Talousmatematiikka (4 op)

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikka (4 op)"

Transkriptio

1 Talousmatematiikka (4 op) M. Nuortio, T. Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012

2 Talousmatematiikka 2012 Yhteystiedot: Matti Nuortio Työhuone M225 Kurssin kotisivu Tulee yliopiston wiki-sivuille. Osoite päivitetään myöhemmin. Luennot salissa L10, paitsi 1.2. ja 8.2. PR104. Laskupäivät: ti to Salit ilmoitetaan, kun tilojen varaustilanne selviää. Laskupäivävastaava on Niina Korteslahti 2 / 118

3 Tarkennuksia kurssimateriaalista Alkuperäisen materiaalin on laatinut Tero Vedenjuoksu. Vuoden 2012 materiaalin toimittanut Matti Nuortio. Toimitettua materiaalia saatetaan päivittää kurssin aikana. Päivitetyt versiot julkaistaan kurssin kotisivuilla. Kurssin kotisivuilla voidaan esittää linkkejä lisämateriaaliin. 3 / 118

4 Kurssin suoritus Kurssi suoritetaan loppukokeella. Ensimmäinen loppukoemahdollisuus tulee olemaan huhti toukokuussa. Kurssin suorittamiseksi riittää osata ne asiat, jotka käsitellään luennoilla, joista erikseen mainitaan luennoilla, tai joita harjoitellaan laskupäivissä. Ylimääräiset materiaalit eivät ole välttämättömiä, ellei erikseen mainita. Pyri opiskelemaan säännöllisesti koko kurssin keston ajan. Älä yritä parin viikon tärppimistä ennen loppukoetta. 4 / 118

5 Sisältö I FINANSSIMATEMATIIKKA 1 Prosenttilaskua 2 Yksinkertainen korkolasku 3 Diskonttaus 4 Koronkorko 5 Jatkuva korkolasku 6 Jaksolliset suoritukset 7 Luotot ja korkolasku 8 Annuiteettiperiaate 9 Lainan kuolettaminen ja efektiivinen korkokanta 10 Keskimaksuhetki ja Todellinen vuosikorko 11 Investointilaskelmia 5 / 118

6 Sisältö II INDEKSITEORIA 1 Keskiarvoista 2 Indeksiluvun käsite 3 Kuluttajahintaindeksi 4 Aikasarjan deflatointi ja inflatointi 5 Indeksiluvun muodostaminen 6 Keskilukumalli 7 Keskilukumallin painotetut indeksiluvut 8 Kokonaislukumallit 9 Keskilukumallin ja kokonaislukumallin yhteys 10 Fisherin indeksikriteerit 6 / 118

7 Opiskelussa huomioitavaa 1 Huomio a) Älä opettele kaavoja ulkoa. b) Yritä ymmärtää kaavat symbolisella tasolla, ei numeerisella tasolla. c) Yritä liittää esitetty teoria/kaava tarvittaessa esimerkkeihin. d) Kysy tarvittaessa! e) Tee harjoitustehtäviä! Hyödynnä laskupäivät! f) Kertaa symboleilla laskeminen eli algebra ja yksinkertaisten yhtälöiden ratkaiseminen. Muistele myös juuren ja logaritmin käsitteitä. 7 / 118

8 Opiskelussa huomioitavaa 2 Suurin osa ihmisistä oppii matematiikkaa vain itse kirjoittamalla ja tekemällä. Yritä siis tehdä aktiivisesti luentomuistiinpanoja ja ratkaise laskuharjoitukset itse kopioinnin sijaan. Ihmisten kognitiivisissa rakenteissa on kuitenkin eroja ja jotkut pystyvät oppimaan myös katselemalla tai kuuntelemalla. Tärkeintä on tuntea oma paras oppimistapa hyötyineen ja rajoituksineen. Kehotan joka tapauksessa aktiivisuuteen luennoilla tai muuten materiaalin parissa. 8 / 118

9 Kysymyksiä joihin osataan pian vastata Kysymyksiä a) Miten selvittää talletettavan rahamäärän suuruus kun halutaan säästää tietty summa esimerkiksi 5 vuodessa? b) Kuinka lasketaan lainan kuukausierän suuruus kun laina-aikana on 20 vuotta? c) Kuinka paljon laina/luotto oikeasti maksaa? d) Miten tutkia investoinnin kannattavuutta? e) Miten rahan arvon muutoksia seurataan? f) Miten seurata erilaisten hyödykkeiden kulutuksen muutoksia? 9 / 118

10 Prosenttilaskua Jos luku a kasvaa p%, niin uusi arvo on a + p 100 a. Jos luku a vähenee p%, niin uusi arvo on a p 100 a. 10 / 118

11 Prosenttilaskua Esimerkki 1 Paljonko on 1500 e maksava tuote 15% alennusmyynnissä? 1500 e e = 1275 e (= 0, e) / 118

12 Prosenttilaskua Montako prosenttia luku a on luvusta b? p = a b 100% 12 / 118

13 Prosenttilaskua Esimerkki 2 Montako prosenttia luku a on luvusta b? a) a = 15, b = 90 b) a = 90, b = 15 a) b) % = 16, 7% (= 0, , 167) % = 600% (= 6, 00) / 118

14 Prosenttilaskua Kuinka monta prosenttia p luku a on suurempi (pienempi) kuin luku b? p = a b b 100% 14 / 118

15 Prosenttilaskua Esimerkki 3 a) Kuinka monta % luku 160 on suurempi kuin 20? b) Kuinka monta % luku 25 on pienempi kuin 175? c) Kuinka monta % luku 20 on pienempi kuin 160? a) = 7 Vast. 700% b) c) = 0, 857 Vast. 85, 7% = 0, 875 Vast. 87, 5% 15 / 118

16 Prosenttilaskua Esimerkki 4 a) Mistä luvusta 24 on 32%? b) Mitä lukua 80 on 20% pienempi? c) Mikä luku on 15 % suurempi kuin 50? d) Mikä luku on 10% pienempi kuin 30? e) Mikä luku on 32% luvusta 24? a) 24 x = 0, 32 0, 32x = 24 x = 24 0, 32 = / 118

17 Prosenttilaskua b) (Mitä lukua 80 on 20% pienempi?) x 80 x = 0, 2 0, 2x = x 80 0, 8x = 80 x = 100 c) (Mikä luku on 15 % suurempi kuin 50?) x = 0, 15 x 50 = 7, 5 x = 57, 5 d) (Mikä luku on 10% pienempi kuin 30?) 30 x 30 = 0, 1 30 x = 3 x = / 118

18 Prosenttilaskua e) (Mikä luku on 32% luvusta 24?) x = 0, 32 x = 24 0, 32 = 7, / 118

19 Yksinkertainen korkolasku Korko on korvaus lainaksi saadusta/annetusta rahapääomasta (esim. luotto tai talletus). Korkokanta i on prosenttiluku, joka ilmoittaa kuinka prosenttia (%) pääoma kasvaa korkojakson aikana. Korkojakso Korkokanta 1 vuosi i pa. (per annum) 6 kk i ps. (per semester) 3 kk i pq. (per quartal) 1 kk, 2 kk i per (1) kk, i per 2 kk 19 / 118

20 Yksinkertainen korkolasku Yksinkertaista korkolaskua sovelletaan ainoastaan yhden korkojakson sisällä. Yksinkertainen korko Pääoma ajanhetkellä t (0 t 1) on K t = K 0 (1 + it), (1) missä K 0 = alkupääoma(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Korko ajanhetkellä t on K t K 0 = K 0 it. 20 / 118

21 Yksinkertainen korkolasku Kysymys Korko on siis suoraan verrannollinen kuluneeseen aikaan korkojakson sisällä, koska missä c = K 0 i =vakio. K 0 it = ct, Pääoman kasvu on siis lineaarista korkojakson sisällä. (vrt. kuva) Mitä tapahtuu korkojakson lopussa? Vastaus Korkojakson lopussa korko liitetään pääomaan eli realisoidaan. Uusi kasvanut pääoma toimii seuraavan korkojakson alkupääomana. 21 / 118

22 Yksinkertainen korkolasku Yksinkertaista korkolaskua käyttävät esim. pankit (korko talletuksille). Prolongointi: pääomaa siirretään ajassa eteenpäin. Esimerkki 5 Talletetaan e korkokannalla 6% pa. Määrää talletuksen arvo a) vuoden b) 8 kk:n c) 16 kk:n kuluttua? d) 16 kk:n kuluttua, ilman että korko realisoidaan pääomaan aina korkojakson lopussa. a) K 0 = e i = 0, 06pa t = 1 ( korkojakson pituus 1 vuosi) K t = K 0 (1 + it) = e (1 + 0, 06 1) = e 1, 06 = e 22 / 118

23 Yksinkertainen korkolasku b) (aika 8 kk) K 0 = e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = 8 12 K t = K 0 (1 + it) = e (1 + 0, 06 = e 8 12 ) 23 / 118

24 Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) K 0 = e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) Nyt aika menee korkojakson yli, joten joudutaan laskemaan osissa: K 1 = e (1 + 0, 06 1) = e Realisoidaan korko pääomaan, jolloin K 2 = e (1 + 0, ) = e 24 / 118

25 Yksinkertainen korkolasku c) (aika 16kk = 1v + 4kk) Lasketaan ilman, että realisoidaan pääomaa. K 0 = e i = 0, 06pa ( korkojakson pituus 1 vuosi eli 12 kk) t = K t = e (1 + 0, ) = e Huom. 30 e erotus c) kohtaan verrattuna. (Miksi?) 25 / 118

26 Yksinkertainen korkolasku Esimerkki 6 Mikä on alkupääoman e arvo 10 kk kuluttua, kun korkokantana on a) 8% pa. b) 5% ps.? c) 5% ps. (ilman koron realisointia pääomaan)? a) Korkojaksona 12 kk, joten 10 kk kuluttua pääoman arvo on K t = K 0 (1 + it) = e(1 + 0, ) = e b) Korkojaksona 6 kk (< 10kk), joten lasketaan osissa: 0 6 kk : K 1 = e(1 + 0, 05 1) = e 6 10 kk : K t = e(1 + 0, ) = e 26 / 118

27 Yksinkertainen korkolasku c) Korkojaksona 6 kk eikä realisoida korkoa pääomaan K t = K 0 (1 + it) = e(1 + 0, ) = e Huom. 30 e erotus b) kohtaan verrattuna. 27 / 118

28 Yksinkertainen korkolasku Esimerkki 7 Mikä korkokanta i% pa. vastaa pääoman 7 % kasvua 3 kuukaudessa? Nyt K 0 = alkupääoma, korkojakso = 12kk ja t = 3 12 = 1 4. K 0 (1 + i 1 4 ) = 1, 07 K i 1 4 = i = = = 28% 28 / 118

29 Yksinkertainen korkolasku Esimerkki 8 Missä ajassa pääoma kasvaa 8%, kun korkokanta on a) 10% pa. b) 5% ps.? a) Korkojakson pituus 12 kk. K 0 (1 + 0, 1t) = 1, 08 K , 1t = 1, 08 0, 1t = 0, 08 0, 08 t = 0, 1 = 0, 8 Siis kysytty aika on 0, 8 12kk = 9, 6kk. 29 / 118

30 Yksinkertainen korkolasku b) Nyt korkokantana on 5% ps., joten yksi korkojakso ei riitä 8% kasvuun. Pääoman K 0 arvo 1. jakson lopussa: K 1 = K 0 (1 + 0, 05 1) = 1, 05 K 0 Pääoman K 0 arvo 2. jakson hetkellä t: K t = K 1 (1 + 0, 05 t) = 1, 05 (1 + 0, 05t)K 0 Siis onko mahdollista 2. jaksossa, että K t = 1, 08 K 0? 1, 05 (1 + 0, 05t)K 0 = 1, 08 K 0 1, , 05 0, 05t = 1, 08 1, 05 0, 05t = 1, 08 1, 05 0, 03 t = = 0, 571(< 1) 1, 05 0, 05 Kysytty aika: 6kk + 0, 571 6kk 9, 4kk. 30 / 118

31 Diskonttaus Yksinkertaisen korkolaskun kaava yhden korkojakson sisällä ajanhetkellä t (0 t 1) on missä K t = K 0 (1 + it), (2) K 0 = alkupääoma(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Entä jos halutaan määrätä tunnettua (tulevan) ajanhetken t > 0 pääomaa K t vastaava alkupääoman arvo K 0? 31 / 118

32 Diskonttaus Ratkaistaan yhtälöstä (2) K 0, jolloin Virallinen diskonttauskaava K 0 = K t 1 + it. (3) missä K 0 = pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Kuten yksinkertainen korkolasku, myös kaavan (3) mukainen diskonttaus toimii ainoastaan yhden korkojakson sisällä. Diskonttaus on siis toimenpide, missä pääomaa siirretään ajassa taaksepäin. 32 / 118

33 Diskonttaus Kuinka paljon pääoma sitten muuttuu kun t 0? Muutos on tietenkin erotus K 0 K t = K t 1 + it K t ( ) 1 = K t 1 + it 1 ( ) it = K t < it) } {{ } <0 Muutoksen itseisarvo eli diskontto on K t = K 0 K t = K t Vertaa korko K t K 0 = K 0 it. ( it ) 1 + it 33 / 118

34 Diskonttaus Mikä on koron ja diskonton suhde? Diskonton ja koron täytyy tietenkin olla samat. Tarkistetaan: ( ) it K t = K t 1 + it ( ) it = (K 0 (1 + it)) 1 + it = K 0 it. Siis prolongointi yksinkertaisella korkolaskulla ja virallinen diskonttaus ovat käänteisiä toimituksia. 34 / 118

35 Diskonttaus Esimerkki 9 Mikä rahasumma kasvaa 9 kuukaudessa korkokannalla 8% pa. arvoon e? Nyt K t = e ja korkojakso on 12 kk, joten t = 9 12 = 3 4. Lisäksi K t = K 0 (1 + it), joten K 0 = K t 1 + it = e 1 + 0, = e 1, 06 = e 35 / 118

36 Diskonttaus Esimerkki 10 Mikä rahasumma kasvaa 15 kuukaudessa korkokannalla 8% pa. arvoon e? Nyt K t = e, korkojakso on 12 kk ja aika on 15 kk, joka menee korkojakson yli. Diskontataan siis osissa: 15kk 12kk K 1 = e 1 + 0, = e 1, 02 = 19607, 84 e 36 / 118

37 Diskonttaus 12kk 0kk 19607, 84 e K 0 = 1 + 0, , 84 e = 1, 08 = 18155, 41 e (Miten voit tarkistaa laskun?) 37 / 118

38 Diskonttaus Virallista diskonttausta käytetään sijoitustodistusten kaupassa. Sijoitustodistus on pankin liikkeelle laskema velkakirja (hinta K 0 ), jonka haltialle pankki maksaa todistukseen mainitun rahan K t ajan t kuluttua. Esimerkki e sijoitustodistus erääntyy 8kk kuluttua. Määrää sen hinta, kun korkokanta on 5% pa. Diskontataan, jolloin K 0 = e 1 + 0, = e 38 / 118

39 Vekselidiskonttaus Vekseleiden yhteydessä käytetään vekseli- eli kauppadiskonttausta. Vekselidiskonttauskaava K 0 = K t (1 it), (4) missä K 0 = vekselin käteis- eli nykyarvo K t = ajan t kuluttua erääntyvän vekselin nimellisarvo i = diskonttauskorkokanta jaksosta kulunut aika t = korkojakson pituus (0 t 1) Vekselidiskontto: K t = K t K 0 = K t K t (1 it) = K t it. 39 / 118

40 Vekselidiskonttaus Esimerkki 12 Vekseli, jonka nimellisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on käteisarvo, kun diskonttauskorkokanta on 12% pa. Käytetään vekselidiskonttausta, jolloin K 0 = 9000 e (1 0, 12 5 ) = 9000 e 450 e = 8550 e / 118

41 Vekselidiskonttaus Esimerkki 13 Mikä on edellisen esimerkin vekselin nykyarvo virallisen diskonttauksen mukaan. Käytetään virallista diskonttausta vekselidiskonttauksen sijaan. Tällöin 9000 e K 0 = 1 + 0, 12 5 = 9000 e 1, 05 = 8571 e / 118

42 Vekselidiskonttaus Esimerkki 14 Vekseli, jonka käteisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on nimellisarvo, kun diskonttauskorkokanta on 12% pa.? Käytetään vekselidiskonttausta, jolloin K t = 9000 e 1 0, = 9473, 68 e 42 / 118

43 Vekselidiskonttaus Esimerkki 15 Vekseli, jonka käteisarvo on 9000 e, erääntyy 5kk kuluttua. Mikä on nimellisarvo, kun diskonttauskorkokanta on 12% pa.? Käytetään vekselidiskonttausta, jolloin K t = 9000 e 1 0, = 9473, 68 e 43 / 118

44 Koronkorko Korkojakson sisällä pääoma kasvaa lineaarisesti yhtälön K t = K 0 (1 + it). Korkojakson lopussa korko realisoidaan pääomaan. Seuraavassa korkojaksossa uusi kasvanut pääoma kasva korkoa kunnes korko jälleen liitetään pääomaan. Näin edellisten korkojaksojen tuottama korko kasvaa korkoa aina seuraavilla jaksolla. Syntyy ns. koronkorko. 44 / 118

45 Koronkorko Oletetaan, että korkojaksoja on n kappaletta ja alkupääoma on K 0. Pääoma 1. korkojakson lopussa: K 1 = K 0 (1 + i). Pääoma 2. korkojakson lopussa: K 2 = K 1 (1 + i) = K 0 (1 + i) 2. Näin jatkamalla saadaan pääoma n. korkojakson lopussa: K n = K n 1 (1 + i) = K n 2 (1 + i) 2 = = K 0 (1 + i) n. Saadaan geometrinen jono (K j ) n j=1, missä K j+1 K j = 1 + i. korkotekijä 45 / 118

46 Koronkorko Koronkorko Pääoma n. korkojakson lopussa on K n = K 0 (1 + i) n, (5) missä K 0 on alkupääoma, i on korkokanta ja n on kokonaisten korkojaksojen lukumäärä. (Huom. Vajaissa korkojaksoissa käytetään yksinkertaista korkolaskua.) 46 / 118

47 Koronkorko Jaksollinen diskonttaus Pääoman arvo alussa on K 0 = K n (1 + i) n, (6) missä K n on pääoman arvo lopussa, i on korkokanta ja n on kokonaisten korkojaksojen lukumäärä. Jaksojen lukumäärä Tästä voidaan selvittää myös jaksojen lukumäärä n: n = Kn ln K 0 ln(1 + i). (7) 47 / 118

48 Koronkorko Esimerkki 16 Mihin arvoon 1000 e kasvaa 6 vuodessa korkokannalla a) 4% pa. b) 2% ps. c) 1% pq. d) kun aika on 6,5 vuotta ja korkokanta 4% pa. a) Nyt i = 4% pa, joten korkojaksoja on yhteensä n = 6 kpl. Siis K 6 = K 0 (1 + i) n = 1000 e 1, 04 6 = 1265 e b) Nyt i = 2% ps, joten korkojaksoja on yhteensä n = 2 6 = 12 kpl. Siis K 12 = 1000 e 1, = 1268 e 48 / 118

49 Koronkorko c) Nyt i = 1% pq, joten korkojaksoja on yhteensä n = 4 6 = 24 kpl. Siis K 24 = 1000 e 1, = 1270 e d) Nyt i = 4% pa ja aika on 6,5 vuotta. Korkojaksoja on yhteensä n = 6 kpl ja yksi puolikas jakso. Nyt K 6,5 = 1000 e 1, 04 6,5 = 1290, 38 e Oliko tämä laskettu oikein? Ei sillä kaava (6) toimii ainoastaan kokonaisilla korkojaksoilla. Lasketaan tämä siis oikein: K 6 = 1000 e 1, 04 6 = 1265, 32 e 6 K 6,5 = K 6 (1 + 0, 04 ) = 1290, 62 e / 118

50 Koronkorko Esimerkki 17 Millä korkokannoilla a) i pa. ja b) j ps. pääoma kolminkertaistuu 8 vuodessa? a) Nyt aika on 8 vuotta ja korkojakson pituus 1 vuosi, eli korkojaksoja yhteensä n = 8 kpl. Halutaan siis kolminkertaistaa alkupääoma K 0. Siis K 0 (1 + i) 8 = 3K 0 (1 + i) 8 = i = 8 3 i = , 147 Haluttu korkokanta on siis 14, 7% pa. 50 / 118

51 Koronkorko b) Nyt aika on 8 vuotta ja korkojakson pituus 0,5 vuotta, eli korkojaksoja yhteensä n = 2 8 = 16 kpl. Siis K 0 (1 + i) 16 = 3K 0 (1 + i) 16 = i = 16 3 i = , 071 Haluttu korkokanta on siis 7, 1% ps. 51 / 118

52 Koronkorko Esimerkki 18 Olkoon alkupääoma e ja korkokanta 4% ps. Tilille halutaan loppupääomaksi e. Kuinka pitkäksi aikaa talletus joudutaan tekemään? Selvitetään (kokonaisten) korkojaksojen lukumäärä e = e (1 + 0, 04) n 1, 04 n = 5 3 ln 1, 04 n = ln 5 3 n ln 1, 04 = ln 5 3 n = ln , 024 ln 1, 04 Tarvitaan siis vähintää 13 kokonaista jaksoa ja osa seuraavaa korkojaksoa. Miten selvitetään tarkka aika? 52 / 118

53 Korkokannat (Relatiivinen korkokanta) Idea Jaetaan korkoprosentit ja korkojakso samassa suhteessa (esim. puolitetaan prosentti ja korkojakso). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään relatiivisia jos korkokantojen suhde on sama kuin korkojaksojen pituuksien suhde, ts. i j = p q. (8) Relatiivisessa korkokannassa saadaan suurempi korkotuotto, mitä lyhyempi korkojakson pituus on. Relatiiviset korkokannat eivät anna siis samaa tuottoa pääomalle (esim. 4% pa. ja 2% ps.). 53 / 118

54 Korkokannat (Konforminen korkokanta) Idea Etsitään eri korkokannalle i (per p) sellainen korkokanta j (per q), että tuotto kummallakin korkokannalla on sama (samassa ajassa). Määritelmä Korkokannat i (per p) ja j (per q) ovat keskenään konformiset jos ne antavat saman tuoton (pääoma-arvon) kaikilla ajanhetkillä t, joka on korkojaksojen p ja q jokin monikerta. Jos siis aikaan t tarvitaan n kpl korkojaksoja p ja m kpl korkojaksoja q, niin täytyy olla np = mq = n m = q p. (9) Käyttäen jaksollista korkolaskua saadaan K 0 (1 + i) n = K 0 (1 + j) m j = (1 + i) q p 1 (10) 54 / 118

55 Korkokannat Esimerkki 19 Määritä korkokannalle 7% per 10kk a) konforminen neljännesvuosikorkokanta, b) relatiivinen neljännesvuosikorkokanta. a) Nyt i = 7% (per p = 10kk) ja j =? (per q = 3kk), joten j = (1 + i) q p 1 = (1 + 0, 07) = 0, 0205 = 2, 05%. b) Relatiivinen neljännesvuosikorkokanta on 3 0, 07 = 2, 10% / 118

56 Korkokannat Esimerkki 20 Loppupääomaksi halutaan e. Korkokanta on 4% ps. ja talletusaika on 6 vuotta. Paljonko on alkupääoman oltava? Nyt korkojaksoja on n = 2 6 = 12 kpl, joten ratkaistaan K 0 yhtälöstä K n = K 0 (1 + i) n. Täten saadaan K 0 = K n (1 + i) n = e 1, = e. 56 / 118

57 Korkokannat Esimerkki 21 Määritä korkokannalle 6% pa. konforminen puolivuotiskorkokanta. On siis oltava K 0 (1 + 0, 06) = K 0 (1 + j) 2 missä j on kysytty puolivuotiskorkokanta ja K 0 on alkupääoma. Täten 1, 06 = (1 + j) 2 j = 1, , 0296 = 2, 96% Konforminen puolivuotiskorkokanta on siis j = 2, 96% ps. (vrt. relatiivinen). 57 / 118

58 Jatkuva korkolasku Miten korkolaskulle käy jos korkojakson pituus lyhennetään mielivaltaisen pieneksi? Korkojakson pituus siis lähestyy nollaa, joten korkoa liitetään pääomaan jatkuvasti. Idea: lasketaan siis koronkorkoa mielivaltaisen pienellä korkojakson pituudella. 58 / 118

59 Jatkuva korkolasku Jatkuvan korkolaskun idea Olkoon K 0 alkupääoma, K t pääoma hetkellä t > 0, i korkokanta jotakin korkojaksoa kohti. 1 Koronkoron kaava: K t = K 0 (1 + i) n 2 Nyt t = (aika) (korkojakson pituus) ( korkojaksojen lkm ), joten (aika) = t (korkojakson pituus) 3 Jaetaan aikaväli [0, t] n:ään yhtäsuureen osaa ja realisoidaan korko jokaisen osavälin lopussa. 4 Nyt uudeksi korkojaksoksi saadaan (uusi korkojakso) = (aika) n = t (korkojakson pituus) n 59 / 118

60 Jatkuva korkolasku Jatkuvan korkolaskun idea 1 Uusi korkokanta on nyt uusi korkokanta = t i per uusi korkojakso. n 2 Korkojaksoja on nyt n kpl välillä [0, t], joten K (n) t = K 0 (1 + i t n )n 3 Sijoitetaan it n = 1 x, jolloin n = x it. 4 Siis K (n) t = K 0 ( x ) x it. 60 / 118

61 Jatkuva korkolasku Jatkuvan korkolaskun idea 1 Annetaan nyt n, jolloin myös x. 2 Mitä tapahtuu? 3 Nyt korkojakson pituus t n 0, ts. korkojakson pituus lähestyy nollaa. 4 Itseasiassa koska ( K (n) t = K ) x it [( = K ) x ] it x x ja ( lim ) x = e 2, x x 61 / 118

62 Jatkuva korkolasku Jatkuva prolongointi Jatkuva prolongointi voidaan suorittaa kaavalla missä K 0 = alkupääoma K t = pääoman arvo ajanhetkellä t K t = K 0 e it, (11) i = korkointensiteetti jotakin aikaväliä d kohti (esim. 6% pa.) kulunut aika t = d (t 0) 62 / 118

63 Jatkuva korkolasku Esimerkki 22 Kuinka monta prosenttia suurempi on jatkuvan korkolaskun mukainen pääoma-arvo korkointensiteetillä 3% pa. verrattuna tavanomaiseen koronkorkolaskuun korkokannalla 3% pa. 8 vuoden kuluttua? Nyt i = 3% pa. ja aika on 8 vuotta, joten t = n = 8. Pääoma-arvo jatkuvalla korkolaskulla: K 0 e it = K 0 e 0,03 8 Pääoma-arvo normaalilla korkolaskulla (koronkorko): Arvojen suhde: K 0 (1 + i) n = K 0 1, 03 8 K 0 e 0,03 8 K 0 1, 03 8 = e0,03 8 1, , 0035 V : 0, 35% suurempi 63 / 118

64 Jatkuva diskonttaus Jatkuva diskonttaus Jatkuva diskonttaus saadaan ratkaisemalla K 0 yhtälöstä (11) K o = K t e it = K t e it, (12) missä K t = pääoman arvo ajanhetkellä t i = korkointensiteetti jotakin aikaväliä d kohti (esim. 6% pa.) kulunut aika t = d (t 0) 64 / 118

65 Jatkuva diskonttaus Huom 1 Jatkuvassa korkolaskussa pääoman siirtäminen on riippumaton siirtoreitistä. Jatkuvan korkolaskun malli on teoreettinen ja sitä käytetään mm. erilaisten maksusysteemien vertailuissa. Huom 2 Jatkuvan korkolaskun mukainen korko on aina suurempi kuin yksinkertainen korko ja koronkorko, koska e it = 1 k! (it)k = 1 + it (it)2 + > 1 + it k=0 e in = (e i ) n > (1 + i) n 65 / 118

66 Jatkuva diskonttaus Kysymys Miten saadaan selville korkointensiteetin i (jatkuva korko) kanssa konforminen korkokanta ĩ normaalissa korkolaskussa (koronkorko)? Olkoon korkojakson pituus d. Tiedetään siis korkointensiteetti i per d ja selvitetään (konforminen) korkokanta ĩ per d. Pääoma ajanhetkellä t { K 0 (1 + ĩ) t K 0 e it Konformisuus = (koronkorko) (jatkuva korkolasku) K 0 e it = K 0 (1 + ĩ) t (e i ) t = (1 + ĩ) t 66 / 118

67 Jatkuva diskonttaus Ratkaistaan ĩ, joten e i = 1 + ĩ ĩ = e i 1 Voidaan myös ratkaista i, eli saadaan {ĩ = e i 1 i = ln(1 + ĩ) 67 / 118

68 Jatkuva korkolasku Esimerkki 23 Mikä on edellisen esimerkin (esim. 22) korkointensiteetin konforminen korkokanta normaalissa (koronkorko) korkolaskussa? Nyt i = 3% pa. ja aika on 8 vuotta, joten t = n = 8. Pääoma-arvo jatkuvalla korkolaskulla: K t = K 0 e it = K 0 e 0,03 8 Pääoma-arvo korkokannan ĩ mukaan: Koska oltava konformiset, niin K n = K 0 (1 + ĩ) n K 0 e 0,03 8 = K 0 (1 + ĩ) 8 ĩ = e 0,03 1 0, 0305 V: 3,05% pa. 68 / 118

69 Jaksolliset suoritukset Tarkastellaan maksusysteemiä, jossa on n jakson ajan (jakson lopussa) toistuva maksu k. Mikä on maksusysteemin pääoma-arvo viimeisen suorituksen hetkellä? Prolongoidaan jokainen maksuerä korkokannalla i per jakso. Tarkastellaan miten talletusten arvo muuttuu: - 1. jakson maksu k(1 + i) n 1-2. jakson maksu k(1 + i) n 2-3. jakson maksu k(1 + i) n 3. - n-1. jakson maksu k(1 + i) - n. jakson maksu k Mikä on maksusysteemin pääoma-arvo lopussa? 69 / 118

70 Jaksolliset suoritukset Maksusysteemin pääoma-arvo lopussa on näiden summa, eli K n = k(1 + i) n 1 + k(1 + i) n 2 + k(1 + i) + k n 1 = k(1 + i) j (Huom. geom. sarja, q = 1 + i) j=0 1 (1 + i)n = k 1 (1 + i) 1 (1 + i)n = k i = k (1 + i)n 1 i = k A n,i, missä A n,i = (1 + i)n 1 i 70 / 118

71 Jaksolliset suoritukset Jaksollisten suoritusten prolongointi Talletetaan n jakson lopussa toistuva maksu k kun korkokantana on i% (per jakso). Tällöin pääoma-arvo lopussa on missä K n = k (1 + i)n 1 i A n,i = (1 + i)n 1 i = k A n,i, (13) 71 / 118

72 Jaksolliset suoritukset Jaksollisten suoritusten diskonttaus Systeemin pääoma-arvo alussa (t = 0) saadaan diskontaamalla K n alkuun. Siis K 0 = K n (1 + i) n = k (1 + i)n 1 i(1 + i) n = k a n,i, (14) missä a n,i = A n,i (1 + i) n = (1 + i)n 1 i(1 + i) n Huom 3 Systeemin pääoma-arvo alussa on se rahasumma K 0, joka kasvaisi korkoa n jakson aikana korkokannalla i per jakso summaan K n. 72 / 118

73 Jaksolliset suoritukset Muutama huomio: Jaksollisissa suorituksissa korkoprosenttiin i täytyy olla korkojaksona maksuerien välinen jakson pituus. Ts. ei siis voida käyttää esim. kuukausittaisissa maksusuorituksissa korkokantana vuosikorkoa i%pa. Jaksollisten suoritusten yhteydessä käytetään relatiivisia korkokantoja, ellei toisin mainita. 73 / 118

74 Jaksolliset suoritukset Esimerkki 24 Olkoon 6000 e vuoden lopussa toistuva maksu 12 vuoden ajan. Mikä on maksusysteemin a) alkuarvo ja b) loppuarvo, kun korkokanta on 5% pa.? Nyt k = 6000 e, i = 5% pa. ja n = 12. b) K n = k (1 + i)n 1 i = , , 05 = e a) K 0 = K n (1 + i) n = k (1 + i)n 1 1, i(1 + i) n = 6000 = e 0, 05 1, / 118

75 Jaksolliset suoritukset Esimerkki 25 Minkä suuruinen kuukausittain maksettavan erän tulisi olla, että 12 vuodessa maksusysteemin loppuarvo on e kun korkokanta 6% pa.? Nyt korkokantana on 6% pa., joten kuukausittainen relatiivinen korkokanta on i = 0, 5% per kk. Korkojaksoja nyt n = = 144 kpl. Lisäksi K n = e ja k =?, joten K n = k A n,i K n = k A n,i k = K i n (1 + i) n 1 0, 005 k = e 1, = 47, 59 e 75 / 118

76 Annuiteettiperiaate Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14). Annuiteetti Nimellisarvoltaan K 0 suuruisen lainan maksuerä k, joka suoritetaan n:llä tasaerällä tasavälein korkokannassa i, saadaan yhtälöstä k = K 0 i(1 + i) n (1 + i) n 1. (15) Kuoletus = lyhennys+korko; Annuiteetti = tasamaksuerä Käytetään relatiivisia korkokantoja ellei toisin pyydetä. Annuiteetissa maksettu korko lasketaan jäljellä olevasta luoton määrästä. 76 / 118

77 Annuiteettiperiaate Esimerkki 26 Kuinka suuren pankkilainan pankki voi asiakkaalleen myöntää, kun asiakas pystyy kuolettamaan luottoa vuosittain e, laina-aika on 10 vuotta ja korkokanta on 12% pa.? Nyt n = 10 ja i = 0, 12, joten K 0 = k a n,i = k (1 + i)n 1 i(1 + i) n 1, = e 0, 12 1, = , 15 e e 77 / 118

78 Annuiteettiperiaate Esimerkki 27 Mikä on 12 vuodeksi annetun e euron lainan puolivuosiannuiteetti korkokannalla 13% pa.? Korkokantaa 13% pa. vastaava relatiivinen puolivuotiskorko on i = 6, 5% ps. Lisäksi 6 kk:n korkojaksoja on n = 2 12 = 24 kpl. Puolivuotisannuiteetti on k = K 0 i(1 + i) n = K 0 a n,i (1 + i) n 1 = = e 0, 065 1, , Siis vuosittain yht e = e. Maksettu korko: e e = e. 78 / 118

79 Annuiteettiperiaate Esimerkki 28 Mikä on kuukausiannuiteetti edellisen esimerkin lainalle? Nyt i = % = 1, % per kk ja korkojaksoja on n = = 144 kpl. Kuukausittaisannuiteetti on k = K 0 i(1 + i) n = K 0 a n,i (1 + i) n 1 = = 4124 e 0, , , Siis vuosittain yht e = e (< e). Maksettu korko: e e = e. 79 / 118

80 Annuiteettiperiaate Esimerkki 29 Nimellisarvoltaan e laina kuoletetaan 2 vuoden kulueassa korkokannalla 14% pa. käyttäen puolivuosiannuiteetteja. Mikä on koron ja lyhennuksen osuus kussakin annuiteetissa? Nyt i = 7% ps. ja n = 2 2 = 4. Puolivuosittainen kuoletus on k = e 0, 07 1, 074 1, = e 80 / 118

81 Annuiteettiperiaate Muodostetaan taulukko, missä näkyvät korko, lyhennys sekä kuoletus: Erä Ennen lyh. Korko Kuoletus lyhennys Lyh. jälkeen Yht (Huom. pyöristysvirheet) 81 / 118

82 Tasalyhennys Esimerkki 30 Nimellisarvoltaan e laina kuolletetaan 2 vuoden kuluessa korkokannalla 14% pa. käyttäen puolivuosittaisia tasalyhennyksiä. Määrää kuoletuserien suuruudet ja koron sekä lyhennyksen osuus kussakin kuoletuksessa. Muodostetaan taulukko, missä näkyvät korko, lyhennys sekä kuoletus. 82 / 118

83 Tasalyhennys Nyt laina kuoletetaan siis tasalyhennyksin. Erä Ennen lyh. Korko Kuoletus lyhennys Lyh. jälkeen Yht / 118

84 Lainan kuolettaminen Esimerkki e laina kuoletetaan seuraavasti: vuoden kuluttua lyhennetään e ja kahden vuoden kuluttua e. Määrää kuoletuserien suuruudet kun korkokantana on 14% pa.. Erä Ennen lyh. Korko Kuoletus lyhennys Lyh. jälkeen / 118

85 Keskimaksuhetki Keskimaksuhetki Keskimaksuhetki on ajanhetki (tai korkoaika), jonka kuluttua voidaan suorittaa osamaksujen (esim. kuukausierien) summan suuruinen maksu ilman, että kummallekaan osapuolelle tulee korkotappioita. Keskimaksuhetki T saadaan yhtälöstä T = n j=1 a jt j n j=1 a, (16) j missä a j on hetkellä t j erääntyvä maksuerä. Huom 5 Lainan arvon kannalta on sama maksetaanko laina useissa erissä vai kerralla keskimaksuhetkenä. 85 / 118

86 Keskimaksuhetki 1 Jos maksut ovat yhtäsuuret, niin a 1 = a 2 =... = a n = k. Tällöin n j=1 T = kt j n j=1 k = k n j=1 t n j j=1 = t j. (17) n k n 2 Jos maksut ovat yhtäsuuret ja tasaväliset, niin a 1 = a 2 =... = a n = k ja t j = t 1 + (j 1)d. Tällöin 1):n nojalla T = n j=1 t j n = n (t 1+t n) 2 n = t 1 + t n. (18) 2 86 / 118

87 Todellinen vuosikorko Todellinen vuosikorko Olkoon K luottomäärä (se osa käteishinnasta, jolle luotto saadaan) ja R luoton kustannukset. Todellinen vuosikorko p saadaan keskimaksuhetken T ja maksusysteemin rahallisen arvon K + R avulla. Keskimaksuhetkellä siis pätee yhtäsuuruus K + R = K(1 + pt ), mistä saadaan p = R K T. (19) 87 / 118

88 Todellinen vuosikorko Esimerkki e maksava tuote myydään osamaksuluotolla, jonka nimelliskorko on 12% pa. ja luottoaika 3 vuotta. Maksu tapahtuu kuukausiannuiteetein. Mikä on luoton keskimaksuhetki? Mikä on luoton todellinen vuosikorko? Nyt n = 3 12 = 36, i = 1% per kk ja K 0 = e. Kuukausiannuiteetti on k = e 0, 01 1, , = 1661 e Maksut tasavälisiä tasaeriä, joten keskimaksuhetki T = 1kk + 36kk 2 = 18, 5kk = 1, 5417v 88 / 118

89 Todellinen vuosikorko Luottokustannukset R = Luoton hinta Luoton määrä eli R = e e = 9796 e. Luottomäärä on K = 50000, joten p = R KT = 9796 = 0, , 5417 eli todellinen vuosikorko on p = 12, 7% pa. 89 / 118

90 Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko. Sisäisen/efektiivisen korkokannan menetelmä on tarkempi menetelmä todellisen korkokannan löytämiseksi. Sisäisen korkokannan menetelmä on melko haastava käyttää eikä ole täysin ongelmaton. Sisäisen korkokannan menetelmä on erittäin yleisesti käytetty menetelmä investointilaskelmissa. 90 / 118

91 Efektiivinen/sisäinen korkokanta Idea Sijoitetaan lainapääoma L jollakin tuntemattomalla korolla i e Tehdään annetut vähennykset (kuoletukset) M i ajanhetkillä t i Pyritään siihen, että vähennyksistä huolimatta sijoitus ei tuota tappiota. Etsitään siis korkokanta i e siten, että sijoituksen arvo tehtävät vähennykset huomioonottaen menee nollaan (eli pienempi korko toisi tappiota). 91 / 118

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

10.8 Investoinnin sisäinen korkokanta

10.8 Investoinnin sisäinen korkokanta 154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta

Lisätiedot

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 SISÄLTÖ 1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN 7 1.1 Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 1.2 Yhtälöitä 29 Epäyhtälö 30 Yhtälöpari 32 Toisen

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

Kertausta Talousmatematiikan perusteista Toinen välikoe

Kertausta Talousmatematiikan perusteista Toinen välikoe Kertausta Talousmatematiikan perusteista Toinen välikoe 1 päätösmuuttujat (x 1,x 2,...) tavoitefunktio (z = c 1 x 1 + c 2 x 2 +...) rajoitteet (a i1 x 1 + a i2 x 2 + b i ) Mallin Formaatti käypä alue Optimipisteen

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Kertausta Talousmatematiikan perusteista Toinen välikoe

Kertausta Talousmatematiikan perusteista Toinen välikoe Kertausta Talousmatematiikan perusteista Toinen välikoe 1 Parametrit D Kysyntä (kpl/vuosi) h Yksikköylläpito-kustannus (euro/kpl/vuosi) K Tilauskustannus (euro) Tarkista aina yksiköiden yhteensopiminen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Matematiikan pohjatietokurssi

Matematiikan pohjatietokurssi Matematiikan pohjatietokurssi Demonstraatio, 8.-9.9.015, ratkaisut 1. Jaa tekijöihin (joko muistikaavojen avulla tai ryhmittelemällä) (a) x +x+ = x + x + = (x+) x +x+ = (x +x+1) = (x+1) (c) x 9 = (x) 3

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

MAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014

MAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014 0..0 MAOL-pistetsohje Matematiikka lht oppimäärä Kevät 0 Hvästä suorituksesta näk, miten vastaukseen on päädtt. Ratkaisussa on oltava tarvittavat laskut tai muut riittävät perustelut ja lopputulos. Arvioinnissa

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. 3 1 3 ja 1. Laske lukujen 4 summa b. erotus c. tulo d. osamäärä e. käänteislukujen

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi! MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet.

1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. 1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. Differentiaalilaskennassa on aika tavallinen tilanne päästä tutkimaan SULJETUL- LA VÄLILLÄ JATKUVAA FUNKTIOTA. Oletuksena on tällöin funktion

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 28.1.2009 1 / 28 Esimerkki: murtoluvun sieventäminen Kirjoitetaan ohjelma, joka sieventää käyttäjän antaman murtoluvun.

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät Lyhyen matematiikan pisteitysohjeet kevät 0 ver..0 Pisteytyssuositus Matematiikka lyhyt oppimäärä Kevät 0..0 Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE EUROOPAN UNIONIN NEUVOSTO Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE Lähettäjä: Euroopan komissio Saapunut: 25. heinäkuuta 2011 Vastaanottaja: Neuvoston pääsihteeristö Kom:n

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot