35. Kahden aallon interferenssi

Koko: px
Aloita esitys sivulta:

Download "35. Kahden aallon interferenssi"

Transkriptio

1 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin (sellaisina kuin niistä kukin ilman muita aaltoja olisi) liittyvien (hetkellisten lokaalien) siirtymien vektorisumma. Interferenssi = kahden tai useamman aallon yhteisvaikutus. Monokromaattinen valo = valo jossa vain yksi taajuus. Koherentit lähteet = monokromaattiset saman taajuuden lähteet, joiden vaiheet ovat kiinteässä suhteessa toisiinsa, esim. 2 lähdettä: E 1 (t) cos(ωt + φ) E 2 (t) cos(ωt) missä φ=vaihe-ero. Vaihe-eron voi tuottaa aikaero tai matkaero. Tarkkaan ottaen superpositioperiaate pätee vain lineaaristen aaltoyhtälöiden kuvaamille (oletuksena yleisesti pienet siirtymät) aaltoliikkeille. 137 Kahden samassa vaiheessa olevan koherentin lähteen S 1 ja S 2 r tuottamille aalloille pisteessäp: 1 KONSTR P Konstruktiivinen interferenssi kun S 1 S r 2 r 1 = mλ (m Z) 2 r 2 r 1 Destruktiivinen interferenssi kun P S DESTR r 1 2 r 1 =(m +1/2)λ (m Z) S 2 r Kumpikin voi olla osittainen tai täydellinen. 2 Nämä kaavat toimivat, kun λ on vakio eli kun väliaine on optisesti homogeeninen. Rajapinnoilla on otettava huomioon λ:n muutos. Kuvut (antinoodit) = pisteet, joissa E 1 (t)+ E 2 (t) maksimoituu. Solmut (noodit) = pisteet, joissa E 1 (t)+ E 2 (t) =0. Jatkossa (luvut 35 36) oletamme, että aalloilla on sama polarisaatiotaso eli E1 E 2, jolloin voimme jättää pois vektorimerkit! 138

2 35.2 Kaksoisrakokoe Kuvan mukaisessa koejärjestelyssä aaltojen vaihe pisteissä S 1 ja S 2 on sama. Matka-ero niistä pisteeseen P riippuu kulmasta θ. Olettaen θ mono krom. pieneksi ja R d saadaan pienestä kolmiosta S 1 S 2 Q matkaero r 2 r 1 d sin θ, mistä konstr. ja destr. interferenssin ehdot ovat S 1 d S 2 Q r 1 r θ 2 d sin θ = mλ (konstruktiivinen) (64) d sin θ =(m + 1/2)λ (destruktiivinen) (65) Merkitäänpä m. intensiteettimaksimin paikkaa varjostimella y m :llä ja sitä vastaavaa kulman arvoa θ m :llä y m R tan θ m, missä d sin θ m = mλ pienillä kulmilla maksimit paikoissa y m mrλ/d. R P 139 y 0 varjostin 35.3 Interferenssikuvion intensiteetit Tutkitaan kahden monokromaattisen lähteen resultanttiaaltoa pisteessä, jossa aalloilla on sama amplitudi mutta vaihe-ero φ: E(t) =E 1 (t)+e 2 (t) E 1 (t) =E cos(ωt + φ) E 2 (t) =E cos(ωt) Käyttäen trigonometristen funktioiden laskusääntöjä saadaan E(t) =E P cos(ωt + δ), E P =2E cos φ, (66) 2 missä kulman δ arvo on jatkon kannalta epäoleellinen. Oleellista tässä on, että resultanttiaaltokin on sinimuotoinen ja sillä on sama taajuus kuin alkuperäisillä aalloilla. Sen amplitudi on E P. Resultanttiaallon intensiteetti amplitudin neliö (vrt. luku 33.5): I = I 0 cos 2 φ 2. (fysp105: I 0 =2ɛcE 2 ) (67) Havaitsemme, että esim. I =I 0 kun φ=2π ja I =0 kun φ=π. 140

3 Johdetaanpa tulos (66) geometrisella kikalla. E E γ = π φ P φ cos γ = cos φ, γ ωt jolloin kosinilauseesta E ωt E=fysikaalinen EP 2 = E2 + E 2 +2E 2 cos φ Ecos(ωt) Ecos(ωt+φ) kentta =2E 2 (1 + cos φ) josta kaksinkertaisen kulman cos:n kaavalla E P =2E cos(φ/2). Kuvassa fysikaaliset kentät ovat vaakasuorassa. Huomaamme, että ajan t kuluessa kuvan vektorit kiertävät yhden jakson aikana täyden kierroksen ja resultanttikentän amplitudi on E P. Kätevää! imag.kentta Huom: Konstruktio yllä, vaihevektorikaavio, on monikäyttöinen. Sen avulla voi helposti summata useampiakin saman taajuuden aaltoja, joilla voisi eri vaiheiden lisäksi olla eri amplituditkin. Eli yleistetty Pythagoraan lause a 2 = b 2 +c 2 2bc cos α ja cos 2x=2 cos 2 x Koherenteille lähteille esim. vaihe-ero φ = 2π vastaa matkaeroa r 2 r 1 = λ ja φ = π matkaeroa r 2 r 1 = λ/2. Kun φ r 2 r 1 kaikille φ, voimme kirjoittaa φ = 2π λ (r 2 r 1 )=k(r 2 r 1 ) (k =2π/λ). (68) Esim: Palaamme luvun 35.2 kaksoisrakokokeeseen eli Youngin kokeeseen: r I=I 0 cos 2 [π(d/λ)sinθ] 2 r 1 = d sin θ. Nyt (67,68) I = I 0 cos 2 φ 2 = I 0 cos 2{ π d λ sin θ}. Siis I maksimoituu, kun {...} = mπ 1 (d/λ)sinθ eli kun d sin θ = mλ, mikä oli konstruktiivisen interferenssin ehto! Pienillä θ on θ y/r I I 0 cos 2 (πyd/λr) eli intensiteetin maksimit y m ovat varjostimella tasavälein. Kurssikirjan www-sivun animaatiot kannattaa käydä läpi. I 0 142

4 35.4 Interferenssi ohuissa kalvoissa Heijastukset rajapinnoista aallonpituusriippuva vaihe-ero konstr. tai destr. interferenssi eri värit näkyvät eri kulmissa. n a n b θ a h Kalvon paksuuden h ohella heijastuksissa syntyvään vaihe-eroon vaikuttavat myös väliaineiden taitekertoimet. Tarkastellaan yhtä heijastusta: Jos θ a =0jas on etäisyys rajapinnasta, havaitaan E r = n a n b n a + n b E a E a cos(ωt + ks) = tuleva aalto E r cos(ωt + ks) = heijastuva aalto (69) eli heijastumisessa voi tapahtua vaihesiirto: n a <n b : E r ja E a erimerkkisiä vaihesiirto = π. n a >n b : E r ja E a samanmerkkisiä vaihesiirto = 0 n a = n b : E r =0 ei heijastumista. Rajapinnan läpi menevä aalto ei koe vaihesiirtoa (mutta E b E a ). Johdettavissa Maxwellin yhtälöistä ja analogista mekaniikan aaltojen kanssa. 143 Kahden aallon välinen kokonaisvaihe-ero on siten matka-eroon liittyvän vaihe-eron ja heijastukseen liittyvän vaihesiirron summa. Interferenssin määrää kokonaisvaihe-ero. Esim: Newtonin renkaat linssillä, jonka sovellus on linssin muodon tarkastus: Pyörähdysymmetrisen (tavoite) linssin interferenssikuvio muodostuu samankeskisistä ympyrärenkaista. Esim: Silmälasin linssin pinta saadaan lähes heijastamattomaksi pinnoittamalla se ohuella kalvolla, jonka taitekerroin on pienempi kuin linssimateriaalin taitekerroin. Tälloin heijastuksissa kalvon ylä- ja alapinnoilta vaihesiirrot ovat samat. Kokonaisvaihe-ero muodostuu siten matka-eroista, jolloin valitsemalla kalvon paksuudeksi λ/4, missä λ on (ilmassa keltaisen) valon aallonpituus kalvomateriaalissa, saadaan φ = π ja destruktiivinen interferenssi. Esim: Michelsonin-Morleyn koe (kirjan luvuissa 32.1, 35.5, 37.1). 144

5 36. Diffraktio Diffraktio on interferenssi-ilmiö, jossa aalto interferoi itsensä kanssa, esim. osuttuaan (esim. läpinäkymättömään) esteeseen. Keskenään interferoivien aaltojen lähteitä on tällöin äärettömän monta (vrt. Huygensin periaate) tai lähde on jatkumo Fresnelin ja Fraunhoferin diffraktio Fresnel-alue: Lähde tai varjostin on lähellä estettä. Fraunhofer-alue: Lähde ja varjostin ovat kaukana esteestä. Diffraktiivisten perusilmiöiden havainnollistamiseksi keskitymme (matemaattisestikin yksinkertaiseen) Fraunhofer-alueeseen: - tulevan valon voidaan katsoa tulevan yhdestä suunnasta - varjostinta siirrettäessä interferenssikuvion muoto ei muutu -tässä alueessa oltava tyypillisesti Rλ > a 2 (a =lähteen koko) Yksi rako y monokrom Aluksi: Valitaanpa raon a θ 0 (leveys a) sisältä kaksi R pistettäetäisyydellä a/2 toisistaan (jaamme siis raon kahteen osaan). Sivujen tarkastelut destruktiivinen interferenssi varjostimella kohdissa a 2 sin θ = ±λ sin θ = ± λ 2 a Voimme jakaa raon jakaa pienempiinkin osiin siten, että niitä on parillinen määrä, jolloin ehdoksi tulee (a/2m) sin θ = ±λ/2. Päättelemme, että destruktiivinen interferenssi saadaan, kun varjostin sin θ = m λ a m = ±1, ±2, ±3,... (destruktiivinen) (70) Tämän mukainen interferenssi on täydellinen pienillä kulmilla; suuremmilla kulmilla varjostimella nähdään tummat kohdat. 146

6 Päättelemämme tulos (70) on helppo johtaa luvun 35.3 vaihevektorimenetelmällä, nyt summaamalla äärettömän monen lähdepisteen yli. Olkoon kokonaisvaihe-ero raon leveyden matkalla β. E P ωt β β/2 β/2 E 0 /β E P /2 E P /2 βe 0 /β = E 0 Kaarenpituus = kulma (rad) säde kolmioista saamme E P 2 = E 0 β sin β 2. Toisaalta intensiteetti amplitudi 2 eli I EP 2. Merkitsemällä nyt I 0 = max(i) =I(β 0) saamme I = I [ sin β/2] 2. 0 β/2 147 Vaihe-ero = (2π/λ) matka-ero, joten β =(2π/λ) a sin θ ja I 0 I [sin ( πa I = I λ sin θ) ] 2. 0 πa (71) λ sin θ θ 2 θ 1 0 θ θ 1 2 θ Intensiteetin keskusmaksimi: θ = 0 Muut maksimit: a sin θ ± ( m + 1 2) λ m =1, 2, 3,... Intensiteettiminimit: a sin θ m = ±mλ m =1, 2, 3,... Huom: Kun λ<a, antaa (71) minimejä välille π/2 <θ<π/2. Jos on λ a, keskusmaksimin leveys on θ 1 sin θ 1 = λ/a. Huom: Diffraktiomaksimien intensiteetit laskevat nopeasti m:n kasvaessa, koska tulos (71) on muotoa I x 2 sin 2 x. 148

7 Monta rakoa ja hila Kannattaa ottaa käyttöön merkinnät φ =2π d λ β =2π a λ sin θ d = rakojen valimatka (72) sin θ a = kunkin raon leveys (73) Kaksi rakoa: Yhdistämällä sivujen 142 ja 148 tulokset saamme I I 0 diffraktio (1 rako) yhdistetty (2 rakoa) I = I 0 [cos(φ/2)] 2[ sin(β/2) ] 2 (74) β/2 0 θ Kun a/λ < d/λ < 1, rakojen keskinäinen interferenssi (φ) oskilloi nopeammin kuin rakojen (sisäinen) diffraktio (β). Kuvassa yllä on d = 3a ja diffraktio (katkoviiva) moduloi intensiteettiä. 149 N kapeaa rakoa: Tässä pätevin oletuksin saadaan I = I [ sin(nφ/2) ] 2 [ sin(β/2) ] 2 0 (N>1) (75) sin(φ/2) β/2 I I 0 m= 1 m=0 m=+1 Siis kapeat korkeat päämaksimit, joiden välissä N 1 minimiä. Diffraktiohila N 1: (75) päämaksimit samoissa kohdissa kuin N =2:lle ja N:n kasvaessa sivumaksimit vaimenevat näkyvistä. Siten päämaksimeille (kunhan a d λ) pätee (64) sellaisenaan d sin θ = mλ m =0, ±1, ±2,... (76) Terminologiaa: m = ±1 1. kertaluvun viivat jne. θ 150

8 Hilan erotuskyky: Kapeiden piikkien ansiosta hilalla saadaan hajotettua ei-monokromaattinen valo aallonpituuskomponentteihin spektrianalyysi! Erotuskyky R = λ/δλ, missä Δλ on pienin esiin saatava aallonpitusero. Lasketaanpa R: Intensiteettimaksimit: sin θ = mλ/d cos θδθ = mδλ/d Vaihe-ero: φ = 2π(d/λ) sin θ Δφ = 2π(d/λ) cos θδθ Piikin leveys vaiheyksiköissä: Δφ = 2π/N Näistä saamme hilan erotuskyvylle arvion mikä odotetusti paranee N:n kasvaessa. R = λ/δλ = Nm, (77) Huom: Edellä olemme tarkastelleet valoa läpäisevää hilaa. Samat yhtälöt toimivat konstruktion perusteella heijastavallekin hilalle. Esimerkki jälkimmäisestä on heijastus cd-levyn pinnasta Röntgen-sironta kiteestä Tutkitaan sirontaa kidetasoista, joiden välimatka toisistaan on d. Interferenssi on konstruktiivinen, kun matkaero on λ:n monikerta. Pienet kolmiot Braggin ehto: d θ 2d sin θ = mλ (78) Kiinteä kide toimii tässä heijastavana (monikerroksisena) hilana. Sovelluksia: Sironnan intensiteettikuviosta voidaan tunnistaa materiaalin kiderakenteen avaruussymmetria ja määrittää d. Röntgensironnalla voidaan selvittää myös suurten molekyylien rakenne, kun ne on ensin kiteytetty. Huom: Tässä havaintaan makrotasolla (kuvio varjostimella) seuraus mikrotason rakenteesta (raot, kiderakenne). 152

9 36.7 Pyöreän aukon erotuskyky Diffraktio rajoittaa (säde)optisten laitteiden kulmaerotuskykyä. Pyöreälle aukolle (esim. mikroskoopin linssi) saadaan ympyrän muotoinen diffraktiokuvio: 1. intensiteettiminimi tulee kohtaan sin θ λ D, (79) missä D on aukon halkaisija. Tulos on työläs johtaa, mutta varsin lähellä kapean raon destruktiivisen interferenssin ehtoa (70). Resoluutio paranee λ:n pienetessä jad:n kasvaessa. Esim: (radio)teleskooppi ja (elektroni)mikroskooppi Hologrammi Holografiassa tallennetaan esineestä heijastuvan ja suoraan monokromaattisesta lähteestä tulevan aallon interferenssikuvio, oleellisesti siis sekä intensiteetti että vaihe-ero. Vaihe-ero antaa esineen pisteen sijainnin kuvaussuunnassa syvyysvaikutelma X Kurssikirjan ja muita esimerkkejä Example 35.2 (edellisen pääluvun esimerkki) Taajuudella 1500 khz toimiva AM-asema (amplitudimodulaatio) käyttää lähetyksessään kahta 400 m etäisyydellä toisistaan olevaa antennia. Kaukana lähettimestä, missä suunnassa havaitaan suurin ja pienin intensiteetti? Ratkaisu: Nyt λ = c/f = 200 m. Yhtälöstä (64) intensiteettimaksimit ovat siten suunnissa sin θ = m/2 eli θ =0, ±30, ±90 asteen kulmissa vastaten m:n arvoja m = 0, ±1, ±2. Intensiteettiminimit taasen ovat näiden välissä eli yhtälöstä (65) θ = ±14.5, ±48.6 asteen kulmissa vastaten siinä m:n arvoja m =0, ±1, 2. Huomaa (kirjassakin käytetty) hieman epäsymmetrinen notaatio kahden lähteen intensiteettiminimien m-indeksoinnille. Ulos tuleva fysiikka on toki symmetristä, kun lähtötilanne on symmetrinen. 154

10 Example 36.4 Sähkömagneettisen aallonpituusspektrin näkyvän osan rajat ovat suunnilleen 400 (violetti) ja 700 nm (punainen). Olkoon hilassa 600 rakoa millimetrillä ja tuleva valo kohtisuorassa sen tasoa vastaan. Määritä ensimmäisen kertaluvun maksimien alue kulmayksiköissä. Entä menevätkö ensimmäisen, toisen ja/tai kolmannen kertaluvun spektrit varjostimella päällekkäin? Ratkaisu: Nyt d = 5/3 μm ja yhtälöstä (76) saamme ensimmäisien kertaluvun maksimeille näkyvän spektrin ääripäissä m =1 sin θ vio 0.24 θ vio 14 o m =1 sin θ pun 0.42 θ pun 25 o. Spektrin leveys varjostimella on näiden kahden erotus eli 11 o. Kysyttäessä spektrien päällekkäin menemistä vertaamme sin θ:n arvoja eri kertaluvuissa (toki kulmatkin saa laskea): d sin θ viol =4(m=1), 8(m=2), 12 (m=3) 10 7 m d sin θ pun =7(m=1), 14 (m=2), 21 (m=3) 10 7 m joten 1. ja 2. eivät mene päällekkäin mutta 2. ja 3. menevät. 155 Esim: Kaksi oleellisesti pistemäistä kaiutinta on toisistaan 3.36 m etäisyydellä. Olkoon niistä lähtevän testiäänen taajuus 400 Hz ja niiden värähtelyjen välillä vaihe-ero siten, että toinen kaiutin on 1/6 jaksoa edellä toista kaiutinta. Äänen nopeus on 330 m/s. Kuulija on kaukana kaiuttimista. Sopivin oletuksin (ei kaikuja jne) ja mitattuna kaiutinten välisen keskiviivan suhteen, missä kulmissa kuulija ei kuulisi pihaustakaan? Ratkaisu: Lähteillä on 1/6 jakson vaihe-ero, joten saamme ehdot d sin θ ± =(m +1/2 ± 1/6)λ, missä d =3.36 m ja λ =0.825 m. Ratkaisuja ovat (m=0,1,...-4): θ + =9.4, 24.2,..., 54.9 astetta θ =4.7, 19.1,..., 64.2 astetta Arvolla m =+4jakun m > 4 ei ratkaisuja. THE END 156

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

35 VALON INTERFERENSSI (Interference)

35 VALON INTERFERENSSI (Interference) 13 35 VALON INTERFERENSSI (Interference) Edellisissä kappaleissa tutkimme valon heijastumista ja taittumista peileissä ja linsseissä geometrisen optiikan approksimaation avulla. Approksimaatiossa aallonpituutta

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

Työn tavoitteita. 1 Johdanto

Työn tavoitteita. 1 Johdanto FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat

Lisätiedot

34. Geometrista optiikkaa

34. Geometrista optiikkaa 34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE

INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE Johdanto Työ hahmottaa fysiikan ominaisuutta ennustaa ja selittää ihmisen arkiympäristössä tapahtuvia havaintoja neste- ja kaasufaasien välissä olevia ohuita

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t. Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

24AB. Lasertutkimus ja spektrianalyysi

24AB. Lasertutkimus ja spektrianalyysi TURUN AMMATTIKORKAKOULU TYÖOHJ 1/7 24AB. Lasertutkimus ja spektrianalyysi 1. Työn tarkoitus Lasereilla on runsaasti käytännön sovelluksia esimerkiksi tiedonsiirrossa, aineiden analysoinnissa ja työstämisessä

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12

Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Sirpa Pöyhönen ja Taisto Herlevi Ryhmä E4 Ohj. Ari Hämäläinen HY 30.11.2001 1 Sisällysluettelo 1. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...3

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ 25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää

Lisätiedot

1. Kokeellisen leirin tehtävä 1

1. Kokeellisen leirin tehtävä 1 Tämä on ensimmäinen valmennuskirje jonka tehtävät tulee palauttaa postitse minulle viimeistään ma 21.2.2011 mennessä. Ensimmäiset kolme tehtävää liittyvät maaliskuun kokeellisen leirin työskentelyyn joten

Lisätiedot

Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio

Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio Vinokulmainen kolmio Hannu Lehto Lahden Lyseon lukio Yksikköympyrä ja suunnattu kulma Yksikköympyrä 1 y 0 x -1-1 0 1 Hannu Lehto 18. maaliskuuta 2008 Lahden Lyseon lukio 2 / 8 Yksikköympyrä ja suunnattu

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Optiikkaa. () 10. syyskuuta 2008 1 / 66

Optiikkaa. () 10. syyskuuta 2008 1 / 66 Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz. 3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin

Lisätiedot

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo)

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Fysiikan kotityöt Fy 3. (4.03.006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Pieni kevennys tähän alkuun: Kuvalähteet: http://www.hotquanta.com/twinrgb.jpg http://www.visi.com/~reuteler/vinci/world.jpg

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

AALTOLIIKEOPPIA FYSIIKASSA

AALTOLIIKEOPPIA FYSIIKASSA 1 AALTOLIIKEOPPIA FYSIIKASSA Miten aallot käyttäytyvät väliaineissa & esteissä? Mitä ovat Maxwellin yhtälöt? HUYGENSIN PERIAATE 2 Aaltoa voidaan pitää jokaisesta aallon jo läpäisemästä väliaineen pisteestä

Lisätiedot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot

YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot 1. Selosta lyhyesti, mihin fysikaalisiin ilmiöihin perustuvat a) polaroivien aurinkolasien häikäisyä vähentävä vaikutus, b) veden pinnalla olevassa ohuessa öljykalvossa

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten aaltojen energia ja liikemäärä Seisovat sähkömagneettiset aallot

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23.

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Sanaa akustiikka

Lisätiedot

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.

Lisätiedot

Lineaarialgebra MATH.1040 / trigonometriaa

Lineaarialgebra MATH.1040 / trigonometriaa Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

ÄÄNEN JA VALON NOPEUS ILMASSA

ÄÄNEN JA VALON NOPEUS ILMASSA Fysiikan laboratoriotyöt 1 ÄÄNEN JA VALON NOPEUS ILMASSA 1. Työn tavoitteet Ääni on väliaineessa etenevää pitkittäistä mekaanista aaltoliikettä. Äänen etenemistä voidaan kuvata tarkastelemalla joko aallon

Lisätiedot