3Eksponentiaalinen malli

Koko: px
Aloita esitys sivulta:

Download "3Eksponentiaalinen malli"

Transkriptio

1 3Eksponentiaalinen malli Bakteerien määrä lihassa lisääntyy 250 % jokaisen vuorokauden aikana. Epilepsialääkkeen määrän puoliintuminen elimistössä vie aina yhtä pitkän ajan, 12 tuntia. Tällaisia suhteellisia muutoksia kuvataan eksponentiaalisella mallilla. Kuinka paljon tilillä on rahaa kolmen vuoden kuluttua, kun sille on talletettu aluksi 100 ja tilin korko on 3 %? Kaupungin keskustassa karkaa 10 kania. Kanien määrä kasvaa joka vuosi 35 %. Kuinka monta citykania on kymmenen vuoden kuluttua? Radioaktiivisen uraanin määrä on aluksi 250 g, ja siitä hajoaa 1 % vuodessa. Mikä on radioaktiivisen uraanin määrä 20 vuoden kuluttua?

2 Eksponentiaalinen kasvaminen ja väheneminen esimerkki 1 Pankkitilille talletetaan 500. Tilin vuotuinen korko on 2 %. a) Laske, kuinka paljon tilillä on rahaa vuoden ja kolmen vuoden kuluttua. b) Muodosta funktio f(x), joka ilmaisee, kuinka monta euroa tilillä on x:n vuoden kuluttua. Tilillä ei ole muita tapahtumia kuin koronmaksu. Eksponentiaalinen malli ratkaisu a) Vuoden kuluttua tilillä oleva rahamäärä voidaan laskea kahdella eri tavalla. Tapa 1 Lasketaan ensin ensimmäisen vuoden korko ja lisätään se talletettuun rahamäärään. 0, = = 510 Tapa 2 Vuoden kuluttua tilillä on rahaa 100 % + 2 % = 102 % alkuperäisestä talletuksesta. Kysytty rahamäärä on siis 1, = 510. Kolmen vuoden kuluttua tilillä oleva rahamäärä saadaan nopeimmin jatkamalla tavan 2 ideaa. Rahamäärä kahden vuoden jälkeen: 1,02 1, = 520,20. Rahamäärä kolmen vuoden jälkeen: 1,02 1,02 1, = 530,60. 97

3 Eksponentiaalinen malli b) Rahamäärä kolmannen vuoden lopussa voidaan laskea lyhyemmin potenssimerkinnän avulla: 1, Vastaavalla tavalla viiden vuoden kuluttua tilillä oleva rahamäärä saadaan lausekkeesta 1, Samalla päättelyllä x:n vuoden kuluttua tilillä on rahaa 1,02 x 500. Kysytty funktio on siis f(x) = 1,02 x 500. vastaus a) Vuoden kuluttua tilillä on 510 ja kolmen vuoden kuluttua 530,60. b) Funktio f(x) =1,02 x 500 ilmaisee tilillä olevan rahamäärän x:n vuoden kuluttua. esimerkki 2 Vuonna 1920 maailman tiikerikannan suuruudeksi arvioitiin yksilöä. Salametsästyksen seurauksena tiikerikanta pienentyi keskimäärin 7,4 % vuodessa aina 1960-luvun lopulle asti. a) Muodosta funktio f(x), jonka avulla voidaan arvioida maailman tiikeri kannan suuruus, kun vuodesta 1920 on kulunut x vuotta. b) Mikä oli tiikerikannan suuruus vuonna 1965? ratkaisu a) Kun tiikerikanta pienenee vuodessa 7,4 %, siitä on vuoden kuluttua jäljellä 100 % 7,4 % = 92,6 %. Tiikerien määrä muuttuu vuodessa 0,926-kertaiseksi. Vuoden kuluttua määrä on 0, , kahden vuoden kuluttua 0, ja x vuoden kuluttua 0,926 x Kun vuodesta 1920 on kulunut x vuotta, kannan suuruuden ilmaisee funktio f(x) = 0,926 x

4 b) Lasketaan tiikerikannan suuruus vuonna 1965 a-kohdassa muodostetun funktion avulla. Vuodesta 1920 on kulunut = 45 vuotta. Tiikereitä on vastaus f(45) = 0, = 3 144, a) Tiikerikannan suuruutta voidaan arvioida funktiolla f(x) = 0,926 x b) Vuonna 1965 maailmassa oli tiikeriä. Eksponentiaalinen malli Eksponentiaalinen muutos Kun suure kasvaa tietyssä ajassa aina yhtä monta prosenttia, sen sanotaan kasvavan eksponentiaalisesti. Tällaisia suureita ovat esimerkiksi eri maiden väkiluvut tietyllä aikavälillä sekä bakteerien tai eliöiden määrä tietyllä alueella suotuisissa olosuhteissa. Myös pankkitilin saldo kasvaa eksponentiaalisesti, jos tilillä ei ole muita tapahtumia kuin koronmaksu. Kun suure vähenee tietyssä ajassa aina yhtä monta prosenttia, sen sanotaan vähenevän eksponentiaalisesti. Tällaisia suureita ovat esimerkiksi radioaktiivisen aineen määrä, lääkkeen määrä elimistössä ja piirroskuvan korkeus, kun kuvasta otetaan useita peräkkäisiä kopioita samaa pienennysprosenttia käyttämällä. Viimeisessä tilanteessa muuttujana on ajan sijasta kopiointikertojen lukumäärä. x x Eksponentiaalinen kasvaminen Eksponentiaalinen väheneminen 99

5 Eksponentiaalinen malli Monissa käytännön tilanteissa muutos on likimain eksponentiaalista. Silloin sanotaan, että ilmiön kuvaamiseen käytetään eksponentiaalista mallia. Eläimiä eksponentiaalisella vauhdilla Eläinpopulaation kasvua kuvataan usein eksponentiaalisella mallilla. Lajin levitessä uudelle alueelle populaatio saattaa aluksi kasvaa eksponentiaalisesti. Mikään populaatio ei voi kuitenkaan kasvaa rajattomasti. Kun populaation koko kasvaa kiihtyvällä nopeudella, jossain vaiheessa ympäristön kantokyky ylittyy eikä ravintoa enää riitä kaikille. Kilpailu elintilasta, ravinnosta ja pesäpaikoista lisääntyy ja sairaudet ja loiset leviävät helpommin. Populaation kasvu johtaa nopeasti myös saalistajien lisääntymiseen. Lopulta populaation koko alkaa väistämättä vakiintua. esimerkki 3 Suomen väkiluku vuoden 2007 alussa oli 5,28 miljoonaa. Viime vuosikymmenet väkiluku on kasvanut 0,4 % vuodessa. a) Muodosta funktio f(x), joka ilmaisee Suomen väkiluvun, kun vuoden 2007 alusta on kulunut x vuotta. b) Mikä oli Suomen väkiluku vuoden 2004 alussa? c) Mikä oli Suomen väkiluku vuoden 2008 heinäkuun alussa? 100

6 ratkaisu a) Koska 100 % + 0,4 % = 100,4 %, Suomen väkiluku kasvaa joka vuosi 1,004-kertaiseksi. Kysytty funktio on f(x) = 1,004 x b) Väkiluku vuoden 2006 alussa saadaan, kun väkiluku vuoden 2007 alussa jaetaan luvulla 1,004. Vuoden 2004 väkiluku saadaan, kun vuoden 2007 väkiluku jaetaan kolme kertaa luvulla 1,004. Eksponentiaalinen malli : 1,004 : 1,004 : 1,004 = = = , ,004 1,004 1,004 1,004 3 Väkiluku voidaan laskea myös a-kohdan funktion avulla, sillä = 1, , = 3 1, Negatiivinen eksponentti: a n = 1 a n Kysytty väkiluku on funktion arvo f( 3): f( 3) = 1, = , c) Heinäkuun 2008 alku on puolentoista vuoden päässä vuoden 2007 alusta. Väkiluku saadaan, kun sijoitetaan funktion f(x) lausekkeeseen kulunut aika vuosina eli 1,5. f(1,5) = 1,004 1, = , vastaus a) Suomen väkiluvun ilmaisee funktio f(x) = 1,004 x b) Väkiluku vuoden 2004 alussa oli ja c) vuoden 2008 heinäkuun alussa

7 Eksponentiaalinen malli Eksponentiaalista muutosta kuvaavat funktiot Eksponentiaalista muutosta kuvaavien funktioiden lausekkeet ovat muotoa f(x) = k x c, missä c ja k ovat positiivisia lukuja. Funktioita kutsutaan eksponenttifunktioiksi. Nimitys johtuu siitä, että funktioiden lausekkeissa muuttuja x on eksponentissa. Funktioiden arvoja voidaan laskea kaikilla muuttujan x arvoilla. Jos muuttuja x kuvaa aikaa, positiiviset x:n arvot kuvaavat tulevaa aikaa ja negatiiviset mennyttä aikaa. esimerkki 4 Hiilidioksidipäästöjä halutaan vähentää vuosittain 10 %. Kuinka paljon päästöt vähentyvät kuudessa vuodessa, jos tavoite toteutuu? ratkaisu Päästöjen alkuperäiselle määrälle ei ole annettu mitään lukuarvoa, joten merkitään sitä kirjaimella a. Vuoden kuluttua päästöistä on jäljellä 100 % 10 % = 90 %. Päästöjen määrä on silloin 0,90a. Päästöjen määrä kuuden vuoden kuluttua on 0,90 6 a = 0,531441a 0,53a. Tämä on 53 % alkuperäisestä määrästä. Päästöt vähentyvät siis 100 % 53 % = 47 %. vastaus Päästöt vähentyvät 47 %. Avainkäsitteet: eksponentiaalinen malli eksponentiaalinen kasvaminen eksponentiaalinen väheneminen 102

8 Tehtäviä Sarja Sopivissa olosuhteissa bakteerien lukumäärä kaksinkertaistuu tunnissa. Bakteerien määrä on aluksi 40. Täydennä taulukko. Kulunut aika (h) x Bakteerien määrä 264. Kopiokoneella otetaan peräkkäisiä pienennöksiä piirroksesta, jonka korkeus on 26,0 cm. Pienennöksen mitat ovat aina 90 % kopioitavan kuvan mitoista. Täydennä taulukko. Pienennöksiä (kpl) x Piirroksen kor keus (cm) 265. Pankkitilille talletetaan 400. Tilin vuotuinen korko on 3 %. Tilillä ei ole muita tapahtumia kuin koronmaksu. a) Laske, kuinka paljon tilillä on rahaa neljän vuoden kuluttua. b) Muodosta funktio f(x), joka ilmaisee tilillä olevan rahamäärän eli tilin saldon euroina x vuoden kuluttua Kopiokoneella otetaan peräkkäisiä suurennoksia kuvasta. Kussakin kopioinnissa käytetään samaa suurennus prosenttia. Funktio g(x) = 1,08 x 1,6 ilmaisee kuvan korkeuden (cm), kun suu rennoksia on otettu x kertaa. a) Laske kuvan korkeus kuudennessa kopiossa. b) Mikä on kuvan alkuperäinen korkeus? c) Kuinka monen prosentin suurennuksella kopiointi tehtiin? 267. Uhanalaisia suippohuulisarvikuonoja oli Afrikassa vuonna 1970 vielä yksilöä. Sen jälkeen niiden määrän on arvioitu pienentyneen 9 % vuodessa. a) Muodosta funktio f(x), joka ilmaisee sarvikuonojen määrän, kun vuodesta 1970 on kulunut x vuotta. b) Arvioi funktion avulla sarvikuonojen määrä vuosina 1980 ja Tehtäviä 103

9 Tehtäviä 268. Vuonna 2005 Hyvinkään kaupungin väkiluku oli Väkiluku on kasvanut viime aikoina 0,5 % vuodessa. a) Muodosta funktio f(t), joka ilmaisee Hyvinkään väkiluvun, kun vuodesta 2005 on kulunut t vuotta. b) Laske arvio Hyvinkään väkiluvulle vuonna c) Mikä oli Hyvinkään väkiluku vuonna 2000? 269. Radioaktiivisen uraanin isotoopin U-232 määrä on 250 g. Siitä hajoaa 1 % vuodessa. a) Muodosta funktio, joka ilmaisee radioaktiivisen uraanin määrän grammoina t vuoden kuluttua. b) Mikä on radioaktiivisen uraanin määrä 3,5 vuoden kuluttua? c) Mikä oli radioaktiivisen uraanin määrä 2,5 vuotta sitten? 270. Kinosten perheyritys asettaa liikevaihdon kasvutavoitteeksi 5 % vuodessa. Kuinka monta prosenttia yrityksen liikevaihto kasvaa 8 vuodessa, jos tavoite toteutuu? 271. Paperitehtaan johdon tavoitteena on vähentää päästöjä 15 % vuodessa. a) Kuinka monta prosenttia päästöt vähenevät viidessä vuodessa, jos tavoitteessa pysytään? b) Tutki kokeilemalla, kuinka monen vuoden kuluttua päästöjen määrä on alle 25 % tämänhetkisestä määrästä, jos tavoite toteutuu Luonnontieteissä eksponentiaalista muutosta ilmaisevien funktioiden lausekkeissa käytetään usein kantalukuna ns. Neperin lukua e, jonka kaksidesimaalinen likiarvo on 2,72. Neperin luku löytyy myös useimmista laskimista. Laske kaksidesimaalinen likiarvo a) funktion f(x) = e 2x arvoille f(3) ja f( 2) b) funktion g(x) = e 0,15x arvoille g(18) ja g( 5,5). Sarja Sade lähettää tekstiviestin kolmelle ystävälleen. Jokainen heistä lähettää saman viestin eteenpäin kolmelle ystävälleen, joista jokainen lähettää viestin kolmelle ystävälleen ja niin edelleen. Täydennä taulukko, kun oletetaan, että sama henkilö ei saa viestiä kahta kertaa. Lähetyskierros n Viestin saaneita ihmisiä lähetys kier roksella 104

