3. Monitavoitteinen arvoteoria
|
|
- Maija-Leena Leppänen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 3. Motavottee arvoteora
2 3 Motavottee arvoteora Eglakelsä termejä Multattrbute Value Theory (MAVT) Value Tree Aalyss Arvopuuaalyys tarkottaa. tehtävä tavottede, krteere ja attrbuutte jäsetämstä herarkseks puuks (ogelma struktuot) 2. ja motavottese arvoteora (MAVT) soveltamsta parhaa vahtoehdo tustamseks (ogelma ratkasu). 2
3 3. Arvoje yhdstäme Lähtökohdat: Joukko vahtoehtoja Päätökse kaalta merktyksellset tavotteet ( fudametal/ meas objectves ) Tavottede saavuttamsta mttaavat attrbuutt Kuk vahtoehto x kuvataa joukkoa seuraamuksa tavottede suhtee, ts. attrbuutte suhtee tehtyjä mttauksa (x,x 2,,x ). Formulodaa päätösogelma seuraavast: x vahtoehto kpl tavotteta attrbuutteja kpl x vahtoehdo x seuraamus attrbuut suhtee v (x ) seuraamukse x arvo -e attrbuut suhtee Vahtoehtoo x=(x,,x ) lttyvät attrbuuttkohtaset arvot v (x ) (egl. scores ) oletetaa tuetuks ämä vodaa määrttää esmerkks edellse lueo meetelmllä arvofukto vo olla määrtelty joko koko vahteluvälllä ta pelkästää vahtoehtoje joukossa. 3
4 Ogelma: Mte vahtoehdo x = (x,,x ) kokoasarvo vodaa määrttää? El kuka er attrbuutte arvot tulee yhdstää? ( x,, )? V x = Ogelma vodaa kuvata (2-kerrokssea) arvopuua: Kokoasarvo Atrbuutt Atrbuutt 2... Atrbuutt Oletetaa että päätöksetekjällä o vahtoehtoje keske preferessrelaato >~ s.e. ( x,, x ) > ~ ( y,, y ) jos ja va jos vahtoehto x = (x,,x ) melusamp ta yhtä melusa ku y = (y,,y ). Mllä edellytyksllä o olemassa tätä preferessrelaatota kuvaava arvofukto? 4
5 Lause 3. Olkoo vahtoehtojoukkoa A = R (reaallukuarvoset vektort). Jos päätöksetekjä preferessrelaato >~ toteuttaa ehdot () >~ o hekko järjestys () (Pareto:) x y ja j s.t. x j > y j (x,,x ) > (y,,y ) () x = (x,,x ) >~ y = (y,,y ) >~ z = (z,,z ) λ [0,] s.t. λx + (-λ)z ~ y ordaale arvofukto v: A R s.e. ( x,, x) ~ ( y,, y) v( x x ) v( y y ),,,,. Tod. Saotaa, että vahtoehto a* o dagoaale jos α s.e. a*=(α,α,,α). Olkoo x A melvaltae vahtoehto. Määrtellää dagoaalset vahtoehdot x ja x s.e. x = m {x, x } ja x = max{x,,x },,. ()-ehdo perusteella x >~ x >~ x. Edellee ()-ehdo ojalla λ s.e. x* = (α x, α x,, α x ) = λx +(-λ)x ~ x. Tämä x* o ()-ehdo ja dagoaalsuusomasuude ojalla ykskästtee. Määrtellää vahtoehdo x arvo s.e. v(x) = α x. Tällö (,, ) ~ (,, ) x= x x y y = y x* = ( α,, α )~ x ~ y ~ y* = ( α,, α ) α α vx ( ) vy ( ). x y x x y y 5
6 Edelle lause e kutekaa ole kov hyödylle, koska se e täsmeä, mte vahtoehdo kokoasarvo V(x) muodostuu attrbuuttkohtassta arvosta v (x ). Lähtökohdaks valtaa dekomposto ( hajota ja halltse ): ( ) V x,, x = f( v ( x ),, v ( x )) Ylvertasest tärke o addtve mall, jossa vahtoehdo kokoasarvo estetää se attrbuuttkohtaste arvoje paotettuja summaa: ( ) Vx,, x = wv( x) Käytäössä arvopuuaalyysssä käytetää mlte aa addtvsta malla, joka o helpost ymmärrettävä. 6 Tosaa käytetää myös multplkatvsta malla, joka kuvaa myös vahtoehtoje välsä preferessrppuvuuksa V ( x,, x) = [ Kkv ( x) ] K + = Ogelma: Addtve mall e kutekaa välttämättä kuvaa preferessejä oke. mkä tahasa krteer o mllä tahasa muulla krteerllä kompesotavssa oko ä? vrt. lexkografe preferesse kuvaus esm. Maslow tarveherarka
7 Mllo addtvsta malla vodaa perustellust käyttää? 3.2 Preferessrppumattomuus Määr: Attrbuutt X o preferessrppumato attrbuutsta Y, jos x, x 2,y s.t. (x, y ) > (x 2,y ) (x, y) > (x 2,y) y Määr: Attrbuutt X,..., X ovat keskeää preferessrppumattoma, jos jokae attrbuutte osajoukko o preferessrppumato ko. attrbuutte komplemettjoukosta (so. musta ku valttuu osajoukkoo kuuluvsta attrbuutesta). Addtve arvofukto kuvaa päätöksetekjä preferessejä va jos attrbuutt ovat keskeää preferessrppumattoma. Käytäössä preferessrppumattomuutta e (valtettavast) usekaa tutkta kov ykstyskohtasest. Tosaa preferessrppumattomuus sekotetaa vahtoehtojoukossa lmeevää korrelaatoo kyse o preferessraketee omasuudesta e vahtoehtoje! 7
8 Esm. Mett, asupakkakua valtaa. Relevatteja krteerejä ovat hakttava auto (Y) ja kaupuk (X). X asupakka: x Helsk x 2 Afrka tasako Y auto: y Mersu y 2 Jeepp Jos preferesst ovat sellaset, että (x, y ) > (x 2,y ) (x, y 2 ) > (x 2,y 2 ), Helsk o Afrkkaa melusamp, rppumatta autosta. Slt vo olla, että Mersu (x, y ) > (x,y 2 ) (x 2, y 2 ) > (x 2,y ), Jeepp so. Mersu o mukavamp, jos asut Helsgssä, ku taas Afrka tasagolla jeepp o paremp. X o preferessrppumato Y:stä Y e ole preferessrppumato X:stä. Afrkka Helsk HUOM. Edes Lausee 3. vaatmus ) (Pareto-ehto) e esmerkssä toteudu! Sllä ku attrbuutteja o kaks, Pareto-ehdosta seuraa preferessrppumattomuus. 8
9 Etä ku attrbuutteja o eemmä ku kaks? Esm. Atera valta. Attrbuutt ovat v{puav, valkov} lha={härkä, kaa} lsuke={perua, rs} Lsäks oletetaa krteerkohtaset preferesst: puav > valkov härkä > kaa perua > rs Rkkomatta krteerkohtas preferessejä (Pareto-ehtoa) vodaa asettaa: ) (puav, härkä, rs) > (valkov, härkä, perua) ja 2) (puav, kaa, rs) < (valkov, kaa, perua) V ja lsuke evät ole preferessrppumattoma lhasta! HUOM! Pareto-ehdosta e ylesest (>2) seuraa preferessrppumattomuus 9
10 Mutta oko preferessrppumattomuus rttävä ehto addtvse mall olemassaololle? Tarkastellaa tlaetta v(0,0) = v(0,) = 2 v(0,2) = 3 v(,0) = 2 v(,) = 4 v(,2) = 6 v(2,0) = 3 v(2,) = 7 v(2,2) = 8 Preferessrppumattomuus o vomassa, koska rvellä ja sarakkella olevat kokoasarvot ovat adost kasvava. Addtvsta arvofuktota e kutekaa ole; sllä jos tällae v(x,x 2 ) = v (x ) + v 2 (x 2 ) ols, (0,) ~ (,0) V (0) + V 2 () = V () + V 2 (0) (2,0) ~ (0,2) V (2) + V 2 (0) = V (0) + V 2 (2) mstä edellee v (2) + v 2 () = v () + v 2 (2) vakka tauluko mukaa v(2,) = 7 6 = v(,2). Tarvtaa ss lsävaatmuksa kute Thompso ehto (ks. kuva): (x 0,y ) ~(x,y 0 ) (x 2,y 0 ) ~(x 0,y 2 ) (x 2,y ) ~ (x,y 2 ) 0
11 Lause 3.2 Jos preferessrppumattomuude lsäks o vomassa joukko (vähemmä rajaava) lsäoletuksa, o olemassa addtve arvofukto ste että ( x,, x ) ~ ( y,, y ) ( ) ( ) V x,, x = v ( x ) v ( y ) = V y,, y. Tod. Ks. esm. Frech (986) (e tarvtse osata). Arvofukto o affeja postvsa muuoksa valle ykskästtee, ts. myös arvofukto V (.) = α V(.) + β toteuttaa yo. lausee (α,β vakota, α > 0). Yo. preferessmallssa e kutekaa esy attrbuutte paoja ekä attrbuuttkohtasa arvoja ole myöskää ormeerattu. Etä mkä o paoje tulkta? Merktää x 0 = huoo seuraamus :e attrbuut suhtee x * = paras seuraamus Olkoo x melvaltae vahtoehto s.e. x 0 x x *, jollo se kokoasarvo Lausee 3. mukaa o
12 Vx Vx Vx Vx 0 0 () = () ( ) + ( ) 0 v( x) v ( x) V( x ) = + = v x v x + V x 0 ( ) ( ) ( ) v( x) v ( x ) = + * 0 v ( x) v ( x ) V( x ) * v ( x) v ( x) W > 0 v ( x ) = W 0 v( ) * x + Vx ( ) * + v ( x) v ( x) v ( x) v ( x) α > 0 β [ α β ] = W v x + + V x 0 ( ) ( ) N v [0,] W = + N 0 [( W) v ( x)] V( x ) ( W ) = w > 0, w = N 0 N = ( W) wv ( x) + V ( x ) = χv () x + δ δ χ> 0 N V ( x) 2
13 josta huomataa: v N :t kuvaavat samoja attrbuuttkohtasa preferessejä ku v :t, sllä v N o pos. aff. muuos v :stä o (ks. kardaale arvofukto, lueto 2) V N [0,] kuvaa samoja preferessejä ku V, sllä V N o pos. aff. muuos V:stä. Va attrbuuttpaoje w suhtella o merktystä, el e vodaa skaalata ste että summaks tulee yks. Vodaa ss huoletta tarkastella ormeerattua kokoasarvofuktota: N N V ( x) = wv ( x). deaalvahtoehto joka o paras mahdolle kakke attrbuutte suhtee (x *,x * 2, x * ) saa ä kokoasarvoksee yks vahtoehto joka o huoyo mahdolle kakke attrbuutte suhtee (x 0,x 0 2, x 0 ) saa taas kokoasarvoksee olla 3
14 Mkä o attrbuuttpaoje tulkta? Määrtelmästä saamme * = w W v ( x ) v ( x ), el attrbuuttpao kuvaa stä kokoasarvossa tapahtuvaa muutosta, joka lttyy attrbuut srtymsee se huoommalta määrtellyltä tasolta parhammalle määrtellylle tasolle. Tästä tulkasta rrotettua paokertoma koskevat kysymykset evät ole melekkätä: Kump o tärkeämp ympärstö va talous? Krteer tärkeyttä e ole olemassa rrallsea tarvtaa vertalukohta oko yhteskuta valms maksamaa hyöteslaj turvaamsesta mljooa euroa? Jos tarkasteltavat vahtoehdot krteert ovat jodek krteere suhtee (lähes) dettsä, äde krteere tuls saada pe pao. käytäössä tämä vo johtaa krttsee keskusteluu ja mahdolls jättesk Mks esmerkks terveys- ta ympärstöäkökohte tuls saada pe pao? 4
15 3.3 Arvopuuaalyys Mellä o yt vahtoehtoje attrbuuttkohtaset arvot v (x ) tapa yhdstää ämä arvot kokoasarvoks addtvse mall V(x)= w v (x ) ja krteerpaoje (w ) avulla Päätösehdotuksea estetää vahtoehdosta se, joka kokoasarvo o suur. Kokoasarvo Atrbuutt Atrbuutt 2... Atrbuutt Lähtökohtaa attrbuutte tustame so. ogelma jäsetely. Ogelma jäsetely ja tavottede määrttely o use aalyys atos ja samalla moessa melessä vake vahe. Se pohtme tukee ratkasuje löytämstä. Herkkyysaalyys o kää oleae osa aalyysä. Se avulla vodaa lopuks tutka, mte muutokset mallssa vakuttavat vahtoehtoje arvotuu paremmuusjärjestyksee. 5
4. Kriteerien painottaminen
4. Krteere paottame 4 Krteere paottame Mellä o yt vahtoehtoje attrbuuttkohtaset arvot v (x ) tapa yhdstää ämä arvot kokoasarvoks addtvse mall V(x)= w v (x ) ja krteerpaoje (w ) avulla Päätösehdotuksea
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
TKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Turingin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?
TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
10.5 Jaksolliset suoritukset
4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
HASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
Muuttujien välisten riippuvuuksien analysointi
Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus
r i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
Suoran sovittaminen pistejoukkoon
Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Satunnaismuuttujat ja todennäköisyysjakaumat
Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat
Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät
Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä
5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.
BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä
4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]
Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord
6. Capital Asset Pricing Model
6. Captal Asset cg odel Ivestotpäätökset edustavat use seuaava ogelmatyyppejä:. te sjotuspotolo kaattaa aketaa? vt. kassavtoje täsmääme ks. lueto 3. kä o sjotuskohtee okea hta? vt. abtaasvapaus jvk-hottelu
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa
3. Datan käsittely lyhyt katsaus
3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja
Tilastollisen fysiikan luennot
Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta
Mat Koesuunnittelu ja tilastolliset mallit
Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,
Kanoniset muunnokset
Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja
Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
Insinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mat Lineaarinen ohjelmointi
Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen
Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus
Mat-1.361 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.1. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys,
Baltian Tie 2001 ratkaisuja
Balta Te 001 ratkasuja 1. Olkoot tehtävät T, = 1,,..., 8. Eräs mahdollsuus jakaa tehtävät kahdeksalle opskeljalle O j, j =1,,..., 8 o ohesessa taulukossa T 1 T T T 4 T T 6 T 7 T 8 O 1 O O O 4 O O 6 O 7
Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot
Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut
- Keskustelu symbolein. i
- Keskustelu symbolen Mukana KESYä kehttelemässä Anu Uuskylä, Martnnemen koulu, Oulun ylopsto Sar Haapakangas, Suomen Vanhempanltto Mar Joktalo-Trebs, Leea Paja ja Annukka Auto, Valter Ida Lndström, Jun
Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.
Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
7. Modulit Modulit ja lineaarikuvaukset.
7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden
Kokonaislukuoptimointi
Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman
Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus
Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,
Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla
Mat-2.8 Sovelletu matematka erkostyö Sjotussalku optmot Black-Ltterma -malllla Kar Vatae (4753V) 9.5.24 Ssällysluettelo Johdato...2 2 Sjotussalku optmot Markowtz malllla...3 2. Sjotussalku optmot...5 2.2
1. välikoe
Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa
Gibbsin vapaaenergia aineelle i voidaan esittää summana
Lueto 8: Epädeaalsuus ja aktvsuuskerro Torsta 1.11. klo 14-16 477401A - Terodyaaset tasapaot (Syksy 2012) http://www.oulu.f/pyoet/477401a/ eetu.hekke@oulu.f Kertausta: Gbbs eerga ja tasapaovako Gbbs vapaaeerga
ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto
Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals
Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)
Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta
Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto
Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1
Elektroka laboratorotyöt - Mttalatteet Mttalatteet M. Kusma, T. Torttla, J. Tyster Tvstelmä Laboratorotyössä tutustutaa sovelletu elektroka laboratoroo, laboratorossa olev mttalattes sekä laboratoro työsketelytapoh.
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
FYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi
FIAS S5/000 Opas äytteeoto tekste vaatmuste täyttämseks akkredtota varte 5 (9) Lte äytteeoto vrhelähteet, luotettavuude estmot ja äytteeottoketju optmot Pett Mkke äytteeoto vrhelähteet, luotettavuude estmot
Harjoituksen pituus: 90min 3.10 klo 10 12
Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle
OKLS535. Opetusharjoittelu, OH3, 8 op kevät Harjoittelun tavoitteet
OKLS535 Opetusharjottelu, OH3, 8 op kevät 2017 Harjottelu tavotteet Stoutume harjotteluu Opetussuutelmaa perustae: 1. Oma toma tavotteellstame ja tavottede toteutumse arvot vuorovakutuksessa oma opskeljaryhmä
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon
Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest
Kvanttimekaanisten joukkojen yhteys termodynamiikkaan
Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
Tilastollinen päättely. 3. Piste estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat.36 Tlastolle päättely 3. Pste estmot Tlastolle päättely 3. Pste estmot 3.. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste estmot, Pstetodeäkösyysfukto,
4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
ler-modern isaatio * d *r n ax* *neäemw & rffi rffi # Sch ind Schindler {4ssxisä tu\*vmisu a**r3 \mj**nt rei
ler-modern saato {4ssxsä tu\*vmsu a**r3 \mj**nt Sch nd re * d *r n ax* *neäemw & rff rff # - " Schndler e,}:r:?tr,::.}a:::.?r!=+,t:",:2-:r?:.+rp;,,..*,. 21/:4?:&rä1 1tt''f &t!:/t F:*?: Haluatko hssstäs
Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
SU/Vakuutusmatemaattinen yksikkö (6)
SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan
Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin
MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle
Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
Luento 6 Luotettavuus ja vikaantumisprosessit
Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
Aamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
AB TEKNILLINEN KORKEAKOULU
B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat
LIGNIININ RAKENNE JA OMINAISUUDET
16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
Pyörimisliike. Haarto & Karhunen.
Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f