ) ja kaikilla j {1,..., n}. Olkoon nyt x B( x 0, δ) A = B( x 0, δ), x x 0. Tarkastellaan funktion f arvoja, kun siirrytään pisteestä x 0 pisteeseen x koordinaatti kerrallaan. Olkoon h = h 1,..., h n = x x 0, ja kun j {1,..., n}, asetetaan x j = x 0 + j i=1 h iē i. Erityisesti x n = x. Olkoon j {1,..., n}. Selvästi pisteet x j 1 ja x j sisältyvät kuulaan B( x 0, δ) ja siis funktion f määrittelyjoukkoon A, samoin niiden yhdysjana lemman 4.23 perusteella. Lauseen 4.25 mukaan on olemassa sellainen θ j ]0, 1[, että f( x j ) f( x j 1 ) = h j j f(ȳ j ), missä ȳ j = x j 1 + θ j ( x j x j 1 ) = x j 1 + θ j h j ē j. Toisaalta f( x) f( x 0 ) = n j=1 (f( x j) f( x j 1 )) ja k ( x x 0 ) = n j=1 h j j f( x 0 ). Lisäksi ȳ j B( x 0, δ) ja h j h = x x 0 kaikilla j {1,..., n}, joten f( x) f( x 0 ) k ( x x 0 ) = < n h j j f(ȳ k ) j=1 n h j j f( x 0 ) j=1 n h j j f(ȳ j ) j f( x 0 ) j=1 n x x 0 (ε/n) j=1 = x x 0 ε. Siispä v( x) < ε, kun x x 0 < δ. 23

24 Tarkastellaan seuraavaksi ketjusäännön yleistämistä. Olkoot A R n ja B R avoimia joukkoja, h: A B ja g : B R funktioita sekä x 0 A. Tällöin g h on funktio joukosta A joukkoon R, jolle määritelmän mukaan pätee (g h)( x) = g(h( x)) kaikilla x A. Tutkitaan osittaisderivaattaa j (g h)( x 0 ), missä j {1,..., n}. Oletetaan, että j h( x 0 ) ja g (h( x 0 )) ovat olemassa. Koska A on avoin, on olemassa sellainen r > 0, että B( x 0, r) A. Määritellään funktio v : ] r, r[ B, v(t) = h( x 0 + tē j ), ja edelleen w : ] r, r[ R, w(t) = g(v(t)). Nyt määritelmän mukaan j (g h)( x 0 ) = (g h)( x 0 + tē j ) (g h)( x 0 ) lim t 0 t = w(t) w(0) lim t 0 t = w (0). Toisaalta v (0) = j h( x 0 ) ja v(0) = h( x 0 ), joten tavallisesta yhden muuttujan ketjusäännöstä saadaan w (0) = g (v(0))v (0) = g (h( x 0 )) j h( x 0 ). Yhdistämällä nämä yhtälöt saadaan ketjusäännön vastine tapaukseen, missä sisäfunktio h on monipaikkainen ja ulkofunktio g yksipaikkainen: j (g h)( x 0 ) = g (h( x 0 )) j h( x 0 ). 4.6 Korkeamman kertaluvun osittaisderivaatat Olkoot A R n epätyhjä avoin joukko, x 0 A sekä f : A R funktio, jonka osittaisderivaatta i f( x) on olemassa kaikilla x B( x 0, r), missä r > 0 on sellainen, että B( x 0, r) A. Tällöin i f on ainakin kuulassa B( x 0, r) määritelty reaaliarvoinen funktio, jolla voi edelleen olla osittaisderivaattoja pisteessä x 0, esim. j i f( x 0 ). Tällaista osittaisderivaatan osittaisderivaattaa kutsutaan toisen kertaluvun osittaisderivaataksi. Toisen kertaluvun osittaisderivaatalle i j f käytetään lyhennysmerkintää ij f. Esimerkki Olkoon f : R 2 R, f(x 1, x 2 ) = x 2 1x 2. Funktiolla f on kaikilla x R 2 kaikki neljä toisen kertaluvun osittaisderivaattaa, joille saadaan seuraavat lausekkeet: 11 f(x 1, x 2 ) = 2x 2, 12 f(x 1, x 2 ) = 21 f(x 1, x 2 ) = 2x 1, 22 f(x 1, x 2 ) = 0. Ei ole sattumaa, että 12 f = 21 f, vaan tämä seuraa kyseisten osittaisderivaattojen jatkuvuudesta. 24

25 Toisen kertaluvun osittaisderivaattojen osittaisderivaattoja sanotaan kolmannen kertaluvun osittaisderivaatoiksi ja niin edelleen. Määritelmä Olkoot A R n avoin joukko, f : A R funktio sekä k N +. Sanotaan, että funktio f on k kertaa jatkuvasti derivoituva joukossa A, joss funktiolla f on jokaisessa joukon A pisteessä kaikki kertaluvun k osittaisderivaatat, jotka ovat lisäksi jatkuvia koko joukossa A. Joukossa A k kertaa jatkuvasti derivoituvien funktioiden luokkaa merkitään symbolilla L k (A). Huomaa, että jos esimerkiksi f L 2 (A), niin kaikkien funktion f ensimmäisen kertaluvun osittaisderivaattojen on oltava olemassa koko joukossa A, jotta toisen kertaluvun osittaisderivaatat olisivat ylipäänsä olemassa. Lisäksi kaikki ensimmäisen kertaluvun osittaisderivaatat ovat jatkuvasti derivoituvia, joten lauseen 4.26 nojalla ne ovat differentioituvia ja siis lauseen 4.18 perusteella myös jatkuvia. Niinpä jokainen kaksi kertaa jatkuvasti derivoituva funktio on myös (yhden kerran) jatkuvasti derivoituva, vaikka tätä ei määritelmässä erikseen mainita. Sama pätee korkeammissa kertaluvuissa. Derivointijärjestykseen ei useinkaan tarvitse käytännössä kiinnittää huomiota. Aloitetaan tämän todistaminen seuraavalla lemmalla. Lemma Olkoot A R n avoin joukko, f L 2 (A) ja x 0 A. Olkoon r, s R sellaiset, että 0 < s r ja B( x 0, 2r) A, ja olkoot i, j {1,..., n}, i j. Tällöin on olemassa sellaiset luvut θ 1, θ 2 ]0, 1[, että f( x 0 +sē i +sē j ) f( x 0 +sē i ) f( x 0 +sē j )+f( x 0 ) = s 2 ji f( x 0 +sθ 1 ē i +sθ 2 ē j ). Todistus. Merkitään ū = sē i, v = sē j. Määritellään g : [0, 1] R, g(t) = f( x 0 + tū + v) f( x 0 + tū). Nyt Toisaalta g(1) g(0) = f( x 0 + ū + v) f( x 0 + ū) f( x 0 + v) + f( x 0 ). g (t) = s( i f( x 0 + tū + v) i f( x 0 + tū)). Niinpä väliarvolauseen nojalla on sellainen θ 1 ]0, 1[, että g(1) g(0) = g (θ 1 ). Olkoon nyt h: [0, 1] R, h(t) = i f( x 0 + θ 1 ū + t v). Nyt h (t) = s ji f( x 0 + θ 1 ū + t v). 25

26 Taas väliarvolausetta soveltamalla todetaan, että on olemassa sellainen θ 2 ]0, 1[, että h(1) h(0) = h (θ 2 ). Niinpä f( x 0 + ū + v) f( x 0 + ū) f( x 0 + v) + f( x 0 ) = g(1) g(0) = g (θ 1 ) = s(h(1) h(0)) = sh (θ 2 ) = s 2 ji ( x 0 + θ 1 ū + θ 2 v). Lause Olkoot A R n avoin joukko, x 0 A sekä f L 2 (A) funktio. Tällöin ij f( x 0 ) = ji f( x 0 ). Todistus. Väite on triviaali, jos i = j. Oletetaan siis, että i j. Olkoon r > 0 sellainen, että B( x 0, 2r) A. Olkoon k N +, ja olkoon s = r/k. Merkitään a k = f( x 0 + sē i + sē j ) f( x 0 + sē i ) f( x 0 + sē j ) + f( x 0 ). Lemman 4.29 mukaan on olemassa sellaiset luvut θ 1, θ 2 ]0, 1[, että a k = ji f( x 0 + sθ 1 ē i + sθ 2 ē j ). Olkoon ȳ k = x 0 + sθ 1 ē i + sθ 2 ē j. Nyt jokaisella k N + pätee ȳ k x 0 < 2r/k, joten ȳ k x 0. Oletuksen mukaan osittaisderivaatta ji f on jatkuva, joten ji f( x) = lim k ji f(ȳ) = lim k a k. Kun indeksit i ja j vaihdetaan keskenään, luvut a k pysyvät samana, joten ij f( x 0 ) = lim k a k = ji f( x 0 ). Lisätietoa: Ylläolevan lauseen ehtoja voidaan hieman heikentää ja johtopäätöstä vahvistaa suunnattuihin derivaattoihin, mutta seuraavat esimerkit osoittavat, että väite edellyttää osittaisderivaattojen ij f ja ji f olemassaoloa sekä vähintään yhden jatkuvuutta pisteessä x 0. Esimerkki Olkoon f : R 2 R, { 1, jos x 1 Q, f(x 1, x 2 ) = 0, muuten. Tällöin 1 f( x) = 0 kaikilla x R 2, joten myös 21 f( x) = 0 kaikilla x R 2. Toisaalta 2 f( x) ei ole määritelty millään x R 2 eikä siis myöskään 12 f( x). 26

27 Esimerkki Olkoon f : R 2 R, x 1 x 2 (x 2 1 x2 2 ) f(x 1, x 2 ) = x 2 1 +, jos x 0, x2 2 0, jos x = 0. Nyt voidaan melko helposti tarkistaa, että 12 f( 0) = 1 mutta 21 f( 0) = 1. Osittaisderivaatat 12 f ja 21 f ovat epäjatkuvia origossa. 4.7 Ääriarvot Määritelmä Olkoot A R n joukko, f : A R funktio ja x 0 A. 1. Funktiolla f on pisteessä x 0 lokaali eli paikallinen maksimi, joss on olemassa sellainen r > 0, että kaikilla x A B( x 0, r) pätee f( x) f( x 0 ). Lokaali maksimi on aito, joss kaikilla x A B( x 0, r) pätee f( x) < f( x 0 ), kun x x Funktiolla f on pisteessä x 0 lokaali eli paikallinen minimi, joss on olemassa sellainen r > 0, että kaikilla x A B( x 0, r) pätee f( x) f( x 0 ). Lokaali minimi on aito, joss kaikilla x A B( x 0, r) pätee f( x) > f( x 0 ), kun x x Paikallinen ääriarvo tarkoittaa paikallista minimiä tai paikallista maksimia. Lokaalille ääriarvolle pätee lause, joka on yleistys vastaavasta väitteestä yhden muuttujan funktioille. Lause Olkoon A R n avoin joukko ja f : A R funktio, jolla on lokaali maksimi pisteessä x 0 A. Jos osittaisderivaatta i f( x 0 ) on olemassa, niin i f( x 0 ) = 0. Todistus. Määritelmän mukaan i f( x 0 ) = g (0), missä g : ] r, r[ R jollakin r > 0, g(t) = f( x 0 + tē i ). Funktiolla g on lokaali ääriarvo pisteessä 0, joten g (0) = 0. Määritelmä Olkoon A R n avoin joukko ja f L 1 (A). Piste x A on funktion f kriittinen piste, joss f( x) = 0. Lauseen 4.34 nojalla avoimessa joukossa A R n jatkuvasti derivoituvan funktion f lokaalit ääriarvokohdat ovat funktion kriittisiä pisteitä. Funktiolla ei kuitenkaan ole välttämättä lokaalia ääriarvoa kriittisessä pisteessä. 27

28 Rajoitutaan seuraavassa tarkastelussa yksinkertaisuuden vuoksi avaruuden R 2 avoimissa osajoukoissa määriteltyjen funktioiden ääriarvoihin. Tyypillisessä sovellustapauksessa toisen kertaluvun osittaisderivaattoja tutkimalla voidaan selvittää, onko kriittinen piste lokaali maksimi, lokaali minimi vai ei kumpaakaan. Tarkastellaan ensin ns. neliömuotoja, joiden avulla voidaan approksimoida kaksi kertaa jatkuvasti derivoituvaa funktiota kriittisen pisteen ympäristössä. Määritelmä Kahden muuttujan neliömuoto (tässä tekstissä lyhyesti neliömuoto) on polynomifunktio Q: R 2 R, missä a, b, c R. Q(x 1, x 2 ) = ax bx 1 x 2 + cx 2 2, (10) Lause Jokainen neliömuoto Q voidaan esittää seuraavassa muodossa: Q(x 1, x 2 ) = u(x 1 sin α + x 2 cos α) 2 + v(x 1 cos α x 2 sin α) 2, (11) missä u, v R, u v, α [0, π[. Todistus. (Idea.) Tapaus b = 0 on helppo. Muussa tapauksessa α saadaan yhtälön tan α cot α = (a c)/b avulla, minkä jälkeen u ja v on helppo ratkaista suoraan. Yhtälön juuri valitaan siten, että ehto u v toteutuu. Yksityiskohdat sivuutetaan. Olkoon Q neliömuoto, ja olkoot u, v, α kuten yhtälössä (11) sekä x R 2 ja r R. Tällöin on helppo tarkistaa seuraavat yhtälöt suoraan laskemalla: Q( x) = u x 2 + (v u)(x 1 cos α x 2 sin α) 2, Q( x) = v x 2 (v u)(x 1 sin α + x 2 cos α) 2, Q(r x) = r 2 Q( x), Q(sin α, cos α) = u, Q(cos α, sin α) = v. Niinpä seuraavat väitteet pätevät kaikilla r 0: 1. Kaikilla x R 2 pätee, että jos x = r, niin ur 2 Q( x) vr On olemassa sellaiset x ja ȳ, että x = ȳ = r ja Q( x) = ur 2, Q(ȳ) = vr 2. 28

29 Ylläolevan perusteella neliömuodot voidaan luokitella yhtälössä (11) esiintyvien kertoimien perusteella seuraavasti: 1. Jos u > 0, niin Q( x) u x 2 > 0 kaikilla x 0. Tällainen neliömuoto on positiivisesti definiitti. 2. Jos v < 0, niin Q( x) v x 2 < 0 kaikilla x 0. Tällainen neliömuoto on negatiivisesti definiitti. 3. Jos u = 0, niin Q( x) 0 kaikilla x R 2 ja Q( x) = 0 jollakin x 0. Tällainen neliömuoto on positiivisesti semidefiniitti. 4. Jos v = 0, niin Q( x) 0 kaikilla x R 2 ja Q( x) = 0 jollakin x 0. Tällainen neliömuoto on negatiivisesti semidefiniitti. 5. Jos u < 0 < v, niin Q( x) = v x 2 > 0 jollakin x 0 ja Q(ȳ) = u ȳ 2 < 0 jollakin ȳ 0. Tällainen neliömuoto on indefiniitti. Huomaa, että jos u = v = 0, niin Q( x) = 0 kaikilla x R 2. Tämä triviaali neliömuoto on sekä positiivisesti että negatiivisesti semidefiniitti. Olkoon Q neliömuoto, ja olkoot a, b, c, u, v, α kuten yhtälöissä (10) ja (11). Tällöin kertoimille pätevät seuraavat yhtälöt: uv = ac b 2, u + v = a + c. Näiden yhtälöiden perusteella neliömuotojen yllä esitetty luokittelu voidaan muotoilla kertoimien a, b, c avulla seuraavasti: 1. Jos ac > b 2 ja a > 0, niin Q on positiivisesti definiitti. 2. Jos ac > b 2 ja a < 0, niin Q on negatiivisesti definiitti. 3. Jos ac = b 2 ja a + c 0, niin Q on positiivisesti semidefiniitti. 4. Jos ac = b 2 ja a + c 0, niin Q on negatiivisesti semidefiniitti. 5. Jos ac < b 2, niin Q on indefiniitti. Kaksi kertaa jatkuvasti derivoituvaa funktiota voidaan approksimoida kriittisen pisteen ympäristössä neliömuodon avulla. Jos neliömuoto on definiitti tai indefiniitti, funktiolla on kriittisessä pisteessä sama ääriarvoluonne kuin neliömuodolla origossa: 29

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikokeeseen Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

1 Supremum ja infimum

1 Supremum ja infimum Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin. Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

Johdatus matemaattisen analyysin teoriaan

Johdatus matemaattisen analyysin teoriaan Kirjan Johdatus matemaattisen analyysin teoriaan harjoitustehtävien ratkaisuja 18. maaliskuuta 2005 Ratkaisut ovat laatineet Jukka Ilmonen ja Ismo Korkee. Ratkaisuissa olevista mahdollisista virheistä

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

HILBERTIN AVARUUKSISTA

HILBERTIN AVARUUKSISTA HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan

Lisätiedot