10 274. Laske funktion f(x) = 1,5 x 90 arvo a) f(5) b) f( 2). c) Jos funktio f(x) kuvaa bakteerien lukumäärää, kun tarkastelun alkuhetkestä on kulunut x tuntia, mikä merkitys on funktion lausekkeen luvuilla 90 ja 1,5? 275. Yrityksen liikevaihto oli eräänä vuonna Yrityksen tulevaisuuden tavoitteena on kasvattaa liikevaihtoaan 8 % vuodessa. a) Muodosta funktio f(x), joka ilmaisee tavoitteen mukaisen liikevaihdon euroina x vuoden kuluttua. b) Laske tavoitteen mukainen liikevaihto kymmenen vuoden kuluttua Funktio f(t) = 0,871 t 400 ilmaisee särkylääkkeen määrän elimistössä milligrammoina, kun lääketabletin ottamisesta on kulunut t tuntia. a) Mikä on lääkkeen määrä elimistössä 4,5 tunnin kuluttua lääkkeen ottamisesta? b) Kuinka paljon lääkettä tabletissa oli? c) Kuinka monta prosenttia lääkkeen määrä elimistössä vähenee tunnissa? 279. Tummennetun lasin paksuus on 1,0 cm, ja se päästää lävitseen 55 % siihen tulevasta valosta. Kuinka monta prosenttia valosta pääsee läpi samanlaisesta lasista, jonka paksuus on a) 3,0 cm b) 4,5 cm c) 0,5 cm? Vihje: a-kohdassa kannattaa ajatella, että 3,0 cm paksu lasi koostuu kolmesta peräkkäisestä 1,0 cm:n paksuisesta lasista. Laskutavasta saa sen jälkeen idean b- ja c-kohtiin Pankkitilin vuotuinen korko on 3,10 %. a) Kuinka monta prosenttia tilille tehty talletus on kasvanut korkoa viiden vuoden aikana? b) Tutki kokeilemalla, kuinka monen vuoden kuluttua talletuksen arvo on kasvanut 1,5-kertaiseksi. Tehtäviä 277. Intian väkiluku oli vuoden 2006 alussa 1,095 miljardia. Vuotuinen väestönkasvu on Intiassa noin 1,4 %. a) Muodosta funktio f(x), joka ilmaisee Intian väkiluvun, kun vuoden 2006 alusta on kulunut x vuotta ja väestönkasvu pysyy samanlaisena. b) Laske funktion avulla ennuste Intian väkiluvulle vuoden 2015 alussa. c) Arvioi funktion avulla Intian väkiluku vuoden 1995 alussa Energiankulutusta halutaan vähentää 2 % vuodessa. Kuinka monella prosentilla kulutus pienenee kymmenessä vuodessa, jos tavoite toteutuu? 105

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto Ekspontentiaalinen kasvu Eksponenttifunktio Logaritmifunktio Yleinen juurenotto Missä on eksponenttimuotoista kasvua tai vähentymistä? Väestönkasvu Bakteerien kasvu Koronkorko (useampivuotinen talletus)

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Eksponenttifunktio ja Logaritmit, L3b

Eksponenttifunktio ja Logaritmit, L3b ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Matemaattista mallintamista

Matemaattista mallintamista Johdatus GeoGebraan Matemaattista mallintamista Harjoitus 2A. Tutkitaan eksponentiaalista kasvua ja eksponenttifunktioita Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 12 3 pistettä 1. Annalla on neliöistä koostuva ruutupaperiarkki. Hän leikkaa paperista ruutujen viivoja pitkin mahdollisimman monta oikeanpuoleisessa kuvassa näkyvää kuviota. Kuinka monta ruutua

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Luvuilla laskeminen. Esim. 1 Laske 6 21 7

Luvuilla laskeminen. Esim. 1 Laske 6 21 7 Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 Merkintäohjeita alustavaan arvosteluun

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 Merkintäohjeita alustavaan arvosteluun MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 Merkintäohjeita alustavaan arvosteluun YTL Hyvän vastauksen piirteitä: Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

c) x > 0 c) [ 4,8[ ja 4 d) [12, [

c) x > 0 c) [ 4,8[ ja 4 d) [12, [ 0. Prosenttikerroin 00 % +, % 0, %,0 Hinta nyt 0, 0 Hinta 0 vuotta sitten 0,, 0 0,0 Va staus: 0 senttiä Laudatur MAA ratkaisut kertausharjoituksiin. Peruskäsitteitä 09. a) 0 < 9 c) > 0 0. a) ],0[ ], [

Lisätiedot

Ma4 Yhtälöt ja lukujonot

Ma4 Yhtälöt ja lukujonot Ma4 Yhtälöt ja lukujonot H4 Lukujonot 4.1 Kirjoita lukujonon seuraavat viisi termiä, kun ensimmäinen termi on 1 ja muut muodostuvat seuraavien sääntöjen mukaan. a) Lisää edelliseen termiin 3. b) Kerro

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Monilla valukappaleilla on luonnollinen päästö, toisin sanoen kappaleen oma muoto muodostaa päästön.

Monilla valukappaleilla on luonnollinen päästö, toisin sanoen kappaleen oma muoto muodostaa päästön. 8. Päästö (hellitys) Pekka Niemi Tampereen ammattiopisto Päästöllä eli hellityksellä tarkoitetaan kaltevuutta, joka mallin pinnoilla tulee olla, jotta ne voitaisiin irrottaa muotista sitä vahingoittamatta.

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lyhyt matematiikka, syksy 015 Mallivastaukset, 3.9.015 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

4 Kertausosa. Kertausosa. 1. a) (1, 2) ja ( 3, 7) 41 6,403... 6,4. b) ( 5, 8) ja ( 1, 10) 10 ( 8) 1 ( 5) 18 4 340 18,439... 18,4

4 Kertausosa. Kertausosa. 1. a) (1, 2) ja ( 3, 7) 41 6,403... 6,4. b) ( 5, 8) ja ( 1, 10) 10 ( 8) 1 ( 5) 18 4 340 18,439... 18,4 4 Kertausosa. a) (, ) ja (, 7) d 7 5 ( 4) 4 6,40... 6,4 b) ( 5, 8) ja (, 0) d 0 ( 8) ( 5) 8 4 40 8,49... 8,4. Koulun koordinaatit ovat (0, 0). Kodin koordinaatit ovat (,0;,0). Kodin ja koulun etäisyys

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

3. Laske osittaisintegroinnin avulla seuraavat integraalit

3. Laske osittaisintegroinnin avulla seuraavat integraalit Harjoitus 1 / syksy 2001 1. Laske seuraavat derivaatat 2 a) D ( 5x + 5) x, b) D (-e 2x ), c) D (-ln x) ja d) D (sin 2x + cos x). 2. Laske seuraavat integraalit 2 x 5x 5 dx, a) ( + ) x b) ( e 2 ) dx, c)

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

Selvitys valtuustoaloitteeseen koskien yksityisen perhepäivähoitajien tukea

Selvitys valtuustoaloitteeseen koskien yksityisen perhepäivähoitajien tukea Liite 23 Opetus- ja kasvatusltk 27.11.2014 Selvitys valtuustoaloitteeseen koskien yksityisen perhepäivähoitajien tukea Kuntaliitto (Lahtinen & Selkee) on vuonna 2014 tehnyt selvityksen varhaiskasvatuksen

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helsingin yliopisto Valintakoe 30.5.2012 Maatalous-metsätieteellinen tiedekunta KOE 2 Ympäristöekonomia Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

Öljyn määrä säiliössä

Öljyn määrä säiliössä Öljyn määrä säiliössä Heikki Apiola 19.1.2011 Liittyy matematiikkalehti Solmun artikkeliin: Riittääkö lämmitysöljy http://solmu.math.helsinki.fi/2011/1/apiola.pdf Maan sisällä makaava lieriön muotoinen

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot