DYNAMIIKAN PERUSKÄSITTEET

Koko: px
Aloita esitys sivulta:

Download "DYNAMIIKAN PERUSKÄSITTEET"

Transkriptio

1 DYNAMIIKAN PERUSKÄSITTEET Helsingin yliopisto Fysiikan laitos DFCL3 Hahmottava kokeellisuus Marja Martelius Irmeli Valtiala 2000

2 1 SISÄLLYSLUETTELO Sivu A. Perushahmotus eli tunnistava ja luokitteleva empiria 2 A1. Kappale 2 A2. Vuorovaikutus ja kappale 2 A3. Liiketila 3 A4. Liiketilan muutos 4 A5. Etävuorovaikutukset 5 A6. Kosketusvuorovaikutukset 6 A7. Muuttumaton liiketila ja massan hitaus 8 B. Esikvantifioiva eli mallintava empiria 9 B1. Liiketilan muutoksen riippuvuus kappaleesta (hitaus) ja vuorovaikutuksesta 9 B2. Vuorovaikutusten yhteisvaikutus 10 C. Kvantifiointi 11 C1. Nopeus 11 C2. Hidas massa 12 D. Strukturointi 16 E. Prosessin kuvaus 17 Lähdeluettelo 18 Liitteenä Dynamiikan peruskäsitteet käsitekartta 19

3 2 A. Perushahmotus eli tunnistava ja luokitteleva empiria A1. Kappale Mekaniikassa kappaleiksi sanotaan yleisesti kaikkia aineellisia olioita. Kappaleita voivat olla esimerkiksi: Muodon säilyminen on kiinteiden kappaleiden perusominaisuuksia. Kappaletta, jonka kaikkien hiukkasten väliset etäisyydet pysyvät muuttumattomina, kutsutaan jäykäksi kappaleeksi. Heitettyä kiveä, kuulaa ja kiekkoa voidaan pitää jäykkinä kappaleina. Monet taivaankappaleet, kuten asteroidit, kuut ja pienet planeetat ovat kohtalaisen hyviä jäykkiä kappaleita. Maatakin voidaan usein pitää jäykkänä kappaleena, mutta sen sulasta sisuksesta ja vesivaipasta aiheutuu poikkeamaa liiketilaan. Tätä eroa liiketilassa voidaan havainnollistaa pyörittämällä rinnakkain kovaksi keitettyä ja raakaa kananmunaa (Kurki-Suonio, 1990). A2. Vuorovaikutus ja kappale Vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti. Kappaletta, joka ei ole vuorovaikutuksessa muiden kappaleiden kanssa, sanotaan vapaaksi kappaleeksi. Vuorovaikutus Pallon osuessa tennismailaan vaikuttaa maila palloon ja pallo mailaan. Pallo pysähtyy ja sen muoto muuttuu hetkellisesti, sitten se lentää uuteen suuntaan. Meteorin osuessa maahan Kpl:n liiketila muuttaa Kpl:n muoto kappaleiden vuorovaikutuksesta johtuen Maan pinta muuttuu ja meteorin lento päättyy (kuva 1.) (Hirvonen et al, 1996).

4 3 Kuva 1. Vuorovaikutus ja kappaleen muodonmuutos Kappaleen liiketilan muuttuminen voi aiheutua vain vuorovaikutuksista toisten kappaleiden tai ympäröivän aineen kanssa. Toisaalta vuorovaikutukset ilmenevät nimenomaan kappaleen liiketilan muuttumisena. Kahden vuorovaikuttavan kappaleen liiketilat muuttuvat sitä voimakkaammin, mitä voimakkaampi niiden välinen vuorovaikutus on (Kurki-Suonio, 1990). Esimerkiksi pallon liiketilan muuttuminen riippuu vuorovaikutuksen voimakkuudesta. Hiljaa potkaistaessa pallon liiketila muuttuu vähän, mutta esimerkiksi huippujalkapalloilijan potkaisu saa aikaiseksi melkoisen liiketilan muutoksen. A3. Liiketila Kappale liikkuu, kun sen paikka, asento tai muoto muuttuu. Kappale etenee, kun sen paikka muuttuu, ja pyörii, kun se kääntyy. Värähtely on taasen liikettä, jossa kappaleen muoto muuttuu (Lavonen et al, 1999 ). Eteneminen : Esimerkkejä etenemisestä löytyy vaikka kuinka paljon mm.opettaja kulkee luokassa tai pallo vierii tasoa pitkin yms.

5 4 Pyöriminen: Esimerkeiksi pyörimisliikkeestä käy hyrrän tai vanteen pyöriminen, auton renkaat liikkeessä yms. Värähtely: Värähtelyssä kappaleen muoto muuttuu ja siinä esiintyy jaksollista liikettä Esimerkkeinä värähtelystä ovat mm. värähtelevä jousi, heiluri ja värähtelevä viivain. A4. Liiketilan muutos Törmäys: Liikkeessä olevan vaunun annetaan törmätä kirjaan, jolloin vaunun nopeus pienenee ja sen suunta muuttuu sekä kirja lähtee liikkeelle eli kaatuu. Muutoksen aiheuttaa vaunun ja kirjan välinen kosketusvuorovaikutus. Pysähtyminen: Hidastuvassa liikkeessä oleva vaunu pysähtyy, mikä aiheutuu vaunun pyörien ja pöydän pinnan välisestä kosketusvuorovaikutuksesta. Liikkeelle lähtö: Paikallaan olevaa vaunua tönäistään kädellä, jolloin vaunu lähtee liikkeelle. Liiketilan muutoksen aiheuttaa käden ja vaunun välinen kosketusvuorovaikutus.

6 5 Suunnan muutos: Pallo kimpoaa seinästä, jolloin sen liikkeen suunta muuttuu. Muutoksen aiheuttaa pallon ja seinän välinen kosketusvuorovaikutus. Pallo Puhallin Kääntyminen saadaan aikaiseksi esimerkiksi puhaltimella ja kevyellä pingispallolla. Pallo laitetaan vierimään pöytää pitkin ja sen liikeradan suunta muuttuu pallon tullessa puhaltimen ilmavirtaan. Pallon liikerata ei kuitenkaan muutu kokonaan ilmasuihkuin suuntaiseksi kuten kuvassa on esitetty. Hidastuminen ja kiihtyminen Pallo vierii kaltevaa tasoa ylöspäin, jolloin sen liiketila muuttuu hidastuen, ja kun pallo vierii kaltevaa tasoa alaspäin, sen liiketila muuttuu kiihtyvällä vauhdilla. Sama vuorovaikutus aiheuttaa sekä pallon hidastumisen sen vieriessä tasoa ylös, että pallon liikkeen kiihtymisen sen vieriessä tasoa alas. Pallon liiketila muuttuu suunta huomioon ottaen molemmissa tapauksissa samalla tavalla, kohti alamäkeä. Pallon liiketilaa muuttava vuorovaikutus on pallon ja tason välisen tukivuorovaikutuksen ja pallon ja Maan välisen gravitaatiovuorovaikutuksen yhteisvaikutus. Yhteisvaikutuksen voi hahmottaa seuraavasti: i) Gravitaatio vaikuttaa pystysuunnassa, eikä voi muuttaa pallon liikettä vaakasuunnassa. ii) Tason tukivuorovaikutus vaikuttaa tason suuntaa vastaan kohtisuorassa, joten se ei voi muuttaa pallon liikettä tason suunnassa. Täten molempia tarvitaan, jotta pallo liikkuisi niin kuin se liikkuu. A5. Etävuorovaikutukset:

7 6 Gravitaatio: Kun pallo putoaa suoraan alaspäin, sen liiketila muuttuu kiihtyen ja palloa ylöspäin heitettä- essä hidastuen. Palloa vinosti heitettäessä sen liikettä muuttaa Maan ja pallon välinen gravitaatiovuorovaikutus. Näissä jokaisessa tapauksessa on kysymyksessä etävuorovaikutus. Kaikkien kappaleiden välillä vaikuttaa gravitaatiovuorovaikutus, jonka vaikutuksesta kappaleet pyrkivät lähestymään toisiaan (Hirvonen et al, 1996). Maan pinnalla kaikki kappaleet ovat aina jatkuvassa vuorovaikutuksessa Maan kanssa. Sähköinen: Sähköisesti varautunut eboniittisauva Vesinoro Sähköisesti varautunut eboniittisauva tuodaan vesinoron lähelle. Kyseessä on etävuorovaikutus. Mikäli laitetaan lähekkäin toisiaan kaksi sähköisesti varattua eboniittisauvaa jalustalle, missä ne pääsevät vapaasti pyörimään, huomataan että molempien liiketila muuttuu eli sähköinen vuorovaikutus vaikuttaa kumpaakin kappaleeseen. Magneettinen: Vasemman puoleisessa tapauksessa magneetit hylkivät toisiaan ja oikean puoleisessa vetävät toisiaan puoleensa. Kun magneetit päästetään irti liikkuvat vasemman puoleisessa tapauksessa vastakkaisiin suuntiin ja oikean puoleisessa tapauksessa magneetit liikkuvat toisiaan kohti. Magneetit eivät kosketa toisiaan eli kyseessä on etävuorovaikutus.

8 7 Induktio: Magneetti työnnetään käämin sisään. Muuttuva magneettikenttä synnyttää eli indusoi käämiin jännitteen. Kyseessä on etävuorovaikutus, koska magneetti ja käämi eivät ole kosketuksissa toistensa kanssa. Mikäli käämi ripustetaan lankojen varaan, huomataan, että induktio aiheuttaa myös kappaleiden liiketilaa muuttavan vuorovaikutuksen. A6. Kosketusvuorovaikutukset: Tuki: Kun kirja on kädessä, se on sekä gravitaatiovuorovaikutuksessa Maan kanssa että kosketusvuorovaikutuksessa käden kanssa. Tukivuorovaikutuksen vuoksi se ei putoa maahan. Tukivuorovaikutus tuntuu kädessä, joten on ilmeistä että vuorovaikutus vaikuttaa molempiin osapuoliin. Tukivuorovaikutuksesta esimerkkeinä käyvät kirja pöydällä, oppilas istumassa tuolilla jne. Väliaineen vastus: Jos kappale liikkuu nesteessä tai ilmassa, siihen vaikuttaa näistä väliaineista seuraava vastusvoima. Ilmanvastuksen voi tuntea esimerkiksi työntämällä käden ulos liikkuvan auton ikkunasta ja nesteen vastuksen huomaa, kun yrittää juosta vedessä (Hirvonen et al, 1996). Laboratorio-olosuhteissa voi nesteen vastusta havainnoida vaikka liikuttamalla kättä vesiammeessa käsi nyrkissä ja kämmen avoinna. Jos vesiastia laitetaan vaunun päälle ja meloo vettä, niin vaunu lähtee liikkeelle. Vuorovaikutus ilmenee molemmissa kappaleissa. Noste: Punnus ilmassa ja vedessä jousivaa alla havainnoiden: Ilmassa punnus on vuorovaikutuksessa Maan kanssa ja vedessä punnus on vuorovaikutuksessa sekä Maan että

9 8 veden kanssa, jolloin jousivaa an venymä on pienempi. Mikäli käytetään kappaletta, joka kelluu pinnalla, huomataan että noste kumoaa kappaleen painon. Tästä voidaan päätellä, että vuorovaikutukset ovat erisuuntaiset. Gravitaatiovuorovaikutus alaspäin ja veden tukivoima eli noste ylöspäin. Mikäli vesiastia ripustetaan jouseen, ja kun kappale lasketaan astiaan, jousi venyy. Eli noste vaikuttaa myös veteen. Adheesio: Adheesiota voi demonstroida esimerkiksi 10 ml mittalasin avulla. Kun siihen kaadetaan vettä, huomataan että vedenpinta ei ole tasainen vaan vesi nousee laidoilta ylöspäin. Vesimolekyylit takertuvat lasin pintaan ja veden pintajännitys pitää pinnan koossa. Kapillaari-ilmiötä voi havainnoida laittamalla jonkun kasvin karamellivärillä värjättyyn veteen. Värjätty vesi nousee kasvin ohuissa putkilosoluissa kapillaari-ilmiön vaikutuksesta kasvin yläosiin. Koheesio: Kappaleen (vesipisara) pysyy koossa koheesio vuorovaikutuksen ansiosta. Vuorovaikutusta voi demonstroida tiputtamalla esimerkiksi pipetin avulla muutamia vesipisaroita tai puhaltamalla saippuakuplia. Kitka vuorovaikutuksena: Kitkavuorovaikutusta voidaan demonstroida radioohjattavalla autolla. Ensin autoa ajetaan pöydällä ja huomataan, että vain auto liikkuu. Mutta kun auto irrotetaan alustastaan levyllä, joka on esimerkiksi kynien päällä, huomataan että sekä auto että myöskin alusta eli tie liikkuvat, mutta eri suuntiin.

10 9 A7. Muuttumaton liiketila ja kappaleen hitaus: Kappaleen hitautta voi demonstroida pöytäliinanveto ja putoava punnus - kokeilla. Pöytäliinan vedossa nopeasti vedettäessä punnus jää paikalleen, mutta hitaasti vedettäessä punnus liikkuu paperin mukana. Nopeasti vedettäessä raskas punnus ei ehdi hitautensa johdosta mukaan. Putoava punnus kokeessa tarkoituksena on vetää narusta hitaasti ja nopeasti. Hitaasti vedettäessä naru katkeaa punnuksen yläpuolelta ja nopeasti vedettäessä punnuksen alta. Nopeasti vedettäessä alemman langan vuorovaikutus ehtii vaikuttaa vain lyhyemmän ajan, jolloin punnuksen liiketila muuttuu niin vähän, ettei ylempi lanka veny tarpeeksi katketakseen. Ilmiö johtuu myös punnuksen hitaudesta (Hirvonen et al, 1998). Liikkeen jatkavuuden lakia voi demonstroida seuraavin kokein. Kuula kiinnitetään sinitarralla herkkäliikkeiseen vaunuun ja annetaan vaunun liikkua kaltevaa tasoa alaspäin. Vaunu törmää esteeseen, mutta kuula jatkaa liikettään. Toisessa tapauksessa vetäistään nopeasti vaunusta, jolloin kuula jää lähes paikalleen vaikka vaunu lähtee liikkeelle.

11 10 B. Esikvantifioiva eli mallintava empiria B1. Liiketilan muutoksen riippuvuus kappaleesta (hitaus) ja vuorovaikutuksesta a) Vuorovaikutus vaikutus molempiin osapuoliin voidaan havainnollistaa siten, että pyydetään toista oppilasta (samankokoiset henkilöt) yrittämään saada toinen liikkeelle vetämällä tai työntämällä siten, että itse pysyy paikallaan. Huomataan, ettei se onnistu, joten vuorovaikutus vaikuttaa aina molempiin osapuoliin samanaikaisesti, ja että vuorovaikutus toisen kappaleen kanssa aiheuttaa liiketilan muutoksen. Varioimalla oppilaiden kokoeroja (iso ja pieni jne.) havaitaan, että tuolit lähtevät eri nopeuksilla liikkeelle. b) Sitä, että vuorovaikutus vaikuttaa molempiin osapuoliin, voidaan demonstroida radio-ohjattavalla autolla. Ensin autoa ajetaan pöydällä ja huomataan, että vain auto liikkuu. Mutta kun auto irrotetaan alustastaan levyllä, joka on esimerkiksi kynien päällä, huomataan että sekä auto että myöskin alusta eli tie liikkuvat, mutta eri suuntiin. Kun auton massaa kasvatetaan, huomataan että nopeudet muuttuvat ja pikku hiljaa liiketilan muutosta toisessa osapuolessa ei enää havaita, kuten on tilanne auton liikkuessa Maan pinnalla. c) Kappaleiden hitauksia voidaan verrata, kun asetetaan kahden tasaisella alustalla olevan vaunun väliin jousi ja työnnetään vaunut lähekkäin siten, että jousi puristuu. Jousen välittämä vuorovaikutus työntää vaunut liikkeelle, kun otteet vaunuista irrotetaan. Vuorovaikutuksen voimakkuutta muutetaan varioimalla vaunun laukaisujousen puristusta. Vaunulla A ja vaunulla Bon erilainen hitaus. Huomataan, että kevyempi vaunu saa aina suuremman nopeuden kuin raskaampi vaunu (etenee samassa ajassa pi-

12 demmälle), vaikka molemmat vaunut kokevat saman vuorovaikutuksen (Lavonen et al, 1999). 11 B2. Vuorovaikutusten yhteisvaikutus a) Vuorovaikutusten yhteisvaikutusta kappaleen liiketilan muuttumiseen voidaan tutkia kuvassa esitetyn koejärjestelyn avulla varioimalla punnusten suuruutta. Kuvassa 1 vaunun liiketila ei muutu, kun vaunun molemmissa päissä on samanlaiset punnukset. Kun vaunun toiseen päähän laitetaan vain punnus, vaunun nopeus kasvaa. Kun vaunun toisessa päässä on yksi punnus ja toisessa kaksi samanlaista punnusta havaitaan, että vaunu lähtee liikkeelle. b) Puhallin ja kevyt putoava pallo. Kun pallon hitautta muutetaan eli käytetään painavampaa ja kevyempää palloa, havaitaan että puhaltimen aikaansaama väliaineen vastusriittää kevyen pingispalloon vaikuttavan gravitaatiovuorovaikutuksen kumoamiseen, muttei raskaamman tennispallon. Pingispallo Puhallin

13 12 C. Kvantifiointi C1. Vapaan kappaleen idea ei vuorovaikutuksia ; tasainen liike. Nopeus Vaunu Etäisyysanturi Puhallin Kuva 2. Tasainen liike ilmatyynyradalla Vapaana kappaleena toimi iltatyynyradan vaunu (kuva 2.), joka lähetettiin liikkeelle eri nopeuksilla ja vaunu jatkoi tasaista liikettään kitkattomalla radalla. Ultraäänen heijastumiseen perustuva etäisyysanturi rekisteröi matka aika (t, s) pareja. Mittauslaitteisto oli liitetty tietokoneeseen. Liikettä toistettiin tönäisemällä vaunua eri voimakkuuksilla, jolloin saatiin tietokonemittausjärjestelmästä saatiin useita erilaisia suoria kuvaamaan liikettä. Eli mitä nopeampi liike, sitä suurempi kulmakerroin (kuva 3.). Kuva 3. Kappaleen t, s parit tasaisessa liikkeessä Suoran fysikaalinen kulmakerroin määritellään suureeksi nopeus : v = s / t.

14 13 C2. Hitauksien vertaaminen törmäyskokeella. Hidas massa Hitauksien suhde Koska liiketilan muuttuminen aiheutuu vuorovaikutuksista toisten kappaleiden kanssa, selvin tapa verrata kahden kappaleen hitauksia on saattaa ne keskinäiseen vuorovaikutukseen, yksinkertaisesti antamalla niiden törmätä. Sillä, jonka nopeus muuttuu vähemmän, on suurempi hitaus (Kurki-Suonio, 1990). Törmäytetään ilmatyynyradalla kahta kappaletta A ja B idealisoidussa tilanteessa, jossa ainoastaan törmäyksen kosketusvuorovaikutus muuttaa kappaleiden liiketilaa Törmäyksiä varioidaan siten, että vaunuille annetaan eri lähtönopeuksia, muutetaan törmäyksen luonnetta (yhteentörmäys ja peräänajo) ja kimmoinen (kuva 4.) sekä kimmoton (kuva 5.) törmäys. Valoporteilla mitataan vaunujen A ja B nopeudet ennen ja jälkeen törmäyksen. Kun vaunuissa on kumilankapuskurit (kimmoinen), vaunut liikkuvat törmäyksen jälkeen vastakkaisiin suuntiin (kuva 4. )Kun törmäyskohtiin asennetaan asennetaan sinitarrapuskurit (kimmoton), vaunut takertuvat toisiinsa törmäyksessä ja niiden loppunopeudet ovat yhtäsuuret (kuva 5.). A B A Piikkipuskuri B Muovailuvahapuskuri Kuva 4. Kimmoinen törmäys Kuva 5. Kimmoton törmäys

15 14 Mittaustulokset on esitetty kuvassa 6. Havaitaan, että k AB =- v B / v A on vakio, törmäyksen voimakkuudesta ja luonteesta riippumatta. Suhde on kappaleparikohtainen vakio, ns törmäysvakio (Kurki-Suonio, 1990), joka ilmaisee kappaleiden hitauksien suhteen. k AB = 0, ,8 0,7 0,6 y = 0,7382x - 0,0099 v B (m/s) 0,5 0,4 0,3 0,2 0, ,2 0,4 0,6 0,8 1 v A (m/s) Kuva 6. Kappaleiden A ja B hitauksien suhde Törmäyslaki: Vuorovaikuttavien kappaleiden nopeudenmuutokset ovat vastakkaissuuntaiset ja niiden itseisarvojen suhde on riippumaton sekä vuorovaikutuksen voimakkuudesta että sen luonteesta (Kurki-Suonio, 1990). Vertailukappale, kappaleen hitaus Hitauden käsite pyritään yleistämään kappaleparikohtaisesta suhteesta kappalekohtaiseksi suureeksi törmäyttämällä kappaleita A ja B kolmannen kappaleen C kanssa. v C (m/s) 0,25 0,20 y = 0,803x + 0,0113 0,15 0,10 0,05 0,00 0,00 0,05 0,10 0,15 0,20 0,25 v A (m/s) Kuva 7. Kappaleiden A ja C hitauksien suhde

16 15 v C (m/s) 0,25 0,20 y = 1,3225x - 0,0115 0,15 0,10 0,05 0,00 0,00 0,05 0,10 0,15 0,20 v B (m/s) Kuva 8. Kappaleiden B ja C hitauksien suhde Vakiot k AC (k AC = 0,80297) ja k BC (k BC = 1,322534) ovat kappaleiden A ja B hitaudet C:n hitaudella mitattuna, joten A:n ja B:n keskinäisissä törmäyksissä määritettävän vakion tulisi olla yhtä suuri kuin näiden suhde, k AB = k AC / k BC. k AC / k BC = 0, ( vrt. k AB = 0,738195) Tuloksissa on melko suuri ero vaikkakin suuruusluokka on oikea. Törmäyttämällä kappaleita on varmasti tapahtunut virheitä. Varsinkin ne törmäykset, joissa kappleen nopeus oli suuri, oli erittäin vaikeaa saada luettua kuvaajalta sopivaa suoranosaa, jonka perusteella suoran kulmakerroin määritettiin. Muutamia mittaustuloksia oli poistettava aineistosta niiden epäluotettavuuden vuoksi. Mittaustulosten perusteella voidaan sanoa, että kappaleella itsellään on tietty hitaus, joka ei riipu vuorovaikutuksen toisesta osapuolesta. Hitaus on siis kappaleen ominaisuus. Yhdistelylaki: k AB = k AC / k BC (Kurki-Suonio, 1990) Additiivisuus Hidasta massaa kuvaavan suureen pitää olla sellainen, että kahden yhdistetyn kappaleen hitaus on yhtäsuuri kuin kappaleiden hitauksien summa. Törmäyskokeita jatketaan siten, että yhdistetään kappaleet A ja B yhteen yhdeksi kappaleeksi, ja törmäytetään sitä kappaleen C kanssa.

17 16 v C (m/s) 0,40 0,30 0,20 0,10 y = 2,2067x - 0,0071 0,00 0,00 0,05 0,10 0,15 0,20 v A+B (m/s) Kuva 9. Yhdistetyn ja vertailukappaleen hitauksien suhde Mittaustuloksista saadaan, että k A+B, C = 2, Kappalekohtaisiksi hitauksien suhteiksi saatiin edellisessä kokeessa k AC = 0,80297 ja k BC = 1,322534, joten laskemalla nämä yhteen saadaan tulokseksi k AC + k BC = 2, Havaitaan, että k A+B, C = k AC + k BC, joten tästä seuraa, että kappaleen hitaus on additiivinen suure. Yhteenlaskulaki: k A+B = k A + k B (Kurki-Suonio, 1990) Hitaan massan määritelmä Törmäyttämällä kappaleita saman vertailikappaleen O kanssa voidaan määrittää kappalekohtaiset vakiot k A = k A,O ja k B = k B,O, jolloin keskinäinen hitaussuhde on k AB = k A /k B. Suhteella k ei ole dimensiota. Vertailukappaleen hitaaksi massaksi voidaan kuitenkin määritellä (esimerkiksi) m O = 1 kg, joten hitaan massan määritelmäksi tulee m A = k A. m O (Ohje) eli massa on suure, joka ilmaisee kappaleen hitauden (Lavonen et al, 1999).

18 17 Mielenkiinnon vuoksi voidaan verrata vakioita k AC, k BC ja k A+B,C, vaunujen punnittuihin massoihin sen toteamiseksi, että ko. vakiot, jotka ovat määritelmän mukaan tutkittujen kappaleiden hitaiden massojen suhteet, ovat yhtäsuuret kuin vastaavat painavien massojen suhteet, m A /m C, m B /m C ja m (A+B) /m C, painavaa massaa ei ole vielä määritelty. Vertailu kuitenkin osoittaa tulosten luotettavuutta ja tuloksista nähdään, että mittauksissa on tapahtunut joitakin virheitä, mutta tulokset ovat kuitenkin suuruusluokaltaan melko oikeita. k AC = 0,80297 m A /m C = 0, k BC = 1, m B /m C = 1, k A+B,C = 2, m (A+B) /m C = 2, D. Strukturointi Hitaan massan määritelmän pohjalta saadaan vaunujen A ja B törmäykselle m m B A 1/ k = 1 / k BC AC = k k AC BC = k AB v = v B A Nopeuksien muutoksien suunnat huomioimalla, saadaan m m B A v = v A B m v A B = m v B B Eli m v voidaan määrittää suureeksi, joka muuttuu kummallakin vaunulla törmäyksessä yhtä paljon, mutta eri suuntiin. Jos määritellään liikemääräksi p = mv, niin liikemäärän muutos p = m v kuvaa kappaleiden liiketilan eli liikemäärän muutosta niin, että edellä mainittu ehto täyttyy. Törmäyksessä kappaleiden liikemäärät muuttuvat siis yhtä paljon vastakkaisiin suuntiin, eli kokonaisliikemäärä säilyy. Toisaalta, koska liikemäärän muutoksen itseisarvo on kappaleesta riippumaton, se on vuorovaikutukselle ominainen suure. Se ilmaisee vuorovaikutuksen voimakkuuden. Mitä voimakkaampi vuorovaikutus on, sitä enemmän siihen osallistuvien kappaleiden liikemäärät muuttuvat, ja kääntäen. Voidaan siis ottaa käyttöön vuorovaikutuksen kokonaisvoimakkuutta esittävä suure impulssi (Kurki-Suonio, 1990).

19 18 Kappaleen liikemäärän muutos on yhtä suuri kuin vuorovaikutuksen sille antama impulssi, p = I, ja Vuorovaikutus antaa kappaleille yhtäsuuret vastakkaissuuntaiset impulssit, I A ja I B = -I A. E. Prosessin kuvaus Hahmottava kokeellisuus- kurssin ensimmäinen kokonaisuus oli tämä dynamiikan peruskäsitteet, joka oli kaikille kurssilaisille pakollinen. Aihekokonaisuuden suunnitelma alkoi käsitteiden poiminnalla ja miten eri käsitteet syntyvät ja miten ne liittyvät toisiinsa. Käsitekartan laatiminen oli ensimmäinen työvaihe. Se ei ollut mitenkään helppo työ, vaan sitä piti työstää monesti. Ensimmäisenä vaikeutena koimme aihekokonaisuuden laajuuden, mitkä käsitteet kuuluvat mukaan ja mitä pitää jättää pois. Tämä asia kun selkeni, alkoi suunnitelma hahmottua. Käsitekartan valmistuttua aloimme miettiä millä kokeilla käsitteitä voidaan havainnollistaa, esikvantifioida ja mitkä käsitteet täyttyy tarkemmin määrittää kvantifioinnin kautta. Koejärjestelyt tulivat pikkuhiljaa suunnitelmaa kirjoittaessa esille ja samalla tuli mietittyä, miten hyvin koejärjestely havainnollistaa eri käsitteitä. Varsinaiset kvantifiointikokeet suoritettiin vakio-ohjeiden mukaisesti fysiikan laitoksen laboratoriossa. Kumpikaan meistä ei ollut aiemmin käyttänyt tietokonepohjaista mittausjärjestelmää eikä myöskään tutustunut aiemmin ilmatyynyradan käyttöön. Alkuhankaluuksien jälkeen mittaukset sujuivat melko ongelmitta, mutta mittaustuloksia analysoitaessa havaittiin, että jotkin mittaustulokset on poistettava niiden epäluotettavuuden vuoksi. Mikäli työn suorittaisi uudelleen osaisi paremmin kiinnittää huomiota koejärjestelyyn ja siinä mahdollisesti tehtäviin virheisiin. Dynamiikan peruskäsitteiden aihekokonaisuus selkeytti melkoisesti omaa kuvaa mekaniikan peruskäsitteistä ja auttoi ymmärtämään koko aihealueen käsitteitä. Työ antoi suoranaisia vinkkejä omaan opetustyön kehittämiseen. Sitä ikään kuin asettui oppilaan rooliin ja kokonaisuus selkeytyi työtä tehdessä ja varsinkin raportin kirjoittamisen yhteydessä. Koska olemme molemmat eri paikkakunnilta, joten olimme pakotettuja jonkinlaiseen työnjakoon. Molemmat tahollansa laati ensin alustavan käsitekartan ja työsuunnitelman, josta sitten

20 19 toinen laati varsinaisen työsuunnitelman. Kvantifiointikokeet suoritimme yhdessä, mutta tulosten analysointi ja käsittely jäi toisen työparin vastuulle, kuten myöskin raportin kirjoittaminen lopulliseen muotoon. Olemme kumpikin toimineet peruskoulun fysiikan opettajine melko pitkään, joten monet kokeet olivat meille varsin tuttuja, paitsi kvantifiointiin liittyvät kokeet. Totesimme yhteistuumin, että varsinkin perushahmottava osuus aihekokonaisuudessa oli oman opetustyömme kannalta antoisin, mutta mielenkiintoiselta ja asioita selkeyttävältä tuntuivat myöskin kvantifiointikokeet. Näiden avulla ymmärsi hyvin miten eri suureet muodostuvat toisten jo tunnettujen ja mitattavissa olevien suureiden avulla. Kotkassa Marja Martelius ja Irmeli Valtiala Lähdeluettelo: Hirvonen, H., Hongisto, J., Lavonen, J., Aine ja Energia. Fysiikan tietokirja. Saari, H., Viiri, J., Aspholm, S. & Bjurström, L. WSOY, Porvoo. 1996: Hirvonen, H., Hongisto, J., Lavonen, J., Aine ja Energia. Fysiikan työkirja, kurssi 1. Saari, H., Viiri, J., Aspholm, S. & Bjurström, L. WSOY, Porvoo. 1998: Kurki-Suonio, K. & R., 1990: Lavonen, J., Kurki-Suonio, K. & Hakulinen, H., 1999: Vuorovaikuttavat kappaleet. Mekaniikan pe rusteet. Limes ry. Helsinki. Galilei 3, Mekaniikka 1.WSOY. Porvoo.

21 20 Dynamiikan peruskäsitteet VUORO- VAIKU- TUS LIIKE -TILA KAPPALE A1 Värähtely Pyöriminen Etene- minen Liike- tilan muutos A4 Törmäys Pysäh tyminen Suun- nan muutos Liikkeelle lähtö Hidastuminen Kiihtyminen Liikemäärä Suuruus Vapaa Kappale C1 Muuttumaton liiketila Tasainen Liike C1 Tasainen nopeus Aika Matka Hitaus C2, A7 Massa Voimakkuus Impulssi Kumou- tuminen B2 Etävuo- rovai- kutus Koske- tusvuorovaik. Säh- köinen Induk tio Mag- neet- tinen Gravitaatio Noste Tuki Väli- aineen vastus Kitka Ko- heesio Ad- hee- sio Lepo Liu ku Vierimis Yhteis- vaikutus B2 A6 A5 B1 A2 A2 B1 A3 B1 A7 Liikemäärän suuruus Ei

DYNAMIIKAN PERUSKÄSITTEET

DYNAMIIKAN PERUSKÄSITTEET DYNAMIIKAN PERUSKÄSITTEET 1. Perushahmotus Kappale Mekaniikassa kappaleiksi sanotaan yleisesti kaikkia aineellisia olioita. Kappaleita ovat esimerkiksi: pallo, kirja, pöytä ja auto. Myös elektroni on kappale,

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Perushahmotus Mekaniikan oliot, ilmiöt ja niiden ominaisuudet

Perushahmotus Mekaniikan oliot, ilmiöt ja niiden ominaisuudet Matematiikan, fysiikan ja kemian opettajan kandiohjelma Didaktisen fysiikan kokeellisuus I Dynamiikan perusteet Perushahmotus Mekaniikan oliot, ilmiöt ja niiden ominaisuudet Mekaniikan perushahmot ovat

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

4.1 Vuorovaikutuksen käsite mekaniikan perustana

4.1 Vuorovaikutuksen käsite mekaniikan perustana 91 4 NEWTONIN KOLMS LKI Dynamiikan perusprobleema on kappaleen liikkeen ennustaminen siihen kohdistuvien vuorovaikutusten perusteella. Tämä on mahdollista, jos pystytään määrittämään kuhunkin vuorovaikutukseen

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Kpl 2: Vuorovaikutus ja voima

Kpl 2: Vuorovaikutus ja voima Kpl 2: Vuorovaikutus ja voima Jos kaksi eri kappaletta vaikuttavat toisiinsa jollain tavalla, niiden välillä on vuorovaikutus Kahden kappaleen välinen vuorovaikutus saa aikaan kaksi vastakkaista voimaa,

Lisätiedot

Janna Leskinen 22.11.2001 RAPORTTI FYSIIKAN HAHMOTTAVA KOKEELLISUUS KOKONAISUUS 4: PYÖRIMISLIIKE PERUSHAHMOTUS. 1. Jäykkä kappale

Janna Leskinen 22.11.2001 RAPORTTI FYSIIKAN HAHMOTTAVA KOKEELLISUUS KOKONAISUUS 4: PYÖRIMISLIIKE PERUSHAHMOTUS. 1. Jäykkä kappale Janna Leskinen DFCL3 Tuula Oksman ryhmä P13 22.11.2001 RAPORTTI FYSIIKAN HAHMOTTAVA KOKEELLISUUS KOKONAISUUS 4: PYÖRIMISLIIKE PERUSHAHMOTUS 1. Jäykkä kappale Tarkastellaan erilaisia kappaleita kuten metallikuula,

Lisätiedot

Jousen jousivoiman riippuvuus venymästä

Jousen jousivoiman riippuvuus venymästä 1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14 Massa ja paino Pohdi Miten pallon heittäminen poikkeaa kuulan heittämisestä? Auto lähtee liikkeelle rajusti kiihdyttäen. Mitä tapahtuu peilistä roikkuvalle koristeelle? Pohdi Miten pallon heittäminen poikkeaa

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

VOIMA, LIIKE JA TASAPAINO

VOIMA, LIIKE JA TASAPAINO MUISTA RAPORTTI: VOIMA MUUTTAA LIIKETTÄ TIETOA JA TUTKIMUKSIA -Mitä tein? -Mitä ennustin? -Mitä tuloksia sain? -Johtopäätökseni Kappale, johon eivät voimat vaikuta pysyy paikoillaan tai liikkuu vakionopeudella

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä

Lisätiedot

Heilurin heilahdusaikaan vaikuttavat tekijät

Heilurin heilahdusaikaan vaikuttavat tekijät Heilurin heilahdusaikaan vaikuttavat tekijät Jarmo Vestola Koulun nimi Fysiikka luonnontieteenä FY-Projektityö 20.9.2000 Arvosana: K (9) 2. Tutkittava ilmiö Tehtävänä oli tutkia mitkä tekijät vaikuttavat

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu 1. Tasainen liike Kappale liikkuu vakionopeudella niin, että suunta ei muutu matka nopeus aika aika Nopeuden laskeminen Yhtälö kirjoitettuna suureilla ja niiden tunnuksilla: Yksiköt alinna nopeus = matka

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma

KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Energia, energian säilyminen ja energiaperiaate

Energia, energian säilyminen ja energiaperiaate E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 Kimmoton törmäys Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 1 1 Tiivistelmä Tutkittiin liikemäärän ja liike-energian muuttumista kimmottomassa törmäyksessä.

Lisätiedot

Miltä työn tekeminen tuntuu

Miltä työn tekeminen tuntuu Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

:37:37 1/50 luentokalvot_05_combined.pdf (#38) 'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

Vino heittoliike ja pyörimisliike (fysiikka 5, pyöriminen ja gravitaatio) Iina Pulkkinen Iida Keränen Anna Saarela

Vino heittoliike ja pyörimisliike (fysiikka 5, pyöriminen ja gravitaatio) Iina Pulkkinen Iida Keränen Anna Saarela 19.11.2015 Vino heittoliike ja pyörimisliike (fysiikka 5, pyöriminen ja gravitaatio) Iina Pulkkinen Iida Keränen Anna Saarela Iina Pulkkinen, Iida Keränen, Anna Saarela HEITTOLIIKE Työn tarkoitus: Määrittää

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä

Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä Vuorovaikutuskaavion ja voimakuvion muodostamista ja Newtonin 3. lain osaamista testaavia tehtäviä 1. a) Piirrä laskuvarjohyppääjälle ja kelluvalle korkille vuorovaikutuskaaviot, jossa on myös vuorovaikutustyyppi

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

LANKAKERÄ NEULOMINEN

LANKAKERÄ NEULOMINEN LANKAKERÄ NEULOMINEN LANKAKERÄLEIKKI Oppilaat seisovat luokassa ja heittelevät lankakerää ristiin rastiin. Ensimmäinen heittäjä sitoo langanpään sormeensa, heittää kerän seuraavalle. Tämä ottaa langasta

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

RTEK-2000 Statiikan perusteet 4 op

RTEK-2000 Statiikan perusteet 4 op RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet

Lisätiedot

Tuntisuunnitelma 2 JUNA EI VOI VÄISTÄÄ

Tuntisuunnitelma 2 JUNA EI VOI VÄISTÄÄ Tuntisuunnitelma 2 JUNA EI VOI VÄISTÄÄ JUNA EI VOI VÄISTÄÄ Taso: Peruskoulun vuosiluokat 1-6, tehtäviä eri ikäryhmille Ajallinen kesto: n. 45 minuuttia Oppiaineet, joiden tunneilla aineistoa voi hyödyntää:

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Benji-hypyn tutkiminen

Benji-hypyn tutkiminen Nimi: Ihmetys-hanke Benji-hypyn tutkiminen Benji-hypyn vaiheet 1. Mihin kolmeen vaiheeseen benji-hyppääjän liike voidaan jakaa? Millaista benji-hyppääjän liike on kussakin vaiheessa? Vaihe 1: Vaihe 2:

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

2.11 Väliaineen vastus

2.11 Väliaineen vastus Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

PULLEAT JA VALTAVAT VAAHTOKARKIT

PULLEAT JA VALTAVAT VAAHTOKARKIT sivu 1/6 PULLEAT JA VALTAVAT VAAHTOKARKIT LUOKKA-ASTE/KURSSI Soveltuu ala-asteelle, mutta myös yläkouluun syvemmällä teoriataustalla. ARVIOTU AIKA n. 1 tunti TAUSTA Ilma on kaasua. Se on yksi kolmesta

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Liite 1. Mekaniikan esijärjestimet tarkastelluissa oppikirjoissa sivunumeroviittein. Galilei 3 Mekaniikka 1 Galilei 4 Mekaniikka 2

Liite 1. Mekaniikan esijärjestimet tarkastelluissa oppikirjoissa sivunumeroviittein. Galilei 3 Mekaniikka 1 Galilei 4 Mekaniikka 2 Liite 1. Mekaniikan esijärjestimet tarkastelluissa oppikirjoissa sivunumeroviittein. ärjestinmuoto Teksti (+ kuv(i)a) Luettelo/ äsentely Kirja Galilei 3 Mekaniikka 1 Galilei 4 Mekaniikka 2 (G3 ) 6-9,14,16-17,

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot