5. Lineaarisen optimoinnin perusprobleemat

Koko: px
Aloita esitys sivulta:

Download "5. Lineaarisen optimoinnin perusprobleemat"

Transkriptio

1 2 5. Lieaarise optimoii perusprobleemat Optimoitiprobleema o lieaarise optimoii tehtävä, jos kohdefuktio o lieaarie fuktio ja rajoitusehdot ovat lieaarisia yhtälöitä tai lieaarisia epäyhtälöitä. Yleisessä muodossaa tehtävä voi sisältää molempia rajoitustyyppejä. Lieaarise optimoii probleema voidaa aia saattaa stadardimuotoo, joita o kaksi: stadardi epäyhtälöprobleema ja stadardi yhtälöprobleema. Stadardi epäyhtälöprobleema ma z c + +c a + + a b a m + + a m b m,, Tässä optimoii suutaa voi olla myös miimoiti. Probleema voidaa esittää tiiviisti matriisie avulla: ma z c T A b, m missä, c, b ja A o m -matriisi. Probleema käypä joukko o silloi S { A b, }.

2 22 Stadardi yhtälöprobleema ma z c + +c a + + a b a m + + a m b m,, Tässäki optimoii suutaa voi olla myös miimoiti. Probleema voidaa samoi esittää matriisie avulla: ma z c T A b, m missä, c, b ja A o m -matriisi. Probleema käypä joukko o silloi S { A b, }.

3 2 Jokaie lieaarise optimoii tehtävä voidaa muutaa äihi stadardimuotoihi (kumpaa hyväsä):. Epäyhtälö " " saadaa yhtälöksi lisäämällä vasemmalle puolelle pelivaramuuttuja. 2. Epäyhtälö " " saadaa yhtälöksi vähetämällä vasemmalta puolelta ylijäämämuuttuja.. Yhtälöä "vase oikea" vastaa epäyhtälöpari "vase oikea" ja "vase oikea". 4. Jos etumerkkiehto k puuttuu (eli k o etumerkiltää vapaa muuttuja), ii muuttuja k voidaa korvata kahde ei-egatiivise muuttuja k + ja k - erotuksella: k k + - k -. Tämä esitys tulee yksikäsitteiseksi, jos lisäksi vaaditaa k k + + k -.

4 24. Lieaarise optimoititehtävä ratkaisut Lieaarise optimoii ratkaisualgoritmeista esimmäie kehitettii jo 94-luvu lopulla (George Datzig) ja tämä simple-algoritmia tuettu meetelmä o edellee käytetyimpiä optimoitialgoritmeja. Meetelmä perustuu siihe, että optimiratkaisuia o aia käyvä jouko kärkipiste, tai sitte äärellistä optimiratkaisua ei ole. Tämä ähdää (ku raka) seuraavasti: Koska lieaarise optimoii käypä joukko o aia moitahokas, jokaie käypä ratkaisu o Mikowski esityslausee perusteella lausuttavissa kärkipisteide i ja äärisäteide d j avulla: e + e N N + t d + t K d K ; e + e N, e i, t j. Silloi kohdefuktio z c T arvo pisteessä o z c T (e + e N N + t d + t K d K ) e c T + e N c T N + t c T d + t K c T d K. Rajoitetulla tehtävällä (ei äärisäteitä) kohdefuktio arvo o siis koveksi kombiaatio reaaliluvuista z i c T i, i,,n. Mutta äärellise moe reaaliluvu z i koveksi kombiaatio o väli [mi z i, ma z i ]. Siis kohdefuktio z saa maksimisa jossaki kärkipisteessä, samoi miimisä. Jos maksimiarvo saadaa useammassa kärkipisteessä, se saadaa jokaisessa äide koveksissa kombiaatiossaki. Esimerkiksi jos maksimi saavutetaa kahdessa kärkipisteessä, koko äide välillä oleva särmä o myös optimaalie. Sama pätee miimille. Rajoittamattomalla tehtävällä o säteitä. Jos kyseessä o maksimoiti ja jollaki säteellä d j o voimassa c T d j >, ii kohdefuktio saa rajattoma suuria arvoja, eli "ma z ". Jos taas miimoititehtävälle o jollaki säteellä d j voimassa c T d j <, ii "mi z - ".

5 25 Alla olevissa kuvissa kohdefuktio zc T tasa-arvosuoria o merkitty katkoviivalla. Kohdefuktio kasvusuuta o silloi vektori c suuta. Toisessa kuvassa mi z saavutetaa jaalla [, 2 ], kolmaessa puolisuoralla, ja eljäessä miz-. 2 c c c Edellä todetuista seuraa, että optimitehtävä ratkaisu voitaisii periaatteessa hakea tutkimalla kohdefuktio arvo äärellise moessa kärkipisteessä tai äärellise moessa äärisäteessä. Kärkipisteitä o esimerkiksi muotoa S { A b, } olevalla moitahokkaalla eimmillää m+ kappaletta, ku A o m -matriisi. Tämä o kuiteki erittäi opeasti kasvava luku m: ja : fuktioa, esimerkiksi.2 4, ku m5, 5. Näi olle ratkaisemie täydellisellä läpikäymisellä ei ole mahdollista reaalisissa ogelmissa.

6 2 Stadardimuotoisessa lieaarisessa optimoititehtävässä käypä joukko o avaruude ei-egatiivisessa ortatissa eli sopessa sijaitseva moitahokas. Kohdefuktio z tietty arvo z taas vastaa hypertasoa c T z, joka o z: tasa-arvopita. Siis geometrisesti lieaarisessa optimoiissa o kysymys sellaise tasa-arvopia hakemisesta, joka edustaa suurita (maksimoiti) tai pieitä (miimoiti) arvoa ja vielä leikkaa käypää joukkoa. Tämä tarjoaa mahdollisuude ratkaista kahde ja kolme muuttuja probleemat graafisesti. Esimerkiksi jos tehtävää o kahde muuttuja stadardi miimoititehtävä, ii käypä joukko o taso esimmäisessä eljäeksessä oleva moikulmio (taso versio moitahokkaasta). Optimi löydetää siirtämällä tasa-arvosuoraa z vakio väheemissuutaa -c ii kaua, kues se viimeise kerra hipaisee moikulmiota. Tämä kosketuskohta o yleesä moikulmio kärki, mutta voi olla myös koko sivu. Tai sitte voi käydä iiki, että tasa-arvosuoraa voi siirtää rajatta kohti äärettömyyttä, jolloi tehtävä ratkaisu o "mi z - ". 2 2 optimi -c Käypä joukko c + c22 s2, c + c22 s s2 < s

7 27 7. Simple-algoritmi Simple-algoritmi idea o geometrie ja yksikertaie. Siiä lähdetää jostaki kärkipisteestä liikkeelle ja tutkitaa ollaako optimikohdassa eli löytyykö aapurikärkipisteistä parempaa. Ellei, siirrytää johoki sellaisee aapurikärkee, jossa kohdefuktiolla o parempi arvo. Näi jatketaa, kues optimi o löydetty tai o havaittu sellaie äärisäde, joka ilmaisee rajattoma ratkaisu. Nämä geometriset tutkailut ja operaatiot voidaa tehdä matriisilaskealla. Otetaa perusprobleemaksi P stadardi yhtälömuotoie miimoititehtävä mi z c T A b (P), m missä, c, b, b ja A o m -matriisi. Oletamme lisäksi, että m ja että rak(a) m (eli suuri mahdollie). Nämä eivät ole yleisyyttä rajoittavia oletuksia. Jos imittäi olisi m>, ii yhtälöryhmässä A b olisi yhtälöitä eemmä kui tutemattomia ja liikkumavaraa optimoitii ei yleesä jäisi. Jos taas ragi o vajaa, ii se merkitsee, että matriisi A vaakariveissä o lieaarista riippuvuutta: joki rivi o muide lieaarikombiaatio. Tämä rivi ehto o silloi redudatti ja voidaa poistaa mallista. Redudati rajoitusyhtälö rivi saadaa selville esimerkiksi A T : redusoidusta riviporrasmuodosta. Kaikki e sarakkeet A T :ssa, joita vastaa rref(a T ):ssa johtava ykköe, muodostavat A T : sarake-avaruude kaa ja muut sarakkeet ovat iide lieaarikombiaatioita. Ja A T : sarakkeetha ovat A: vaakarivejä.

8 28 Edellä maiittii, että rajoitetussa tapauksessa optimi löytyy aia kärkipisteistä. Kärkipistee käsite o geometrie, jote tarvitsemme laskeallise tava se karakterisoitii. Koska rajoitusyhtälöissä A b o eemmä muuttujia () kui yhtälöitä (m), saadaa "ylimääräiset" -m ollaksi pakottamalla yhtälöryhmä, jossa o m muuttujaa ja m yhtälöä. Jos äi saatu yhtälöryhmä o ei-sigulaarie, ii saatua ratkaisua saotaa kataratkaisuksi. Jos ratkaisu o lisäksi kompoeteiltaa eiegatiivie, ii se o käypä kataratkaisu. Osoittautuu, että juuri ämä ovat geometrisesti katsoe käyvä jouko kärkipisteitä. { A b, } Ω Yhtälössä A b o siis m yhtälöä ja muuttujaa. Jos muuttujista asetetaa -m kpl olliksi, voidaa muut m kpl ratkaista jäljelle jääeestä yhtälöryhmästä, joka kerroimatriisi B o saatu A:sta poistamalla siitä ollattuja muuttujia vastaavat sarakkeet. Tämä sillä edellytyksellä, että B o käätyvä. Koska A: ragi o m, o A:ssa kuiteki olemassa tällaisia käätyviä m m-kokoisia osamatriiseja B. Oletetaa yt merkitöje yksikertaistamiseksi, että B koostuu A: m:stä esimmäisestä sarakkeesta, eli muuttujat m+,, o ollattu. Loput sarakkeet muodostavat matriisi N. Silloi yhtälö A b saa muodo A [B N] B N B B + N N b, missä B m ja N m +. Koska B o käätyvä, saadaa siis B ratkaistua muodossa

9 29 B B - b - B - N N. Jos tässä yt N, ii [ B T ] T [B - b ] T. Tällaie ratkaisu, jossa o -m kompoettia asetettu ollaksi, o siis tehtävä P kataratkaisu. Jos lisäksi B ii o käypä kataratkaisu. Matriisi B o vastaava kata. O mahdollista osoittaa, että geometrisesti tulkite o probleema P käypä kataratkaisu täsmällee silloi, ku se o käyvä moitahokkaa Ω A b, kärkipiste. { } Kataratkaisu o siis laskeallie esitystapa kärkipisteelle. Esimerkki Epäyhtälöt + 2 2, 2 rajoittavat taso moikulmio. Jos kaksi esimmäistä epäyhtälöä muutetaa pelivaramuuttujilla yhtälöiksi, saadaa probleema P mukaie käypä joukko , 2,, 4 eli matriisimuodossa A b,,

10 missä A [a, a 2, a, a 4 ] b. Silloi kaikki mahdolliset kataratkaisut ja vastaavat kaat B o lueteltu ohessa:., 2 B b B 4 N 2. [ ], 4 a a B, 4 B b B 2 N. [ ], a 2 a B, 2 B b B 4 N 4. [ ], 4 a 2 a B, 4 2 B b B N 5. [ ], 4 a a B, 4 B b B 2 N

11 Näi siis kataratkaisut ovat, 2,, 4, 5, jotka ovat käypiä 4 :ta lukuu ottamatta. Jos tarkastellaa tilaetta alkuperäisessä avaruudessa eli muuttujie, 2 avulla, ii käypie kataratkaisuide kaksi esimmäistä kompoettia atavat moikulmio kärkipisteet: 2

12 2 Koska optimi löydetää kärkipisteistä, o siis "vai" tiedettävä, mitkä m muuttujaa ollataa, jotta loput voidaa ratkaista. Vaihtoehtoja o eimmillää m m kappaletta, joista tosi vai osa o käypiä eli kärkipisteitä. Optimaalisuuskriteeri saadaa käyvälle kataratkaisulle [B - b, ] T, ku sijoitetaa se kohdefuktioo ja verrataa arvoa mielivaltaise käyvä ratkaisu atamaa arvoo: y [y B T, y N T ] T c T c T y c B T B - b c B T y B + c N T y N c B T (B - b-b - Ny N ) + c N T y N c B T B - b + (c N T - c B T B - N)y N c T + cˆ T N y N, missä s. redusoidut kustaukset muodostavat vektori cˆ T N c T N - c T B B - N. Nähdää siis, että jos redusoidut kustaukset ovat ei-egatiivisia, ii c T y c T eli o miimikohta. Jos joki redusoitu kustaus o egatiivie: c ˆs <, ii valitsemalla y N te s [,,, t,,, ] T, missä t> o s:ellä paikalla, saadaa

13 y B B - b - B - Ny N B - tb - Ne s B - tb - a s B - ta s *. Tässä matriisi A muuttujaa s vastaava sarake Ne s a s joka muuettua eli B - :llä kerrottua o B - a s a s *. Kohdefuktio arvo äi määritellyllä käyvällä ratkaisulla y o c T y c T + cˆ T N y N c T + ct ˆs < c T, jote kohdefuktio arvo pieeee, ku siirrytää :stä y:hy. Siirtymie riippuu jatkuvasti parametristä t >, joka kasvaessaa pieetää kohdefuktio arvoa. Jos vektori a s *, ii vektori y pysyy käypää kaikilla t >, jolloi tehtävä o rajoittamato ja mi z -. Jos taas vektorilla a s * o positiivisia kompoetteja: a js * >, j J, ii käypyyde takia o oltava y B B - ta s * myös iillä eli j - t a js *, j J. Tästä ähdää, että parametria t voi hiata ylöspäi ii pitkälle, että esimmäie äistä saavuttaa arvo olla. Näi tapahtuu, ku t mi { j /a js * a js * > }. Jos tämä miimisuhdeluku saavutetaa ideksillä r: t r /a rs *, ii se merkitsee, että etie positiivie muuttuja r o ollattu, ja uudeksi positiiviseksi muuttujaksi tilalle tulee s. Silloi matriisi A sarakkeista koostuvasta kaasta B o poistettu s :ää vastaava sarake ja tilalle o tullut r :ää vastaava A: sarake, jolloi kata o B. Geometrisesti tämä merkitsee sitä, että kataa B vastaavasta kärjestä o siirrytty yhdellä vaihdolla toisee kärkee, joka o aapurikärki eli viereie kärki. Sitä vastaa kata B.

14 4 Simple-algoritmi miimoititehtävälle mi z c T A b (P), missä, c rak(a) m., b m, b, A o m -matriisi, m ja. Haetaa esimmäie kärkipiste ja sitä vastaava kata B. BB, NN 2. Ratkaistaa B yhtälöstä B B b eli B B - b.. Lasketaa redusoidut kustaukset cˆ T N c T N - c T B B - N. 4. Jos cˆ T N, ii lopetetaa: B o optimaalie kata ja tehtävä optimiratkaisu o [ T B T ] T ja z mi c T B B. 5. Muute valitaa vektorista cˆ T N egatiivie kompoetti, olkoo vastaava muuttuja s. Ratkaistaa a * s yhtälöstä Ba * s a s eli a s * B - a s.. Jos a s *, ii lopetetaa, tehtävä ratkaisu o mi z Muute lasketaa suhdelukumiimi mi {( B ) j /a js * a js * > } ( B ) r /a rs *, josta käytetää hyväksi tieto, että se saavutetaa ideksillä r, joka vastaa muuttujaa q. 8. Muodostetaa uusi kata B vaihtamalla B:ssä siellä oleva matriisi A q. sarake A: s. sarakkeesee. 9. B B.. Jatketaa kohdasta 2.

15 5 Esimerkki mi z , 2. Muutetaa stadardii yhtälömuotoo pelivaramuuttujilla, 4 : , 2,, 4. Siis matriisi A 2 ja b.. Esimmäie käypä kataratkaisu ähdää yt helposti, koska A sisältää I: ja b. Silloi voidaa valita BI (eli muuttujat, 2 asetetaa ) B B [a a 4 ] 2, N N [a a 2 ] 4 2 (muuttujie ideksie kirjapito) 2 [B N b] [I B - N B - b] (o rref valmiiksi) B, cb, cn, ĉ T N c T N - c T B B - 2 N [- -] - [ ] [- -].

16 Redusoidut kustaukset ovat yt kaikki egatiivisia, valitaa iistä "egatiivisi" eli -: s 2, vastaava muuttuja 2, a 2 * B - a 2 Lasketaa suhdeluvut: /2, / piei, r2, vastaava muuttuja 4. Siis sarake a 2 otetaa matriisii B sarakkee a 4 tilalle: B B [a a 2 ], N [a a 4 ] 2 4 (muuttujie ideksie kirjapito) 2 [B N b] 5 [I B - N B - b] B, cb, cn, ĉ T N c T N - c T B B - 5 N [- ] - [ -] [- ] - [ -] [-4 ]. Redusoiduista kustauksista o yt esimmäie egatiivie: s, vastaava muuttuja, a * B - a 5. Lasketaa suhdeluvut: /5 aioa ja siis piei, r, vastaava muuttuja. Siis sarake a otetaa matriisii B sarakkee a tilalle: B 2.

17 7 2. B [a a 2 ], N [a a 4 ] 2 4 (muuttujie ideksie kirjapito) 2 [B N b] / 5 / 5 / 5 / 5 2 / 5 8/ 5 [I B - N B - b] / 5 2 / 5 8/ 5 B / 5, c B 8/ 5, cn, ĉ T N c T N - c T B B - / 5 / 5 N [ ] - [- -] / 5 2 / 5 [ ] - [-4/5 -/5] [4/5 /5]. Redusoidut kustaukset ovat yt ei-egatiivisia, eli OPTIMI! 4. Optimiratkaisu o siis [/5 8/5 ] T, z mi c T c T / 5 B B [- -] - 8/ 5 27/5. Pelivaramuuttujie arvot. Oheisessa kuviossa o algoritmi vaiheet kuvattua alkuperäiste muuttujie tasossa c Huom! Jos alkuperäie optimoititehtävä o maksimoitia, se o muutettava miimoiiksi, jotta em. muoto simple-algoritmista soveltuisi.

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on 4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä.

9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä. Vaasa yliopisto julkaisuja 225 U = 0.1213-0.9359-0.3307-0.1005-0.3430 0.9339 0.9875 0.0801 0.1357 S = V = >> 4.5221 0 0 0 2.2793 0 0 0 1.1642 0.0537-0.8212-0.5681 0.4414-0.4908 0.7512 0.8957 0.2911-0.3361

Lisätiedot

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide

Lisätiedot

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,

Lisätiedot

7. Aliavaruudet. Lineaariset yhtälöryhmät

7. Aliavaruudet. Lineaariset yhtälöryhmät 7 7 Aliavaruudet Lieaariset yhtälöryhmät Tässäki luvussa kerrataa ja täydeetää jo kurssilla Laaja matematiikka esiityeitä asioita Erityisesti yhtälöryhmie teoriaa ja ratkaisemisee paeudutaa perusteellisesti

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu 81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje

Lisätiedot

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x = TAMMI PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ PARITTOMAT RATKAISUT 7 Tiedosto vai hekilökohtaisee käyttöö. Kaikelaie sisällö kopioiti kielletty. a) g( ) = 5 + 6 Koska g o eljäe astee polyomi, ii

Lisätiedot

5.3 Matriisin kääntäminen adjungaatilla

5.3 Matriisin kääntäminen adjungaatilla Vaasa yliopisto julkaisuja 08 Sec:MatIvAdj 53 Matriisi käätämie adjugaatilla Määritelmä 3 -matriisi A adjugaatti o -matriisi adj(a) (α i j ), missä α i j ( ) i+ j det(a ji ) (, joka o siis alkioo a ji

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: 10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus

Lisätiedot

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 7 Luotettavuus Koherentit järjestelmät Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava

Lisätiedot

3.2 Polynomifunktion kulku. Lokaaliset ääriarvot

3.2 Polynomifunktion kulku. Lokaaliset ääriarvot 3. Polyomifuktio kulku. Lokaaliset ääriarvot Tähäastiste opitoje perusteella osataa piirtää esiasteise polyomifuktio kuvaaja, suora, ku se yhtälö o aettu. Osataa myös pääpiirtei hahmotella toise astee

Lisätiedot

1 Eksponenttifunktion määritelmä

1 Eksponenttifunktion määritelmä Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ,, x1 x. Matriiseihin perehtyminen voidaan perustella useilla järkisyillä.

Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ,, x1 x. Matriiseihin perehtyminen voidaan perustella useilla järkisyillä. Vaasa yliopisto julkaisuja 71 4 MATRIISIT JA MATRIISILASKUT Ch:Matrix Sec:MatLaskut 4.1 Matriisi ja matriisilaskut Matriisi o suorakulmaie lukukaavio. Matriiseja ovat esimerkiksi: 2 0.4 8 0 a b,, x1 x

Lisätiedot

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k = Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005

Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005 7303045 Laaja matematiikka Kertaustehtäviä Viikko 7/ 005 Tehtävät ovat Laaja matematiikka : ja : alueelta olevia etisiä välikoe- ja tettitehtäviä. Alkupää tehtävät liittyvät yleesä kurssii ja loppupää

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018 Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie 1999 Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a 1,a,...,a ja b 1,b,...,b pätee Cauchy epäyhtälö (a 1 b 1 + a

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x +. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x < 9. Itse

Lisätiedot

811312A Tietorakenteet ja algoritmit II Algoritmien analyysi

811312A Tietorakenteet ja algoritmit II Algoritmien analyysi 811312A Tietoraketeet ja algoritmit 2016-2017 II Algoritmie aalyysi Sisältö 1. Algoritmie oikeellisuus 2. Algoritmie suorituskyvy aalyysi 3. Master Theorem 811312A TRA, Algoritmie aalyysi 2 II.1. Algoritmie

Lisätiedot

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770. JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa

Lisätiedot

Noora Nieminen. Hölderin epäyhtälö

Noora Nieminen. Hölderin epäyhtälö Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise

Lisätiedot

3 Lukujonot matemaattisena mallina

3 Lukujonot matemaattisena mallina 3 Lukujoot matemaattisea mallia 3. Aritmeettie ja geometrie joo 64. a) Lukujoo o aritmeettie joo, joka yleie jäse o a 3 ( ) 4 34 4 4 b) Lukujoo o geometrie joo, joka yleie jäse o c) Lukujoo o geometrie

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x) BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Vuosien Baltian tie -kilpailutehtävien ratkaisuja

Vuosien Baltian tie -kilpailutehtävien ratkaisuja f Vuosie 000 08 Baltia tie -kilpailutehtävie ratkaisuja 00.. Koska (x+y+z) =(x+y+z)(x +y +z +xy+xz+yz) =x +y +z +xy + x y+y z+yz +x z+xz +6xyz, havaitaa, ettäkutehtävä yhtälöide vasemmista puolista kaksi

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( ) JYVÄSKYLÄN YLIOPISTO Harjoituste 3 ratkaisut MATEMATIIKAN JA TILASTOTIETEEN LAITOS Topologiset vektoriavaruudet 3.1. Jokaie kompakti joukko K R määrää fuktioavaruudessa E = C(R ) = {f : R R f o jatkuva}

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Ortogonaalisuus ja projektiot

Ortogonaalisuus ja projektiot MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.

2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0. 0. Maksimiperiaate Laplace-yhtälölle 0.. Maksimiperiaate. Alueessa Ω R määritelty kaksi kertaa erivoituva fuktio u o harmoie, jos u = j= = 0. 2 u x 2 j Lause 0.. Olkoot Ω R rajoitettu alue ja u C(Ω) C

Lisätiedot

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n. POHDIN projekti Neliöide summa Lukujoo : esimmäise jäsee summa kirjoitetaa tavallisesti muotoo S ai i 1. Aritmeettisesta lukujoosta ja geometrisesta lukujoosta muodostetut summat voidaa johtaa varsi helposti.

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Tilastollinen päättely II, kevät 2017 Harjoitus 3B Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.

Lisätiedot

EX1 EX 2 EX =

EX1 EX 2 EX = HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,

Lisätiedot

Pseudoalkuluvuista ja alkulukutestauksesta

Pseudoalkuluvuista ja alkulukutestauksesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mia Salmi Pseudoalkuluvuista ja alkulukutestauksesta Luootieteide tiedekuta Matematiikka Kesäkuu 2017 Tamperee yliopisto Luootieteide tiedekuta SALMI, MINNA: Pseudoalkuluvuista

Lisätiedot

Tilastollinen todennäköisyys

Tilastollinen todennäköisyys Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot