35. Kahden aallon interferenssi

Koko: px
Aloita esitys sivulta:

Download "35. Kahden aallon interferenssi"

Transkriptio

1 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin (sellaisina kuin niistä kukin ilman muita aaltoja olisi) liittyvien (hetkellisten lokaalien) siirtymien vektorisumma. Interferenssi = kahden tai useamman aallon yhteisvaikutus. Monokromaattinen valo = valo jossa vain yksi taajuus. Koherentit lähteet = monokromaattiset saman taajuuden lähteet, joiden vaiheet ovat kiinteässä suhteessa toisiinsa, esim. 2 lähdettä: E 1 (t) cos(ωt + φ) E 2 (t) cos(ωt) missä φ=vaihe-ero. Vaihe-eron voi tuottaa aikaero tai matkaero. Tarkkaan ottaen superpositioperiaate pätee vain lineaaristen aaltoyhtälöiden kuvaamille (oletuksena yleisesti pienet siirtymät) aaltoliikkeille. 137 Kahden samassa vaiheessa olevan koherentin lähteen S 1 ja S 2 r tuottamille aalloille pisteessäp: 1 KONSTR P Konstruktiivinen interferenssi kun S 1 S r 2 r 1 = mλ (m Z) 2 r 2 r 1 Destruktiivinen interferenssi kun P S DESTR r 1 2 r 1 =(m +1/2)λ (m Z) S 2 r Kumpikin voi olla osittainen tai täydellinen. 2 Nämä kaavat toimivat, kun λ on vakio eli kun väliaine on optisesti homogeeninen. Rajapinnoilla on otettava huomioon λ:n muutos. Kuvut (antinoodit) = pisteet, joissa E 1 (t)+ E 2 (t) maksimoituu. Solmut (noodit) = pisteet, joissa E 1 (t)+ E 2 (t) =0. Jatkossa (luvut 35 36) oletamme, että aalloilla on sama polarisaatiotaso eli E1 E 2, jolloin voimme jättää pois vektorimerkit! 138

2 35.2 Kaksoisrakokoe Kuvan mukaisessa koejärjestelyssä aaltojen vaihe pisteissä S 1 ja S 2 on sama. Matka-ero niistä pisteeseen P riippuu kulmasta θ. Olettaen θ mono krom. pieneksi ja R d saadaan pienestä kolmiosta S 1 S 2 Q matkaero r 2 r 1 d sin θ, mistä konstr. ja destr. interferenssin ehdot ovat S 1 d S 2 Q r 1 r θ 2 d sin θ = mλ (konstruktiivinen) (64) d sin θ =(m + 1/2)λ (destruktiivinen) (65) Merkitäänpä m. intensiteettimaksimin paikkaa varjostimella y m :llä ja sitä vastaavaa kulman arvoa θ m :llä y m R tan θ m, missä d sin θ m = mλ pienillä kulmilla maksimit paikoissa y m mrλ/d. R P 139 y 0 varjostin 35.3 Interferenssikuvion intensiteetit Tutkitaan kahden monokromaattisen lähteen resultanttiaaltoa pisteessä, jossa aalloilla on sama amplitudi mutta vaihe-ero φ: E(t) =E 1 (t)+e 2 (t) E 1 (t) =E cos(ωt + φ) E 2 (t) =E cos(ωt) Käyttäen trigonometristen funktioiden laskusääntöjä saadaan E(t) =E P cos(ωt + δ), E P =2E cos φ, (66) 2 missä kulman δ arvo on jatkon kannalta epäoleellinen. Oleellista tässä on, että resultanttiaaltokin on sinimuotoinen ja sillä on sama taajuus kuin alkuperäisillä aalloilla. Sen amplitudi on E P. Resultanttiaallon intensiteetti amplitudin neliö (vrt. luku 33.5): I = I 0 cos 2 φ 2. (fysp105: I 0 =2ɛcE 2 ) (67) Havaitsemme, että esim. I =I 0 kun φ=2π ja I =0 kun φ=π. 140

3 Johdetaanpa tulos (66) geometrisella kikalla. E E γ = π φ P φ cos γ = cos φ, γ ωt jolloin kosinilauseesta E ωt E=fysikaalinen EP 2 = E2 + E 2 +2E 2 cos φ Ecos(ωt) Ecos(ωt+φ) kentta =2E 2 (1 + cos φ) josta kaksinkertaisen kulman cos:n kaavalla E P =2E cos(φ/2). Kuvassa fysikaaliset kentät ovat vaakasuorassa. Huomaamme, että ajan t kuluessa kuvan vektorit kiertävät yhden jakson aikana täyden kierroksen ja resultanttikentän amplitudi on E P. Kätevää! imag.kentta Huom: Konstruktio yllä, vaihevektorikaavio, on monikäyttöinen. Sen avulla voi helposti summata useampiakin saman taajuuden aaltoja, joilla voisi eri vaiheiden lisäksi olla eri amplituditkin. Eli yleistetty Pythagoraan lause a 2 = b 2 +c 2 2bc cos α ja cos 2x=2 cos 2 x Koherenteille lähteille esim. vaihe-ero φ = 2π vastaa matkaeroa r 2 r 1 = λ ja φ = π matkaeroa r 2 r 1 = λ/2. Kun φ r 2 r 1 kaikille φ, voimme kirjoittaa φ = 2π λ (r 2 r 1 )=k(r 2 r 1 ) (k =2π/λ). (68) Esim: Palaamme luvun 35.2 kaksoisrakokokeeseen eli Youngin kokeeseen: r I=I 0 cos 2 [π(d/λ)sinθ] 2 r 1 = d sin θ. Nyt (67,68) I = I 0 cos 2 φ 2 = I 0 cos 2{ π d λ sin θ}. Siis I maksimoituu, kun {...} = mπ 1 (d/λ)sinθ eli kun d sin θ = mλ, mikä oli konstruktiivisen interferenssin ehto! Pienillä θ on θ y/r I I 0 cos 2 (πyd/λr) eli intensiteetin maksimit y m ovat varjostimella tasavälein. Kurssikirjan www-sivun animaatiot kannattaa käydä läpi. I 0 142

4 35.4 Interferenssi ohuissa kalvoissa Heijastukset rajapinnoista aallonpituusriippuva vaihe-ero konstr. tai destr. interferenssi eri värit näkyvät eri kulmissa. n a n b θ a h Kalvon paksuuden h ohella heijastuksissa syntyvään vaihe-eroon vaikuttavat myös väliaineiden taitekertoimet. Tarkastellaan yhtä heijastusta: Jos θ a =0jas on etäisyys rajapinnasta, havaitaan E r = n a n b n a + n b E a E a cos(ωt + ks) = tuleva aalto E r cos(ωt + ks) = heijastuva aalto (69) eli heijastumisessa voi tapahtua vaihesiirto: n a <n b : E r ja E a erimerkkisiä vaihesiirto = π. n a >n b : E r ja E a samanmerkkisiä vaihesiirto = 0 n a = n b : E r =0 ei heijastumista. Rajapinnan läpi menevä aalto ei koe vaihesiirtoa (mutta E b E a ). Johdettavissa Maxwellin yhtälöistä ja analogista mekaniikan aaltojen kanssa. 143 Kahden aallon välinen kokonaisvaihe-ero on siten matka-eroon liittyvän vaihe-eron ja heijastukseen liittyvän vaihesiirron summa. Interferenssin määrää kokonaisvaihe-ero. Esim: Newtonin renkaat linssillä, jonka sovellus on linssin muodon tarkastus: Pyörähdysymmetrisen (tavoite) linssin interferenssikuvio muodostuu samankeskisistä ympyrärenkaista. Esim: Silmälasin linssin pinta saadaan lähes heijastamattomaksi pinnoittamalla se ohuella kalvolla, jonka taitekerroin on pienempi kuin linssimateriaalin taitekerroin. Tälloin heijastuksissa kalvon ylä- ja alapinnoilta vaihesiirrot ovat samat. Kokonaisvaihe-ero muodostuu siten matka-eroista, jolloin valitsemalla kalvon paksuudeksi λ/4, missä λ on (ilmassa keltaisen) valon aallonpituus kalvomateriaalissa, saadaan φ = π ja destruktiivinen interferenssi. Esim: Michelsonin-Morleyn koe (kirjan luvuissa 32.1, 35.5, 37.1). 144

5 36. Diffraktio Diffraktio on interferenssi-ilmiö, jossa aalto interferoi itsensä kanssa, esim. osuttuaan (esim. läpinäkymättömään) esteeseen. Keskenään interferoivien aaltojen lähteitä on tällöin äärettömän monta (vrt. Huygensin periaate) tai lähde on jatkumo Fresnelin ja Fraunhoferin diffraktio Fresnel-alue: Lähde tai varjostin on lähellä estettä. Fraunhofer-alue: Lähde ja varjostin ovat kaukana esteestä. Diffraktiivisten perusilmiöiden havainnollistamiseksi keskitymme (matemaattisestikin yksinkertaiseen) Fraunhofer-alueeseen: - tulevan valon voidaan katsoa tulevan yhdestä suunnasta - varjostinta siirrettäessä interferenssikuvion muoto ei muutu -tässä alueessa oltava tyypillisesti Rλ > a 2 (a =lähteen koko) Yksi rako y monokrom Aluksi: Valitaanpa raon a θ 0 (leveys a) sisältä kaksi R pistettäetäisyydellä a/2 toisistaan (jaamme siis raon kahteen osaan). Sivujen tarkastelut destruktiivinen interferenssi varjostimella kohdissa a 2 sin θ = ±λ sin θ = ± λ 2 a Voimme jakaa raon jakaa pienempiinkin osiin siten, että niitä on parillinen määrä, jolloin ehdoksi tulee (a/2m) sin θ = ±λ/2. Päättelemme, että destruktiivinen interferenssi saadaan, kun varjostin sin θ = m λ a m = ±1, ±2, ±3,... (destruktiivinen) (70) Tämän mukainen interferenssi on täydellinen pienillä kulmilla; suuremmilla kulmilla varjostimella nähdään tummat kohdat. 146

6 Päättelemämme tulos (70) on helppo johtaa luvun 35.3 vaihevektorimenetelmällä, nyt summaamalla äärettömän monen lähdepisteen yli. Olkoon kokonaisvaihe-ero raon leveyden matkalla β. E P ωt β β/2 β/2 E 0 /β E P /2 E P /2 βe 0 /β = E 0 Kaarenpituus = kulma (rad) säde kolmioista saamme E P 2 = E 0 β sin β 2. Toisaalta intensiteetti amplitudi 2 eli I EP 2. Merkitsemällä nyt I 0 = max(i) =I(β 0) saamme I = I [ sin β/2] 2. 0 β/2 147 Vaihe-ero = (2π/λ) matka-ero, joten β =(2π/λ) a sin θ ja I 0 I [sin ( πa I = I λ sin θ) ] 2. 0 πa (71) λ sin θ θ 2 θ 1 0 θ θ 1 2 θ Intensiteetin keskusmaksimi: θ = 0 Muut maksimit: a sin θ ± ( m + 1 2) λ m =1, 2, 3,... Intensiteettiminimit: a sin θ m = ±mλ m =1, 2, 3,... Huom: Kun λ<a, antaa (71) minimejä välille π/2 <θ<π/2. Jos on λ a, keskusmaksimin leveys on θ 1 sin θ 1 = λ/a. Huom: Diffraktiomaksimien intensiteetit laskevat nopeasti m:n kasvaessa, koska tulos (71) on muotoa I x 2 sin 2 x. 148

7 Monta rakoa ja hila Kannattaa ottaa käyttöön merkinnät φ =2π d λ β =2π a λ sin θ d = rakojen valimatka (72) sin θ a = kunkin raon leveys (73) Kaksi rakoa: Yhdistämällä sivujen 142 ja 148 tulokset saamme I I 0 diffraktio (1 rako) yhdistetty (2 rakoa) I = I 0 [cos(φ/2)] 2[ sin(β/2) ] 2 (74) β/2 0 θ Kun a/λ < d/λ < 1, rakojen keskinäinen interferenssi (φ) oskilloi nopeammin kuin rakojen (sisäinen) diffraktio (β). Kuvassa yllä on d = 3a ja diffraktio (katkoviiva) moduloi intensiteettiä. 149 N kapeaa rakoa: Tässä pätevin oletuksin saadaan I = I [ sin(nφ/2) ] 2 [ sin(β/2) ] 2 0 (N>1) (75) sin(φ/2) β/2 I I 0 m= 1 m=0 m=+1 Siis kapeat korkeat päämaksimit, joiden välissä N 1 minimiä. Diffraktiohila N 1: (75) päämaksimit samoissa kohdissa kuin N =2:lle ja N:n kasvaessa sivumaksimit vaimenevat näkyvistä. Siten päämaksimeille (kunhan a d λ) pätee (64) sellaisenaan d sin θ = mλ m =0, ±1, ±2,... (76) Terminologiaa: m = ±1 1. kertaluvun viivat jne. θ 150

8 Hilan erotuskyky: Kapeiden piikkien ansiosta hilalla saadaan hajotettua ei-monokromaattinen valo aallonpituuskomponentteihin spektrianalyysi! Erotuskyky R = λ/δλ, missä Δλ on pienin esiin saatava aallonpitusero. Lasketaanpa R: Intensiteettimaksimit: sin θ = mλ/d cos θδθ = mδλ/d Vaihe-ero: φ = 2π(d/λ) sin θ Δφ = 2π(d/λ) cos θδθ Piikin leveys vaiheyksiköissä: Δφ = 2π/N Näistä saamme hilan erotuskyvylle arvion mikä odotetusti paranee N:n kasvaessa. R = λ/δλ = Nm, (77) Huom: Edellä olemme tarkastelleet valoa läpäisevää hilaa. Samat yhtälöt toimivat konstruktion perusteella heijastavallekin hilalle. Esimerkki jälkimmäisestä on heijastus cd-levyn pinnasta Röntgen-sironta kiteestä Tutkitaan sirontaa kidetasoista, joiden välimatka toisistaan on d. Interferenssi on konstruktiivinen, kun matkaero on λ:n monikerta. Pienet kolmiot Braggin ehto: d θ 2d sin θ = mλ (78) Kiinteä kide toimii tässä heijastavana (monikerroksisena) hilana. Sovelluksia: Sironnan intensiteettikuviosta voidaan tunnistaa materiaalin kiderakenteen avaruussymmetria ja määrittää d. Röntgensironnalla voidaan selvittää myös suurten molekyylien rakenne, kun ne on ensin kiteytetty. Huom: Tässä havaintaan makrotasolla (kuvio varjostimella) seuraus mikrotason rakenteesta (raot, kiderakenne). 152

9 36.7 Pyöreän aukon erotuskyky Diffraktio rajoittaa (säde)optisten laitteiden kulmaerotuskykyä. Pyöreälle aukolle (esim. mikroskoopin linssi) saadaan ympyrän muotoinen diffraktiokuvio: 1. intensiteettiminimi tulee kohtaan sin θ λ D, (79) missä D on aukon halkaisija. Tulos on työläs johtaa, mutta varsin lähellä kapean raon destruktiivisen interferenssin ehtoa (70). Resoluutio paranee λ:n pienetessä jad:n kasvaessa. Esim: (radio)teleskooppi ja (elektroni)mikroskooppi Hologrammi Holografiassa tallennetaan esineestä heijastuvan ja suoraan monokromaattisesta lähteestä tulevan aallon interferenssikuvio, oleellisesti siis sekä intensiteetti että vaihe-ero. Vaihe-ero antaa esineen pisteen sijainnin kuvaussuunnassa syvyysvaikutelma X Kurssikirjan ja muita esimerkkejä Example 35.2 (edellisen pääluvun esimerkki) Taajuudella 1500 khz toimiva AM-asema (amplitudimodulaatio) käyttää lähetyksessään kahta 400 m etäisyydellä toisistaan olevaa antennia. Kaukana lähettimestä, missä suunnassa havaitaan suurin ja pienin intensiteetti? Ratkaisu: Nyt λ = c/f = 200 m. Yhtälöstä (64) intensiteettimaksimit ovat siten suunnissa sin θ = m/2 eli θ =0, ±30, ±90 asteen kulmissa vastaten m:n arvoja m = 0, ±1, ±2. Intensiteettiminimit taasen ovat näiden välissä eli yhtälöstä (65) θ = ±14.5, ±48.6 asteen kulmissa vastaten siinä m:n arvoja m =0, ±1, 2. Huomaa (kirjassakin käytetty) hieman epäsymmetrinen notaatio kahden lähteen intensiteettiminimien m-indeksoinnille. Ulos tuleva fysiikka on toki symmetristä, kun lähtötilanne on symmetrinen. 154

10 Example 36.4 Sähkömagneettisen aallonpituusspektrin näkyvän osan rajat ovat suunnilleen 400 (violetti) ja 700 nm (punainen). Olkoon hilassa 600 rakoa millimetrillä ja tuleva valo kohtisuorassa sen tasoa vastaan. Määritä ensimmäisen kertaluvun maksimien alue kulmayksiköissä. Entä menevätkö ensimmäisen, toisen ja/tai kolmannen kertaluvun spektrit varjostimella päällekkäin? Ratkaisu: Nyt d = 5/3 μm ja yhtälöstä (76) saamme ensimmäisien kertaluvun maksimeille näkyvän spektrin ääripäissä m =1 sin θ vio 0.24 θ vio 14 o m =1 sin θ pun 0.42 θ pun 25 o. Spektrin leveys varjostimella on näiden kahden erotus eli 11 o. Kysyttäessä spektrien päällekkäin menemistä vertaamme sin θ:n arvoja eri kertaluvuissa (toki kulmatkin saa laskea): d sin θ viol =4(m=1), 8(m=2), 12 (m=3) 10 7 m d sin θ pun =7(m=1), 14 (m=2), 21 (m=3) 10 7 m joten 1. ja 2. eivät mene päällekkäin mutta 2. ja 3. menevät. 155 Esim: Kaksi oleellisesti pistemäistä kaiutinta on toisistaan 3.36 m etäisyydellä. Olkoon niistä lähtevän testiäänen taajuus 400 Hz ja niiden värähtelyjen välillä vaihe-ero siten, että toinen kaiutin on 1/6 jaksoa edellä toista kaiutinta. Äänen nopeus on 330 m/s. Kuulija on kaukana kaiuttimista. Sopivin oletuksin (ei kaikuja jne) ja mitattuna kaiutinten välisen keskiviivan suhteen, missä kulmissa kuulija ei kuulisi pihaustakaan? Ratkaisu: Lähteillä on 1/6 jakson vaihe-ero, joten saamme ehdot d sin θ ± =(m +1/2 ± 1/6)λ, missä d =3.36 m ja λ =0.825 m. Ratkaisuja ovat (m=0,1,...-4): θ + =9.4, 24.2,..., 54.9 astetta θ =4.7, 19.1,..., 64.2 astetta Arvolla m =+4jakun m > 4 ei ratkaisuja. THE END 156

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 36 Diffraktio PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Ääni kuuluu helposti nurkan taakse Myös valo voi taipua

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

35 VALON INTERFERENSSI (Interference)

35 VALON INTERFERENSSI (Interference) 13 35 VALON INTERFERENSSI (Interference) Edellisissä kappaleissa tutkimme valon heijastumista ja taittumista peileissä ja linsseissä geometrisen optiikan approksimaation avulla. Approksimaatiossa aallonpituutta

Lisätiedot

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio

Lisätiedot

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò, 9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Työn tavoitteita. 1 Johdanto

Työn tavoitteita. 1 Johdanto FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden

Lisätiedot

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA 73 DFFAKTO Optisella alueella valon aallonpituus on hyvin lyhyt ( 5 cm). Valoa voidaan hyvin kuvata geometrisen optiikan approksimaatiolla ( ), jossa siis valoenergia etenee säteinä tai aaltorintamina.

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

2 paq / l = p, josta suuntakulma q voidaan ratkaista

2 paq / l = p, josta suuntakulma q voidaan ratkaista 33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

34. Geometrista optiikkaa

34. Geometrista optiikkaa 34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä

Lisätiedot

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V.

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V. VALON DIFFRAKTIO 1 Johdanto Tässä laboratoriotyössä havainnollistetaan diffraktiota ja interferenssiä valaisemalla kapeita rakoja laservalolla ja tarkastelemalla rakojen takana olevalle varjostimelle syntyviä

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I PHYS-A140 Aineen rakenne C34 1. Monokromaattinen valo kulkee kaden vierekkäisen raon läpi. Rakojen takana olevalla varjostimella avaitaan valoisia ja mustia juovia. Rakojen välimatka d on samaa suuruusluokkaa

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.

Lisätiedot

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5 5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka

Lisätiedot

INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE

INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE Johdanto Työ hahmottaa fysiikan ominaisuutta ennustaa ja selittää ihmisen arkiympäristössä tapahtuvia havaintoja neste- ja kaasufaasien välissä olevia ohuita

Lisätiedot

PHYS-C0240 Materiaalifysiikka kevät 2017

PHYS-C0240 Materiaalifysiikka kevät 2017 PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 11 Tavoitteet Geometrinen optiikka Kamerat Silmä

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio

Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio Vinokulmainen kolmio Hannu Lehto Lahden Lyseon lukio Yksikköympyrä ja suunnattu kulma Yksikköympyrä 1 y 0 x -1-1 0 1 Hannu Lehto 18. maaliskuuta 2008 Lahden Lyseon lukio 2 / 8 Yksikköympyrä ja suunnattu

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 11 Tavoitteet Geometrinen optiikka Kamerat Silmä Suurennuslasi Optisia kojeita (yleissivistystä) Interferenssi Interferenssi

Lisätiedot

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t. Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa. Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari

Lisätiedot

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

24AB. Lasertutkimus ja spektrianalyysi

24AB. Lasertutkimus ja spektrianalyysi TURUN AMMATTIKORKAKOULU TYÖOHJ 1/7 24AB. Lasertutkimus ja spektrianalyysi 1. Työn tarkoitus Lasereilla on runsaasti käytännön sovelluksia esimerkiksi tiedonsiirrossa, aineiden analysoinnissa ja työstämisessä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

KIDETUTKIMUS. 1. Työn tavoitteet. 2. Työn taustaa

KIDETUTKIMUS. 1. Työn tavoitteet. 2. Työn taustaa Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 KIDETUTKIMUS 1. Työn tavoitteet Tässä työssä havainnollistetaan kiteisten aineiden rakenteen tutkimista röntgendiffraktion

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot