031021P Tilastomatematiikka (5 op) viikot 5 6

Koko: px
Aloita esitys sivulta:

Download "031021P Tilastomatematiikka (5 op) viikot 5 6"

Transkriptio

1 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division

2 Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan eli arvon, jonka satunnaismuuttuja keskimääräisesti saavuttaa. Varianssi ilmoittaa, kuinka paljon satunnaismuuttujan arvot keskimäärin poikkeavat odotusarvosta. Muita tunnuslukuja ovat mm. Jakauman momentit, eli satunnaismuuttujan sopivien potenssien odotusarvot; Jakauman vinous; Kvartiilit; Keskipoikkeama... Jukka Kemppainen Mathematics Division 2 / 53

3 Odotusarvo Tarkastellaan odotusarvon määrittelyä erikseen diskreetin ja jatkuvan sm:n tapauksessa. Aloitetaan diskreetistä sm:stä. Määr. 20 Jos X on diskreetti satunnaismuuttuja, jonka arvojoukko on S X = {x 1,x 2,...}, niin lukua E(X) = x k P(X = x k ) k=1 sanotaan X:n odotusarvoksi edellyttäen, että sarja suppenee. Jukka Kemppainen Mathematics Division 3 / 53

4 Odotusarvo Määr. 21 Jos X on jatkuva satunnaismuuttuja, jonka tiheysfunktio on f X, niin lukua E(X) = xf X (x)dx sanotaan X:n odotusarvoksi edellyttäen, että integraali suppenee. Odotusarvolle käytetään usein merkintää E(X) = µ X tai yksinkertaisesti µ = µ X, jos sekaannuksen vaaraa ei ole. Huomautus 4 Erityisesti, jos diskreetti sm. saa vain äärellisen määrän arvoja, odotusarvo on aina olemassa. Kaikilla satunnaismuuttujilla ei ole odotusarvoa. Jukka Kemppainen Mathematics Division 4 / 53

5 Esimerkki Esim. 39 Milloin satunnaismuuttujalla X, jonka pistetodennäköisyysfunktio on muotoa P(X = k) = c 1 k p, k = 1,2,...; tiheysfunktio on f(x) = c 1 (1+x 2 ) p, x R, on odotusarvo? Jukka Kemppainen Mathematics Division 5 / 53

6 Diskreettien jakaumien odotusarvoja (1/2) Binomijakauman, X Bin(n, p), odotusarvo on E(X) = np. Geometrisen jakauman, X Geo(p), odotusarvo on E(X) = 1 p. Poissonin jakauman, X Poi(a), odotusarvo on E(X) = a. Jukka Kemppainen Mathematics Division 6 / 53

7 Diskreettien jakaumien odotusarvoja (2/2) Laskentakaavojen intuitiivinen perustelu: Binomijakaumalle E(X) = np, sillä yksittäisessä toistossa onnistumisen tn. on p, joten pitkässä juoksussa onnistumisten lkm. on np. Geometriselle jakaumalle E(X) = 1 p, sillä pitkässä juoksussa keskimääräinen onnistumisten lkm. per yritysten lkm. on p, joten keskimääräinen yritysten lkm. per onnistuminen on 1/p. Poissonin jakaumalle E(X) = a on selvä, jos Poissonin jakauma ajatellaan binomijakauman raja-jakaumana. Jukka Kemppainen Mathematics Division 7 / 53

8 Kuvia Kuvissa on esitetty sm:ien X Bin(50, 0.2) ja X Poi(5) pistetodennäköisyysfunktiot ja merkitty odotusarvo. Kuva : X Bin(50, 0.2) ja E(X) = 10 Kuva : X Poi(5) ja E(X) = 5 Jukka Kemppainen Mathematics Division 8 / 53

9 Jatkuvien jakaumien odotusarvoja Tasajakauman, X Tas(a,b), odotusarvo on E(X) = a+b 2. Eksponenttijakauman, X Exp(λ), odotusarvo on E(X) = 1 λ. Normaalijakauman, X N(µ,σ 2 ), odotusarvo on E(X) = µ. Weibullin jakauman, X Wei(α, β), odotusarvo on missä E(X) = α 1/β Γ(1+1/β), α,β > 0, Γ(x) = on Eulerin Gamma-funktio. 0 t x 1 e t dt, x > 0, Jukka Kemppainen Mathematics Division 9 / 53

10 Kuvia Kuvissa on esitetty sm:ien X N(100,25) ja X Exp( 1 2 ) tiheysfunktiot ja merkitty odotusarvo. Kuva : X N(100, 25) ja E(X) = 100 Kuva : X Exp( 1 2 ) ja E(X) = 2 Jukka Kemppainen Mathematics Division 10 / 53

11 Esimerkkejä Esim. 40 Heitetään kolikkoa 3 kertaa. Olkoon X kruunujen lukumäärä. Laske odotusarvo E(X). Esim. 41 Jatkuvan satunnaismuuttujan X tiheysfunktio on x, 0 x < 1, f X (x) = 2 x, 1 x 2, 0, muulloin. Laske X:n odotusarvo. Jukka Kemppainen Mathematics Division 11 / 53

12 Esimerkkejä Esim. 42 Teräväpiirtotelevisiota (HDTV) on lyhyessä ajassa myyty kappaletta. Jokaisessa näistä on yksi kappale komponenttia A, jonka kestoikä on eksponenttijakautunut odotusarvona 4 vuotta. Millä todennäköisyydellä komponentti A kestää ainakin vuoden? HDTV:n takuu on vuoden. Kuinka monen HDTV:n komponentti A joudutaan keskimäärin vaihtamaan takuun puitteissa? Komponentti on halpa (3 euroa), mutta sen uusimiseen liittyvä asennuskulu on 55 euroa. Kuinka paljon kuluja on odotettavissa takuuna uusittavista komponenteista ja niiden asennuksista? Jukka Kemppainen Mathematics Division 12 / 53

13 Muunnoksen Y = h(x) odotusarvo Sovelluksissa joudutaan usein tarkastelemaan satunnaismuuttujien muunnoksia. Oletetaan, että X on satunnaismuuttuja ja h : R R sellainen funktio, että Y = h(x) on satunnaismuuttuja (vrt. Lause 7, s.17). Jos X on diskreetti sm., saadaan Lause 11 Muunnoksen Y = h(x) odotusarvo on E(Y) = E(h(X)) = i:x i S X h(x i )P(X = x i ) edellyttäen, että sarja suppenee itseisesti, eli i:x i S X h(x i ) P(X = x i ) <. Jukka Kemppainen Mathematics Division 13 / 53

14 Muunnoksen odotusarvo Jos taasen X on jatkuva satunnaismuuttuja, jonka tiheysfunktio on f X, saadaan Lause 12 Muunnoksen Y = h(x) odotusarvo on E(Y) = E(h(X)) = h(x)f X (x)dx edellyttäen, että integraali suppenee itseisesti, eli h(x) f X (x)dx <. Jukka Kemppainen Mathematics Division 14 / 53

15 Esimerkkejä Esim. 43 Olkoon Θ välille ] π 2, π 2 [ tasajakautunut kulma ja Y = tan(θ). Määrää (mikäli mahdollista) Y :n odotusarvo. Jukka Kemppainen Mathematics Division 15 / 53

16 Esimerkkejä Esim. 44 Oletetaan, että tuotteen laatutappio on ke((x m) 2 ), missä k on verrannollisuuskerroin ja m suureen X tavoitearvo tuotannossa. Olkoon laitteen kulutuskesto X (kk) Weibull-jakautunut parametrien arvoilla α = 0,40 ja β = 1 2. Laitteen tuottaja tavoitteli tuotteelleen 100 kk:n kulutuskestoa. Mikä oli tuotteen kulutuskeston laatutappio, kun verrannollisuuskerroin oli k = 0,1? Tuottaja pyrki säätämään tuotantoaan siten, että parametrin β arvo pysyi kiinteänä ja parametrin α arvo muuttui. Millä α:n arvolla kulutuskeston tavoitearvo ja odotusarvo ovat yhtä suuret? (E(X) = α β( 1 1 β )! ja E(X 2 ) = α β( 2 2 β )!, kun 1 β N.) Jukka Kemppainen Mathematics Division 16 / 53

17 Varianssi Tarkastellaan varianssin määrittelyä erikseen diskreetin ja jatkuvan sm:n tapauksessa. Aloitetaan diskreetistä sm:stä. Määr. 22 Jos X on diskreetti satunnaismuuttuja, jonka arvojoukko on S X = {1,2,...} ja odotusarvo µ X, niin lukua D 2 (X) = k:x k S X (x k µ X ) 2 P(X = x k ) sanotaan X:n varianssiksi ja merkitään D 2 (X) = Var(X) = σ 2 X edellyttäen, että sarja suppenee. Jukka Kemppainen Mathematics Division 17 / 53

18 Varianssi Vastaavasti jatkuvan sm:n tapauksessa määritellään Määr. 23 Jos X on jatkuva satunnaismuuttuja, jonka tiheysfunktio on f X ja odotusarvo µ X, niin lukua D 2 (X) = (x µ X ) 2 f X (x)dx sanotaan X:n varianssiksi ja merkitään D 2 (X) = Var(X) = σ 2 X edellyttäen, että integraali suppenee. Lukua σ X = Var(X) sanotaan satunnaismuuttujan X keskihajonnaksi. Jukka Kemppainen Mathematics Division 18 / 53

19 Varianssi Jos katsotaan varianssin määritelmää ja verrataan sitä muunnoksen h(x) = (X µ X ) 2 odotusarvoon, niin havaitaan, että itse asiassa varianssi on muunnoksen h(x) odotusarvo ja siten Var(X) = E((X E(X)) 2 ). Edellisestä yhtäsuuruudesta saadaan varianssille seuraava hyödyllinen laskentakaava Lause 13 Olkoon X satunnaismuuttuja, jolla on varianssi. Tällöin Var(X) = E(X 2 ) E(X) 2. Jukka Kemppainen Mathematics Division 19 / 53

20 Esimerkki Esim. 45 Oletetaan, että X N(0,1). Tällöin Y = e X noudattaa ns. log-normaalijakaumaa. Määrää Y :n odotusarvo ja varianssi. Jukka Kemppainen Mathematics Division 20 / 53

21 Diskreettien jakaumien variansseja Binomijakauman, X Bin(n, p), varianssi on Var(X) = np(1 p). Geometrisen jakauman, X Geo(p), varianssi on Var(X) = 1 p p 2. Poissonin jakauman, X Poi(a), varianssi on Var(X) = a. Jukka Kemppainen Mathematics Division 21 / 53

22 Jatkuvien jakaumien variansseja Tasajakauman, X Tas(a,b), varianssi on Var(X) = (b a)2 12. Eksponenttijakauman, X Exp(a), varianssi on Var(X) = 1 a 2. Normaalijakauman, X N(µ,σ 2 ), varianssi on Var(X) = σ 2. Weibullin jakauman, X Wei(α, β), varianssi on Var(X) = α 2/β (Γ(1+2/β) Γ(1+1/β) 2 ). Jukka Kemppainen Mathematics Division 22 / 53

23 Odotusarvon ja varianssin ominaisuuksia Lause 14 Jos sm. X on todennäköisyydellä yksi vakio a, ts. P(X = a) = 1, niin E(X) = a ja Var(X) = 0. Kääntäen, jos Var(X) = 0, niin P(X = a) = 1 jollekin a R. Lause 15 Jos X ja Y ovat satunnaismuuttujia ja a, b R, niin E(aX + by) =ae(x)+be(y), Var(aX + by) =a 2 Var(X)+b 2 Var(Y) + 2abE((X E(X))(Y E(Y))) edellyttäen, että em. suureet ovat äärellisiä. Jukka Kemppainen Mathematics Division 23 / 53

24 Ominaisuuksia Lause 16 Jos X ja Y ovat riippumattomia, niin E(XY) = E(X)E(Y), Var(aX + by) = a 2 Var(X)+b 2 Var(Y) edellyttäen, että em. suureet ovat äärellisiä. Edellinen tulos pätee myös n:n riippumattoman sm:n tapauksessa. Korollaari 2 Jos X 1,...,X n ovat riippumattomia satunnaismuuttujia, joilla on odotusarvo ja varianssi, ja a 1,...,a n R, niin E(X 1 X n ) = E(X 1 ) E(X n ), Var(a 1 X 1 + +a n X n ) = a 2 1 Var(X 1)+ +a 2 n Var(X n). Jukka Kemppainen Mathematics Division 24 / 53

25 Esimerkkejä Esim. 46 Olkoon X N(µ,σ 2 ). Laske standardisoidun satunnaismuuttujan Z = X µ σ odotusarvo ja varianssi. Esim. 47 Kytketään 100 sähkövastusta yhteen. Jokaisen vastuksen resistanssi on tasaisesti jakautunut 90 Ω ja 110 Ω välille. Oletetaan, että sähkövastukset ovat toisistaan riippumattomia. Määrää systeemin (a) kokonaisresistanssin odotusarvo ja varianssi, kun vastukset on kytketty sarjaan. (b) kokonaisresistanssin käänteisluvun odotusarvo ja varianssi, kun vastukset on kytketty rinnan. Jukka Kemppainen Mathematics Division 25 / 53

26 Todennäköisyyslaskennan raja-arvolauseita Tilastollisessa tutkimuksessa tehdään aineistojen pohjalta päätelmiä tutkittavasta ilmiöstä. Tehtäessä ilmiöstä riippumattomia havaintoja, on toivottavaa, että havaintojen lukumäärän kasvaessa saadaan yhä varmemmin oikea kuva todellisuudesta. Todennäköisyyslaskennan raja-arvolauseet luovat perustan todennäköisyyslaskennan tilastollisille sovelluksille. Jukka Kemppainen Mathematics Division 26 / 53

27 Esimerkki Esim. 48 Olkoot X 1,X 2,...,X n riippumattomia satunnaismuuttujia, joille E(X i ) = µ ja D 2 (X i ) = σ 2 kaikilla i = 1,...,n. Laske aritmeettisen keskiarvon n X = 1 n i=1 X i odotusarvo ja varianssi. Jukka Kemppainen Mathematics Division 27 / 53

28 Tn-laskennan raja-arvolauseita Edellisen esimerkin mukaan tehtäessä satunnaismuuttujasta X riippumattomia havaintoja x 1,...,x n keskittyy havaintojen aritmeettinen keskiarvo x = 1 n n i=1 x i yhä varmemmin satunnaismuuttujan X odotusarvon ympäristöön, sillä E(X) = µ ja D 2 (X) 0, kun n. Huomaa, että havaintojen aritmeettinen keskiarvo x on sm:n X saama arvo. Keskiarvot 1 n n i=1 X i muodostavat satunnaismuuttujajonon, joka tietyllä tavalla suppenee kohti odotusarvoa µ. Tarkastellaan seuraavaksi satunnaismuuttujajonon suppenemisen muotoja. Jukka Kemppainen Mathematics Division 28 / 53

29 Satunnaismuuttujajonon suppeneminen Satunnaismuuttujajonon X 1,X 2,... suppenemista on mahdollista luonnehtia eri tavoin. Tällä kurssilla tarkastellaan seuraavia suppenemisen muotoja: Jakaumasuppeneminen Jono X 1,X 2,... suppenee jakaumaltaan kohti satunnaismuuttujaa X, jos kertymäfunktioiden jono F n suppenee kohti rajajakauman kertymäfunktiota F X jokaisessa F:n jatkuvuuspisteessä. Stokastinen suppeneminen tarkoittaa sitä, että poikkeama rajamuuttujasta X on mielivaltaisen pieni suurella todennäköisyydellä, eli kaikilla ǫ > 0 lim P( X n X < ǫ) = 1. n Jukka Kemppainen Mathematics Division 29 / 53

30 Satunnaismuuttujajonon suppeneminen Melkein varma suppeneminen tarkoittaa sitä, että jono X 1,X 2,... suppenee todennäköisyydellä yksi kohti rajamuuttujaa X, eli P( lim n X n = X) = 1. Voidaan osoittaa, että melkein varma suppeneminen on vahvin suppenemisen muoto ja jakaumasuppeneminen taasen heikoin muoto, eli suppenemiselle pätee Melkein varmasti Stokastisesti Jakaumaltaan. Jukka Kemppainen Mathematics Division 30 / 53

31 Chebyshevin epäyhtälö Lause 17 (Chebyshevin epäyhtälö) Olkoon X satunnaismuuttuja, jolla on odotusarvo µ ja varianssi σ 2. Tällöin kaikilla ǫ > 0 pätee P( X µ ǫ) σ2 ǫ 2. Chebyshevin epäyhtälöllä voidaan aina arvioida kuinka paljon satunnaismuuttuja poikkeaa odotusarvostaan. Arvio on tosi karkea ja se riippuu varianssin suuruudesta. Jukka Kemppainen Mathematics Division 31 / 53

32 Esimerkki Esim. 49 Olkoon X N(0, 1). Laske todennäköisyyksille P( X 1), P( X 2) ja P( X 3) (a) arvio Chebychevin epäyhtälön avulla. (b) tarkka arvo. Jukka Kemppainen Mathematics Division 32 / 53

33 Heikko suurten lukujen laki Lause 18 (Chebyshev) Olkoon X 1,X 2,... jono parittain riippumattomia, samalla tavalla jakautuneita sm:ia, joilla on odotusarvo E(X i ) = µ ja varianssi D 2 (X i ) = σ 2. Olkoon X (n) = 1 n n i=1 X i satunnaismuuttujien X 1,X 2,...,X n aritmeettinen keskiarvo. Tällöin P( X (n) µ ǫ) 0, kun n kaikilla ǫ > 0. Jukka Kemppainen Mathematics Division 33 / 53

34 Tulkinta Heikko suurten lukujen laki tarkoittaa seuraavaa: Satunnaismuuttujien X 1,...,X n aritmeettinen keskiarvo suppenee stokastisesti kohti odotusarvoa µ. Jos X 1,...,X n ovat riippumattomia havaintoja samasta satunnaismuuttujasta X, jonka odotusarvo on µ ja varianssi σ 2, niin havaintojen lukumäärän kasvaessa havaintojen aritmeettinen keskiarvo (otoskeskiarvo) yhä varmemmin ilmoittaa todellisen odotusarvon. Otoskeskiarvolla voidaan siis estimoida odotusarvoa, kun havaintojen lukumäärä on riittävän suuri. Jukka Kemppainen Mathematics Division 34 / 53

35 Kuvia Kuvissa on esitetty riippumattomien normaalijakautuneiden sm:ien X i N(0,1) aritmeettisen keskiarvon X (n) tiheysfunktioita. Kun ǫ = 0.01, niin Lauseen 18 tn:ksi saadaan P( X (103 ) ǫ) 0.75 ja P( X (10 6 ) ǫ) Jukka Kemppainen Mathematics Division 35 / 53

36 Vahva suurten lukujen laki Lause 19 (Kolmogorov) Olkoon X 1,X 2,... jono parittain riippumattomia, samalla tavalla jakautuneita satunnaismuuttujia, joilla on odotusarvo E(X i ) = µ. Tällöin P( lim n X(n) = µ) = 1. Vahva suurten lukujen laki siis sanoo, että parittain riippumattomien, samalla tavalla jakautuneiden satunnaismuuttujien X 1,...,X n aritmeettinen keskiarvo suppenee melkein varmasti kohti odotusarvoa µ. Jukka Kemppainen Mathematics Division 36 / 53

37 Esimerkki Esim. 50 Pelatessa ruletissa väriä (musta tai punainen) yhden euron panoksella on voittosumman odotusarvo 1 37 euroa. Mitä suurten lukujen laki sanoo voittosummasta, jos peliä pelataan erittäin monta kertaa yhden euron panoksella? Takaako laki, että sinun tappiot ovat pieniä? Entäpä takaako laki, että suurella pelien määrällä häviät? Jukka Kemppainen Mathematics Division 37 / 53

38 Keskeinen raja-arvolause Suurten lukujen laeilla on lähinnä kvalitatiivinen merkitys satunnaismuuttujien aritmeettisen keskiarvon käyttäytymisestä n:n kasvaessa. Todennäköisyyksien kvantitatiiviseen laskemiseen tarvitaan tarkempaa tietoa aritmeettisen keskiarvon jakauman käyttäytymisestä. Tämän ilmoittaa keskeinen raja-arvolause. Lause 20 (Keskeinen raja-arvolause) Olkoon X 1,X 2,... jono keskinäisesti riippumattomia, samalla tavalla jakautuneita sm:ia, joilla E(e tx i) on olemassa, kun t < δ jollakin δ > 0. Merkitään E(X i ) = µ, D 2 (X i ) = σ 2 ja S n = n i=1 X i. Tällöin ( lim P Sn E(S n ) ) x = Φ(x) = 1 x e u2 2 du. n σ Sn 2π Jukka Kemppainen Mathematics Division 38 / 53

39 Keskeinen raja-arvolause Keskeisessä raja-arvolauseessa esiintyvä suure voidaan kirjoittaa muodossa S S n E(S n ) n = n µ. σ Sn σ n Siis riittävän suurilla n:n arvoilla keskiarvo X = 1 n S n noudattaa likimain normaalijakaumaa, eli 1 n n i=1 X i N(µ, σ2 n ) likimain, kun n on riittävän suuri. Summan todennäköisyyden arvioimista normaalijakaumalla sanotaan normaalijakauma-approksimaatioksi. Jukka Kemppainen Mathematics Division 39 / 53

40 Huomioita Joskus n = 3 on riittävä otoksen koko; Joskus n = ei riitä; Pääsääntöisesti (ainakin tällä kurssilla) approksimaatio on pätevä, kun n 30. Huomautus 5 Keskeisen raja-arvolauseen todisti vuonna 1901 venäläinen A.N. Lyapunov hieman yleisemmillä oletuksilla. Satunnaismuuttujien ei esimerkiksi tarvitse olla samalla tavalla jakautuneita. Jukka Kemppainen Mathematics Division 40 / 53

41 Kuvia Kuvissa on esitetty jakaumien S n = n i=1 X i ja X N(E(S n ),σs 2 n ) pistetodennäköisyydet ja tiheysfunktio, kun n = 50 ja Kuva : S n Bin(n, 0.2) Kuva : X i Poi(1) Jukka Kemppainen Mathematics Division 41 / 53

42 Kuvia Kuvissa on esitetty jakauman S n = n i=1 X i kertymäfunktio kokonaislukupisteissä ja ja jakauman X N(E(S n ),σs 2 n ) kertymäfunktio, kun n = 50 ja Kuva : S n Bin(n, 0.2) Kuva : X i Poi(1) Jukka Kemppainen Mathematics Division 42 / 53

43 Kuvia Kuvissa on esitetty jakaumien S n = n i=1 X i ja X N(E(S n ),σs 2 n ) tiheysfunktiot (tf:t) ja kertymäfunktiot (kf:t), kun n = 3 ja X i Tas(0,1). Kuva : Tf:t f Sn ja f X Kuva : Kf:t F Sn ja F X Jukka Kemppainen Mathematics Division 43 / 53

44 Kuvia Kuvissa on esitetty jakaumien S n = n i=1 X i ja X N(E(S n ),σs 2 n ) tiheysfunktiot (tf:t) ja kertymäfunktiot (kf:t), kun n = 10 ja X i Exp(1). Kuva : Tf:t f Sn ja f X Kuva : Kf:t F Sn ja F X Jukka Kemppainen Mathematics Division 44 / 53

45 Esimerkkejä Esim. 51 Olkoon Y n erään osakkeen hinta vuoden n. päivänä. Oletetaan, että erotukset X n = Y n+1 Y n ovat riippumattomia, normaalijakautuneita satunnaismuuttujia, joilla on sama odotusarvo µ = 0 ja varianssi σ 2 = 1 4. Jos Y 1 = 100, niin laske todennäköisyys, että vuoden lopussa osakkeen hinta on (a) 100. (b) 110. (c) 120. Jukka Kemppainen Mathematics Division 45 / 53

46 Esimerkin 51 realisaatioita Kuvissa on esitetty 2 eri realisaatiota esimerkin 51 osakkeen hinnalle. Jukka Kemppainen Mathematics Division 46 / 53

47 Esimerkkejä Esim. 52 Keskeinen raja-arvolause ei päde kaikille riippumattomille jonoille X 1,X 2,... Osoita, että jos X k Poi( 1 ) kaikilla k = 1,2,..., 2 k niin muuttuja S n E(S n ) σ Sn ei lähesty N(0,1)-jakaumaa. Esim. 53 Oletetaan, että elektronisen komponentin elinikä on sm., jonka odotusarvo on µ = a ja keskihajonta σ = a. Kuinka monta komponenttia tarvitaan, jotta niiden yhteenlaskettu elinikä olisi korkeintaan 8a enintään tn:llä 0,05? Jukka Kemppainen Mathematics Division 47 / 53

48 Binomijakauman normaalijakauma-approksimaatio Tarkastellaan n-kertaista toistokoetta X 1,...,X n, jossa X i ilmoittaa tapahtuuko jokin suotuisa tapahtuma A vai ei Oletetaan, että tapahtuma A sattuu yksittäisissä toistoissa muista toistoista riippumattomasti ja että P(X i = 1) = P(A) = P( A sattuu ) = p ja P(X i = 0) = P(A) = 1 p kaikilla i = 1,...,n. Tällöin S n = X 1 + X 2 + +X n ilmoittaa A:n esiintymiskertojen lukumäärän ja S n Bin(n,p). Koska E(S n ) = np ja D 2 (S n ) = np(1 p), niin keskeisen raja-arvolauseen mukaan S n N(np,np(1 p)) likimain, kun n on riittävän suuri. Jukka Kemppainen Mathematics Division 48 / 53

49 Binomijakauman approksimaatio Siis binomijakaumaa Bin(n, p) voidaan approksimoida normaalijakaumalla N(np, np(1 p)), kun n on riittävän suuri. Approksimaation tarkkuutta on tutkittu ja todettu, että approksimaatio on erityisen hyvä silloin, kun p 1 2. Luvun n pitäisi olla niin suuri, että varianssi np(1 p) > 9, jolloin käytännössä saadaan riittävän hyviä approksimaatioita. Jukka Kemppainen Mathematics Division 49 / 53

50 Approksimaatio, p:n vaikutus Kuviin on piirretty binomijakauman X Bin(20, p) pistetodennäköisyyksiä ja normaalijakauman N(20p,( 20p(1 p)) 2 ) tiheysfunktio, kun Kuva : p = 0.1 Kuva : p = 0.5 Jukka Kemppainen Mathematics Division 50 / 53

51 Approksimaatio, n:n vaikutus Kuviin on piirretty binomijakauman X Bin(n, 0.05) pistetodennäköisyyksiä ja normaalijakauman N(0.05n,( n) 2 ) tiheysfunktio, kun Kuva : n = 20 Kuva : n = 1000 Jukka Kemppainen Mathematics Division 51 / 53

52 Jatkuvuuskorjaus Diskreettejä jakaumia approksimoitaessa voidaan tarkkuutta parantaa tekemällä jatkuvuuskorjaus. Jos a ja b ovat kokonaislukuja, joille 0 a b n, ja X on diskreetti sm., joka saa kokonaislukuarvot 0,1,...,n, niin tn:ää P(a X b) ei approksimoida integraalina a:sta b:hen, vaan integraalina a 1 2 :sta b+ 1 2 :een. Siis P(a X b) = P(a 1 2 X b+ 1 2 ) ( a 1 2 = P E(X) σ X X E(X) σ X ( b+ 1 2 Φ E(X) ) ( a 1 Φ σ X b+ 1 2 E(X) ) σ X 2 E(X) ). σ X Jukka Kemppainen Mathematics Division 52 / 53

53 Esimerkkejä Esim. 54 Eräästä tuotteesta 10 % on viallisia. Jos ostetaan 10 tuotetta, niin millä tn:llä saadaan korkeintaan yksi viallinen tuote, kun tn. lasketaan tarkasti? normaalijakauma-approksimaatiolla jatkuvuuskorjauksella ja ilman? Poisson-jakauman avulla? Esim. 55 Heitetään noppaa 20 kertaa. Millä todennäköisyydellä pistelukujen summa on vähintään 60 ja korkeintaan 80? Jukka Kemppainen Mathematics Division 53 / 53

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Tilastomatematiikka. Jukka Kemppainen Oulun yliopisto Tekniikan matematiikka

Tilastomatematiikka. Jukka Kemppainen Oulun yliopisto Tekniikan matematiikka Tilastomatematiikka Jukka Kemppainen Oulun yliopisto Tekniikan matematiikka 18. helmikuuta 2016 2 Tämä luentomoniste on tehty professori Keijo Ruotsalaisen luentojen pohjalta. Alkuperäisestä kirjoitustyöstä

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Tilastomatematiikka. Keijo Ruotsalainen University of Oulu, Faculty of Technology Division of Mathematics

Tilastomatematiikka. Keijo Ruotsalainen University of Oulu, Faculty of Technology Division of Mathematics Tilastomatematiikka Keijo Ruotsalainen University of Oulu, Faculty of Technology Division of Mathematics 20. maaliskuuta 2013 2 Tämä luentomoniste on tehty professori Keijo Ruotsalaisen luentojen pohjalta.

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

DISKREETIT JAKAUMAT Generoiva funktio (z-muunnos)

DISKREETIT JAKAUMAT Generoiva funktio (z-muunnos) J. Virtamo 38.3143 Jonoteoria / Diskreetit jakaumat 1 DISKREETIT JAKAUMAT Generoiva funktio (z-muunnos) Määritelmä Olkoon X diskreetti sm, jonka arvot ovat ei-negatiivisia kokonaislukuja, X {0, 1, 2,...}.

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 4

031021P Tilastomatematiikka (5 op) viikko 4 031021P Tilastomatematiikka (5 op) viikko 4 Jukka Kemppainen Mathematics Division Tilastollinen aineisto Tilastolliset menetelmät ovat eräs keino tutkia numeerista havaintoaineistoa todennäköisyyslaskentaa

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys Luku 3 Satunnaismuuttujat, ehdollistaminen ja riippumattomuus Tässä luvussa käsitellään satunnaismuuttujien ominaisuuksia ja täydennetään todennäköisyyslaskennan tietoja. Erityisesti satunnaismuuttujien

Lisätiedot

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Raija Leppälä 17. lokakuuta 2011 Sisältö 1 Johdanto 3 2 Todennäköisyyslaskentaa 5 2.1 Satunnaisilmiö ja tapahtuma 5 2.2 Klassinen

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen MAT-20500 Todennäköisyyslaskenta Laskuharjoituksia / Periodi 2 / 2009-2010 1.1 Peruskäsitteitä 1. Totea Venn-diagrammien avulla oikeaksi demorganin lait A B = A B, A B = A B Jos otosavaruus on ihmiset

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet Johdatus todennäköisyyslaskentaan ja tilastotieteeseen Stefan Emet Matematiikan ja tilastotieteen lts Turun yliopisto 24 Sisältö Johdanto. Todennäköisyys..................................2 Peruskäsitteitä.................................

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon

Lisätiedot

Tilastollisen analyysin perusteet

Tilastollisen analyysin perusteet Tilastollisen analyysin perusteet Sisältö Tavoitteet Kurssilla tavoitteena on saada perusvalmiudet tietokoneavusteiseen tilastolliseen analyysiin ja tilastolliseen päättelyyn. Kurssin sisältö Johdatus

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Stokastiikan perusteet

Stokastiikan perusteet Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Tilastomatematiikka TUDI

Tilastomatematiikka TUDI Miika Tolonen http://www.mafy.lut.fi/tilmattudi Laboratory of Applied Mathematics Lappeenranta University of Technology 10. syyskuuta 2014 Sisältö I Johdanto 1 Johdanto 2 Satunnaiskokeet ja satunnaismuuttujat

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R.

F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R. Luku 5 Jatkuvat jakaumat Sellaiset suureet kuten esimerkiksi aika, lämpötila, pituus ja paino ajatellaan tavallisesti jatkuviksi muuttujiksi, ts. muuttujiksi, jotka voivat saada mitä tahansa reaaliarvoja

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&idx=4&ui Lang=fi&lang=fi&lvv=2014

Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&idx=4&ui Lang=fi&lang=fi&lvv=2014 1 MTTTP2 Tilastollisen päättelyn perusteet 1 1. luento 28.10.2014 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&idx=4&ui Lang=fi&lang=fi&lvv=2014 2 Osaamistavoitteet

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Ilkka Mellin 1. korjattu painos Ilkka Mellin I Ilkka Mellin II Esipuhe Tämä moniste pyrkii antamaan perustiedot todennäköisyyslaskennasta. Monisteen ensisijaisena tavoitteena on

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

T-61.281 Luonnollisen kielen tilastollinen käsittely

T-61.281 Luonnollisen kielen tilastollinen käsittely T-6.8 Luonnollisen kielen tilastollinen käsittely Ratkaisut. Ti 7..4, 8:5-: Palautellaan mieliin todennäköisyyslaskuja Versio.. Todennäköisyyksistä ensimmäinen P( sana=lyhenne sana=kolmikirjaiminen ) =.8

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Todennäköisyysteoria. Teoria mitasta, mitallisuudesta, mitattomuudesta ja riippumattomuudesta. Tommi Sottinen

Todennäköisyysteoria. Teoria mitasta, mitallisuudesta, mitattomuudesta ja riippumattomuudesta. Tommi Sottinen Todennäköisyysteoria Teoria mitasta, mitallisuudesta, mitattomuudesta ja riippumattomuudesta A. Kolmogorov P. Lévy Tommi Sottinen tommi.sottinen@helsinki.fi mathstat.helsinki.fi/ tsottine 1. joulukuuta

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Poisson-prosessi vakuutusmatematiikassa

Poisson-prosessi vakuutusmatematiikassa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anniina Kallio Poisson-prosessi vakuutusmatematiikassa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2016 Tampereen yliopisto Informaatiotieteiden yksikkö

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Rakenteiden Mekaniikka Vol. 41, Nro. 2, 2008, s Esko Valkeila

Rakenteiden Mekaniikka Vol. 41, Nro. 2, 2008, s Esko Valkeila Rakenteiden Mekaniikka Vol. 41, Nro. 2, 2008, s. 79 85 Ääriarvoista Esko Valkeila Tiivistelmä. Artikkelissa esitellään lyhyesti ääriarvojen teorian perusteet sekä niihin liittyvää tilastollista päättelyä.

Lisätiedot

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3 1 2 22.10.2001 Tilastollisten menetelmien perusteet I Syksy 2001 Opintojakson www-sivu: http://www.uta.fi/~strale/p2syksy.html Huom. 1. Luentomateriaali on tarkoitettu ko. opintojakson opiskelijoille.

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2 Sisältö 1 JOHDANTO 1 1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1. Tilastollinen päättely ja tieteellisyyden kriteerit TEOREETTINEN JAKAUMA 3.1 Satunnaismuuttuja

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Opintomoniste kurssille MAT-25 Todennäköisyyslaskenta, Tampereen teknillinen yliopisto Antti Perttula, Kimmo Vattulainen, Tia Suurhasko Versio 9/212 Sisältö 1 Todennäköisyys 3 1.1

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot