ELEC-A4130 Sähkö ja magnetismi (5 op)

Koko: px
Aloita esitys sivulta:

Download "ELEC-A4130 Sähkö ja magnetismi (5 op)"

Transkriptio

1 ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen /IV V

2 Luentoviikko 11 Tavoitteet Geometrinen optiikka Kamerat Silmä Suurennuslasi Optisia kojeita (yleissivistystä) Interferenssi Interferenssi ja koherentit lähteet Kahden lähteen interferenssi Interferenssikuvioiden intensiteetti Lähde: dblslit_long.html, Jeff Wignall Interferenssi ohutkalvoissa Michelsonin interferometri 2 (30)

3 Luentoviikko 11 Tavoitteet Tavoitteena on oppia miten kameran linssin kuvakulma määräytyy mikä aiheuttaa ihmisen näkökyvyn puutteita ja miten puutteita voi korjata miten yksinkertaiset optiset kojeet toimivat mitä tapahtuu, kun kaksi aaltoa yhtyy (interferoi) miten tulkita koherenttien valoaaltojen interferenssikuviota miten interferenssikuvion eri kohtien intensiteetti määritetään miten ohutkalvointerferenssi syntyy miten interferenssiä voi käyttää erittäin pienten etäisyyksien mittaamiseen 3 (30)

4 Geometrinen optiikka (YF 34(5 8)) Kamerat Kamera Kameran osat ovat valotiivis laatikko (lat. camera, kammio) kokoava linssi(stö) himmentimellä säädettävä (valo)aukko suljin, jolla objektiivista päästetään valoa määrätyn ajan valoherkkä tallennusmedia (ilmaisin; filmi tai CCD-kenno) Kun kamera on tarkennettu, linssistön ja himmentimen (yhdessä objektiivin) muodostama todellinen kuva ja ilmaisin osuvat samaan paikkaan = kuva on terävä Positiivisen (kokoavan) linssin tuottama kuva etääntyy linssistä, kun kohde lähestyy linssiä = linssin paikkaa on muutettava erietäisyyksisille kohteille (kamera on tarkennettava uudestaan) 4 (30)

5 Geometrinen optiikka (YF 34(5 8)) Kamerat Kameran linssin polttoväli Polttovälin f valinta riippuu ilmaisimen koosta ja halutusta kuvakulmasta Ilmaisimen koko ei ole muutettavissa ( micro four thirds -CCD-ilmaisimen läpimitta ~22 mm, kinofilmin ~43 mm) Pitkän polttovälin linssillä (teleobjektiivi) kuvakulma on pieni, mutta linssi muodostaa suurikokoisen kuvan kaukaisesta kohteesta Lyhyen polttovälin linssillä (laajakulmaobjektiivi) on suuri kuvakulma, mutta kaukaisen kohteen kuva on pieni 5 (30)

6 Geometrinen optiikka (YF 34(5 8)) Kamerat Aukkoluku Jotta kuva tallentuisi ilmaisimelle oikein, ilmaisimelle pitää päästä sopiva määrä valoenergiaa pinta-alayksikköä kohden (= valotus) Valotusta säädellään sulkimella ja objektiivin himmentimellä (jonka aukon halkaisija olkoon D) Suljin määrää, kuinka kauan ilmaisimelle päästetään valoa Ilmaisimelle tuleva valointensiteetti on verrannollinen linssin kuvakulmaan ( 1/f 2 ) ja aukon teholliseen pinta-alaan ( D 2 ) Tietyn linssin jälkeiselle ilmaisimelle saapuu intensiteetti D 2 /f 2 (= linssin nopeus tai valovoima) Objektiivin valovoimaa ilmaisee f-luku eli aukkoluku f # = f /D f-lukua vastaavaa aukkoa merkitään f / f-luku Aukot muodostavat (vakiintuneen) jonon f /2, f /2.8, f /4, f /5.6, f /8,... Jokainen askel oikealle jonossa = kerroin 1/2 kuvakennolle tulevan valon intensiteetissä = sama valotus (energia) vaatii kaksinkertaisen 1 valotusajan, esim. parit (f /4, 500 s), (f /5.6, s) ja (f /8, 125 s) vastaavat toisiaan valotuksessa (entä muuten?) 6 (30)

7 Geometrinen optiikka (YF 34(5 8)) Silmä Silmä Silmän keskeisimmät osat (vrt. kamera) ja niiden tehtävät ovat sarveiskalvo suurin osa taittovoimakkuudesta värikalvo (iiris) valon määrän säätäminen (himmennin) mykiö tarkentaminen (linssi) sädelihas mykiön polttovälin muuttaminen ( mukauttajalihas ) verkkokalvo kuva-ilmaisin (CCD-kenno) 7 (30)

8 Geometrinen optiikka (YF 34(5 8)) Silmä Näkeminen Akkommodaatio = silmän mukautuminen (tarkentuminen) Sädelihas kiinnittyy mykiöön ripustinsäikeillä Lähelle katsottaessa sädelihas supistuu ja ripustinsäikeet löystyvät, jolloin mykiö vetäytyy kokoon ja taittaa valoa voimakkaammin Kauas katsottaessa mukauttajalihas rentoutuu = säikeet kiristyvät ja pakottavat mykiön litteäksi = taittovoimakkuus vähenee Lähipiste Lyhin etäisyys, jolle silmä voi tarkentaa standardi-ihmisellä 25 cm (lukuetäisyys) Etääntyy iän mukana ( ikänäkö ) = lukulasit Kaukopiste Etäisyys, jonka rentoutunut silmä tarkentaa verkkokalvolle normaalisti ääretön Pitkäaikainen katselu on mukavinta, kun kohde on kaukopisteessä Likinäköisen kaukopiste < 8 (30)

9 Geometrinen optiikka (YF 34(5 8)) Silmä Silmän taittovirheet Likinäköisyys Kaukana oleva kohde kuvautuu verkkokalvon eteen Korjataan negatiivisilla (hajottavilla) linsseillä Linssit muodostavat kaukaisesta kohteesta virtuaalisen kuvan likinäköisen silmän kaukopisteeseen Lähellä olevat kohteet nähdään silmän mukautuessa Kaukonäköisyys Lähellä oleva kohde kuvautuu verkkokalvon taakse Korjataan positiivisilla (kokoavilla) linsseillä Linssit siirtävät lähellä olevan kohteen virtuaalisen kuvan ko. silmän lähipisteeseen, johon silmä mukautuu katsomaan Kaukana oleva kohde näkyy, kun mukautumista vähennetään Hajataitteisuus Sarveiskalvon pinta ei ole pallomainen = kaarevuussäteet ovat erilaiset eri suunnissa Silmä esim. kuvaa vaakasuorat kohteet oikein verkkokalvolle mutta pystysuorat sen eteen Korjataan sylinterimäisillä linsseillä 9 (30)

10 Geometrinen optiikka (YF 34(5 8)) Silmä Näkökyvyn korjaaminen Näkökyvyn korjaamiseen käytettävät linssit ilmaistaan yleensä niiden taittovoimakkuuden avulla Taittovoimakkuuden yksikkö on diopteri D = 1/f, missä polttoväli f ilmoitetaan metreissä Tällöin esim. 2.0 diopterin linssin polttoväli on 0.50 m ja 4.0 diopterin linssin f = 0.25 m Pysyvämpi näkökyvyn korjaus on sarveiskalvon leikkaaminen Esim. LASIK = laser-assisted in situ keratomileusis: toimenpide, jossa UV-laserilla poltetaan sarveiskalvon pinnasta pieniä alueita ja hiotaan sen kaarevuus sellaiseksi, ettei potilas tarvitse enää silmälaseja 10 (30)

11 Geometrinen optiikka (YF 34(5 8)) Suurennuslasi Suurennuslasi Kuvan näennäisen koon määrää kuvan koko verkkokalvolla Ilman korjausta koko riippuu kohteen ääripäiden muodostamasta kulmasta θ = kulmakoko Jotta kohde näyttäisi suuremmalta, se tuodaan lähemmäksi silmää kulmakoon kasvattamiseksi arvoon θ Silmä ei kykene mukautumaan, jos kohde on lähempänä kuin lähipiste = yläraja kulmakoolle Suurennuslasi muodostaa lähipistettä lähempänä olevasta kohteesta kuvan äärettömyyteen = silmälle miellyttävintä = Kohde asetettava suurennuslasin polttopisteeseen Kun kohde on kaukaisuudessa, lateraalisuurennus m on ääretön = Mielekkäämpää on puhua kulmasuurennuksesta M = θ θ 11 (30)

12 Suurennuslasi Jatkoa d 0 y θ Silmä θ Silmä f Silmän lähipisteeseen d 0 25cm asetettu kohde näkyy kulmassa θ Suurennuslasin polttopisteeseen asetetun kohteen kuva on äärettömyydessä ja näkyy kulmassa θ ; pienillä kulmilla saadaan θ y d 0, θ y f = M = θ θ = d 0 = d 0 D f Kuvausvirheiden takia yhdellä linssillä maksimikulmasuurennus 4

13 Geometrinen optiikka (YF 34(5 8)) Optisia kojeita (yleissivistystä) Okulaari Itseopiskelua Okulaari on useasta linssistä koostuva suurennuslasi Suurennus Rakenteen takia kuvanlaatu on parempi kuin yhden linssin suurennuslasilla; M = d 0 D = 25cm f Okulaari on osa linssijärjestelmää: viimeinen osa ennen silmää Katsoo edeltävän linssijärjestelmän muodostamaa kuvaa 13 (30)

14 Geometrinen optiikka (YF 34(5 8)) Optisia kojeita (yleissivistystä) Mikroskooppi Itseopiskelua f 1 L f 2 (silmään) Objektiivi Okulaari Mikroskoopilla tarkastellaan pieniä lähikohteita Objektiivi muodostaa kohteesta kuvan, jota tarkastellaan okulaarilla 14 (30)

15 Geometrinen optiikka (YF 34(5 8)) Optisia kojeita (yleissivistystä) Mikroskoopin suurennus Itseopiskelua (tarkastamaton kalvo!) Objektiivin sivuttaissuurennus m 1 = L/f 1 s 1 /f 1 50, missä L on ns. putken pituus; jälkimmäinen approksimaatio pätee, kun kohde on hyvin lähellä objektiivin polttopistettä Useilla valmistajilla L = 160mm Okulaarin kulmasuurennuksesta saadaan kokonaissuurennus M 2 = 250mm f 2 = M = (250mm)L f 1 f 2 (250mm)s 1 f 1 f (mitat millimetreinä!) 15 (30)

16 Teleskoopin toimintaperiaate Itseopiskelua (tarkastamaton kalvo!) d = f 1 + f 2 f 1 f 2 Teleskoopilla katsellaan kaukaisia kohteita Objektiivi muodostaa pienennetyn kuvan, jota tarkastellaan okulaarilla Kuva muodostuu objektiivin polttopisteeseen Teleskoopissa objektiivin ja okulaarin polttopisteet ovat samassa pisteessä d = f 1 + f 2 Kulmasuurennus M = θ θ = f 1 f 2

17 Interferenssi (YF 35) Interferenssi ja koherentit lähteet Interferenssi kahdessa tai kolmessa dimensiossa Interferenssi viittaa tilanteeseen, jossa avaruudessa on useita aaltoja päällekkäin tilanteen tarkastelu on fysikaalista optiikkaa Superpositioperiaatteen mukaisesti aaltojen poikkeamat (displacement: amplitudi tai kenttävektori) voidaan laskea yhteen joka pisteessä joka hetki (mahdollista lineaarisessa väliaineessa) Interferenssi-ilmiöt erottuvat parhaiten yhdistämällä yksitaajuisia (monokromaattisia) sininmuotoisia aaltoja (tarkastellaan kahta skalaarista lähdettä S 1 ja S 2 ): A = A 1 cos(k 1 r 1 ω 1 t + δ 1 ) + A 2 cos(k 2 r 2 ω 2 t + δ 2 ) b c S 1 S 2 a 17 (30)

18 Interferenssi (YF 35) Interferenssi ja koherentit lähteet Koherentit lähteet Jos kahden yksitaajuisen sininmuotoisen lähteen taajuus on sama ja vaihe-ero on vakio (ω 1 = ω 2, δ 2 δ 1 = vakio) lähteet ovat koherentteja ( vaihe?) tällaisen lähdeparin synnyttämät aallot ovat koherentteja Ääni- ja radiotekniikassa koherentteja lähteitä on helppo toteuttaa Valo muodostuu atomien (lämpöliikkeestä johtuvien) viritysten purkautumisesta Purkautumisen kesto tyypillisesti 10 8 s Purkaukset ovat riippumattomia toisistaan = epäkoherentti ja ei-monokromaattinen valo; aurinko ja lamput lähettävät purskeista valoa (ilmassa purske on muutaman mikrometrin pituinen [= koherenssipituus]) Laserissa viritysten purkautumiset riippuvat toisistaan = koherentti (eli väistämättä monokromaattinen) valo (kun yksittäiset atomit ovat lähteitä, joiden valon koherenttisuutta verrataan) 18 (30)

19 Interferenssi ja matkaero Sininmuotoiset samanamplitudiset (!) lähteet b c r 1 = 4λ r 2 = 2λ S 1 S 2 a Vahvistava interferenssi, kun aallot ovat samanvaiheiset (esim. a, b): k 2 r 2 ω 2 t + δ 2 = k 1 r 1 ω 1 t + δ 1 + 2πm, m = 0,±1,±2,... Sammuttava interferenssi, kun aallot ovat vastakkaisvaiheiset (esim. c): k 2 r 2 ω 2 t + δ 2 = k 1 r 1 ω 1 t + δ 1 + 2π ( m ), m = 0,±1,±2,...

20 Interferenssi (YF 35) Interferenssi ja koherentit lähteet Interferenssiehdot Oletus: lähteet ovat identtisiä eli amplitudit ovat samat lähteiden taajuus ω on sama miksi? aaltojen aallonpituus λ = 2π/k on sama lähteiden alkuvaihe δ on sama (eli lähteet ovat samanvaiheiset) aaltojen polarisaatio on samansuuntainen (jottei tarvita vektorisummausta) Lähteet ovat siis koherentit Edellisen kalvon interferenssiehdot saavat muodon: r 2 r 1 = mλ, m = 0,±1,±2,... vahvistava eli konstruktiivinen i. ( r 2 r 1 = m + 1 ) λ, m = 0,±1,±2,... sammuttava eli destruktiivinen i. 2 Huomaa rajoitukset, joilla ehdot pätevät! 20 (30)

21 Interferenssi (YF 35) Kahden lähteen interferenssi Youngin kaksoisrakokoe (1800) Valaistaan rakoa S 0 yksivärisellä valolla Raosta lähtevät (alkeis)aallot osuvat rakoihin S 1 ja S 2 S 1 ja S 2 ovat koherentteja valonlähteitä = interferenssikuvio (interferenssijuovia) varjostimella S 0 S 1 S 2 21 (30)

22 Interferenssi (YF 35) Kahden lähteen interferenssi Kaksoisraon interferenssiehdot Lähettimet samassa vaiheessa Aaltojen matkaero = vaihe-ero dsinθ R r 2 r 1 dsinθ, kun r 1,r 2,R d Vahvistava interferenssi, kun d θ r 2 θ y dsinθ = mλ, m = 0,±1,±2,... r 1 P Sammuttava interferenssi, kun ( dsinθ = m + 1 ) λ, m = 0,±1,±2, (30)

23 Interferenssi (YF 35) Kahden lähteen interferenssi Kaksoisraon interferenssiehdot Jatkoa Maksimikohtien sijainnit varjostimella: y m = Rtanθ m Pienillä kulmilla tanθ sinθ, joten saadaan Youngin kaksoisrakokokeen interferenssimaksimien paikat: d θ dsinθ R r 2 θ y y m Rsinθ m = y m R mλ d r 1 P 23 (30)

24 Interferenssi (YF 35) Interferenssikuvioiden intensiteetti Kahden lähteen interferenssin intensiteetti Lähteiden S 1 ja S 2 interferenssin amplitudi pisteessä P: E 1 = Ecos(ωt + φ), E 2 = Ecosωt = E(t) = E 1 + E 2, missä φ = aaltojen vaihe-ero P:ssä Kompleksiluvuilla (i 2 = 1, e ix = cosx + isinx) { ( E(t) = Re e iωt Ee iφ +Ee 0)} = Re {Ee ( iωt e iφ/2 e iφ/2 +e +iφ/2)} { = Re Ee i(ωt+φ/2) ( 2cos(φ/2) )} = 2Ecos(φ/2)cos(ωt + φ/2), joten kahden lähteen summakentän amplitudi Intensiteetti I = S av = 1 2 ɛ 0cE 2 P = 4 2 ɛ 0cE 2 cos 2 ( φ/2 ) E P = 2Ecos(φ/2) Maksimi, kun φ = 0: I = I 0 cos 2 φ 2, missä I 0 = 2ɛ 0 ce 2 24 (30)

25 Interferenssi (YF 35) Interferenssikuvioiden intensiteetti Vaihe-eron ja matkaeron yhteys Aaltojen vaihe- ja matkaerolla on yhteys φ 2π = r 2 r 1 λ = φ = 2π λ (r 2 r 1 ) = k(r 2 r 1 ) Jos d R, r 2 r 1 dsinθ = φ = 2πd λ sinθ Tällöin intensiteetti I = I 0 cos 2 φ ( ) πd 2 = I 0 cos 2 λ sinθ Jos vielä varjostin on kaukana raoista, y R ja sinθ y/r = I = I 0 cos 2 ( πyd λr y/r = tanθ Kaksoisrakointerferenssi, d = 10λ -0.5 ) I/I0 25 (30)

26 Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Heijastuskerroin Tutkitaan heijastusta ja interferenssiä, kun valo osuu ohueen kalvoon (esim. öljyläikkä veden pinnalla tai saippuakupla) [miksei paksu kalvo?] 1 2 e n a Kalvon paksuus t n b g n c Fresnelin kertoimet (vrt. luentoviikko 10) kertovat, kuinka suuri osa tulevasta (i) kentästä heijastuu (r) ja läpäisee (t) rajapinnan Kohtisuoralle heijastukselle heijastuskerroin Γ = E r = n i n t E i n i + n t (n i on tulopuolen taitekerroin ja n t läpäisypuolen) 26 (30)

27 Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Vaihesiirto 1 2 e n a Kalvon paksuus t n b g n c Heijastuskertoimesta seuraa π:n vaihesiirto heijastuneen ja tulevan säteen välille, jos n t > n i ; esim. säde 1: n b > n a = E r = n a n b n a + n E i cos(kx ωt) = Γ E i cos(kx ωt + π) b (tapahtuuko säteelle 2 pisteessä (g) vaihesiirtoa?) 27 (30)

28 Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Matkaero 1 2 e n a Kalvon paksuus t n b g n c Heijastuksessa pisteessä (e) säteelle 1 syntyy vaihesiirto φ 1 = π ja levyn sisällä säteen 2 vaihe muuttuu kulmalla φ 2, joten säteiden 1 ja 2 vaihe-ero δ kohtisuorassa heijastuksessa on δ = φ 2 φ 1 = 2π λ (r 2 r 1 ) π, kun λ on aallonpituus levyssä Matkaero r 2 r 1 2t = δ = 2t 2π λ π Huomaa: Vaihesiirto syntyy siinä heijastuksessa, jossa n t > n i 28 (30)

29 Interferenssi (YF 35) Interferenssi ohutkalvoissa Interferenssi ohutkalvossa Interferenssiehdot Säteiden 1 ja 2 välillä on vahvistava interferenssi, kun (n = n b, n a = n c = 1; λ 0 on aallonpituus ilmassa) δ = 2πm = δ = 2t 2πn π = 2πm = 4nt λ 0 1 = 2m = 2t = λ 0 n λ 0 ( m ), m = 0,1,2,... Sammuttava interferenssi, kun δ = (2m 1)π: 2t = mλ 0 n, m = 1,2,... Huomaa, että nämä tulokset pätevät ainoastaan systeemille, jossa on suhteellinen puolen aallon vaihesiirto (esim. ilma lasi ilma) muille tapauksille ne pitää johtaa erikseen Laskuissa on oltava tarkkana, syntyykö jossain suhteellinen puolen aallon vaihesiirto 29 (30)

30 Interferenssi (YF 35) Michelsonin interferometri Michelsonin interferometri Tärkeä interferenssin sovellus Kun peiliä siirretään matka y, ilmaisimen yli pyyhkäisee interferenssijuovamäärä m ja voidaan laskea y tai säteen aallonpituus λ: Liikuteltava peili Tuleva valo Säteenjakaja Kiinteä peili y = m λ 2y tai λ = 2 m Ilmaisin Interferenssijuovista voidaan myös määrittää esim. tuntemattoman kaasun taitekerroin 30 (30)

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 11 Tavoitteet Geometrinen optiikka Kamerat Silmä

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Geometrinen optiikka (YF 34) Heijastuminen

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 11 Interferenssi (YF 35) Interferenssi ja koherentit

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

8.3 KAMERAT Neulanreikäkamera

8.3 KAMERAT Neulanreikäkamera 88 Analysoitava valo tulee vasemmalta. Se okusoidaan kapeaan rakoon S (tulorako), josta se kollimoidaan linssillä L yhdensuuntaiseksi sädekimpuksi. Rako S on siis linssin polttovälin päässä linssistä.

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

35 VALON INTERFERENSSI (Interference)

35 VALON INTERFERENSSI (Interference) 13 35 VALON INTERFERENSSI (Interference) Edellisissä kappaleissa tutkimme valon heijastumista ja taittumista peileissä ja linsseissä geometrisen optiikan approksimaation avulla. Approksimaatiossa aallonpituutta

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

34. Geometrista optiikkaa

34. Geometrista optiikkaa 34. Geometrista optiikkaa 34. Kuvan muodostuminen 2 Lähtökohta: Pistemäisestä esineestä valonsäteet lähtevät kaikkiin suuntiin. P P 3 s s Arkihavainto: Tasopeili muodostaa kuvan heijastamalla esineen pisteistä

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio

Lisätiedot

Valo, valonsäde, väri

Valo, valonsäde, väri Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Valo, valonsäde, väri Näkeminen, valonlähteet Pimeässä ei ole valoa, eikä pimeässä näe. Näkeminen perustuu esineiden lähettämään valoon,

Lisätiedot

35. Kahden aallon interferenssi

35. Kahden aallon interferenssi 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Optiikka. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Optiikka Helsingin yliopisto, Fysiikan laitos kevät 2013 5. Optiikka Geometrinen optiikka Peilit ja linssit Perussuureita Kuvausvirheet Aalto-optiikka Optiikan suunnittelu 5.1 Geometrinen optiikka Klassinen

Lisätiedot

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6 FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I PHYS-A140 Aineen rakenne C34 1. Monokromaattinen valo kulkee kaden vierekkäisen raon läpi. Rakojen takana olevalla varjostimella avaitaan valoisia ja mustia juovia. Rakojen välimatka d on samaa suuruusluokkaa

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5 5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka

Lisätiedot

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 36 Diffraktio PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Ääni kuuluu helposti nurkan taakse Myös valo voi taipua

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta

Lisätiedot

2 paq / l = p, josta suuntakulma q voidaan ratkaista

2 paq / l = p, josta suuntakulma q voidaan ratkaista 33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?

Lisätiedot

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ 25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää

Lisätiedot

34 GEOMETRINEN OPTIIKKA (Geometric Optics)

34 GEOMETRINEN OPTIIKKA (Geometric Optics) 90 34 GEOMETRINEN OPTIIKKA (Geometric Optics) Omat kasvot kylpyhuoneen peilissä, kuu kaukoputken läpi katsottuna, kaleidoskoopin kuviot. Kaikki nämä ovat esimerkkejä optisista kuvista (images). Kuva muodostuu,

Lisätiedot

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3. 135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

7 VALON DIFFRAKTIO JA POLARISAATIO

7 VALON DIFFRAKTIO JA POLARISAATIO 7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä

Lisätiedot

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n 141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten aaltojen energia ja liikemäärä Seisovat sähkömagneettiset aallot

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen

Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy

Lisätiedot

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2.

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2. 766349A AALTOLIIKE JA OPTIIKKA kl 017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.. 1. Mitkä funktioista a) y( x, t) ( x t) b) y( z, t) 5sin [4 ( t z)] ja c) y( x, t) 1/( x t) etenevät muotonsa säilyttäen

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 10 Tavoitteet Valon luonne ja eteneminen Valon sironta Huygensin periaate Kenttien rajapintaehdot Rajapintaehdot Fresnelin

Lisätiedot

Kuva 1. Michelsonin interferometrin periaate.

Kuva 1. Michelsonin interferometrin periaate. INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Michelsonin interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästä peilistä, kahdesta tasopeilistä ja varjostimesta.

Lisätiedot

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V.

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V. VALON DIFFRAKTIO 1 Johdanto Tässä laboratoriotyössä havainnollistetaan diffraktiota ja interferenssiä valaisemalla kapeita rakoja laservalolla ja tarkastelemalla rakojen takana olevalle varjostimelle syntyviä

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

Työn tavoitteita. 1 Johdanto

Työn tavoitteita. 1 Johdanto FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

a ' ExW:n halkaisija/2 5/ 2 3

a ' ExW:n halkaisija/2 5/ 2 3 79 ------------------------------------------------- Esimerkki: Sama systeemi kuin edellä. a) Määritä kenttäkaihdin sekä tulo- ja lähtöikkunat. b) Piirrä äärimmäisten pääsäteiden kartio systeemin läpi.

Lisätiedot

Fysiikan perusteet 3 Optiikka

Fysiikan perusteet 3 Optiikka Fysiikan perusteet 3 Optiikka Petri Välisuo petri.valisuo@uva.fi 27. tammikuuta 2014 1 FYSI.1040 Fysiikan perusteet III / Optiikka 2 / 37 Sisältö 1 Heijastuminen ja taittuminen 4 1.1 Joitain hyödyllisiä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

Fysiikan valintakoe klo 9-12

Fysiikan valintakoe klo 9-12 Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA 73 DFFAKTO Optisella alueella valon aallonpituus on hyvin lyhyt ( 5 cm). Valoa voidaan hyvin kuvata geometrisen optiikan approksimaatiolla ( ), jossa siis valoenergia etenee säteinä tai aaltorintamina.

Lisätiedot

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

ReLEx smile Minimaalisesti kajoava näönkorjaus - Tietoa potilaalle

ReLEx smile Minimaalisesti kajoava näönkorjaus - Tietoa potilaalle ReLEx smile Minimaalisesti kajoava näönkorjaus - Tietoa potilaalle 2 Näkeminen on elämistä Silmät ovat tärkein aistielimemme. Aivot saavat 80 % käsiteltävistä tiedoistaan näköaistin kautta. Silmät ovat

Lisätiedot

Valokuvauksen opintopiiri

Valokuvauksen opintopiiri Valokuvauksen opintopiiri Valokuvaus on maalaamista valolla kameraa käyttäen. (tuntematon ajattelija) Valokuvaus on menetelmä, jossa valokuvia talletetaan valoherkälle materiaalille kameran avulla. Perinteisessä

Lisätiedot

Esimerkki - Näkymätön kuu

Esimerkki - Näkymätön kuu Inversio-ongelmat Inversio = käänteinen, päinvastainen Inversio-ongelmilla tarkoitetaan (suoran) ongelman ratkaisua takaperin. Arkipäiväisiä inversio-ongelmia ovat mm. lääketieteellinen röntgentomografia

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

5.3 FERMAT'N PERIAATE

5.3 FERMAT'N PERIAATE 119 5.3 FERMAT'N PERIAATE Fermat'n periaatteen mukaan valo kulkee kahden pisteen välisen matkan siten, että aikaa kuluu mahdollisimman vähän, ts. ajalla on ääriarvo (minimi). Myös Fermat'n periaatteesta

Lisätiedot

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50:

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: 173 ------------------------------------------------Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: Kaarevuussäteet R1 3 cm ja R. Systeemimatriisi on M R T R1,

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Optiikkaa. () 10. syyskuuta 2008 1 / 66

Optiikkaa. () 10. syyskuuta 2008 1 / 66 Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 9 Valon luonne ja eteneminen (YF 33) Valon

Lisätiedot

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò, 9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot