Vapaat tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 6. Mikro- ja nanotekniikan laitos
|
|
- Annika Alanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Vapaat tilat Harris luku 6 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016
2 Potentiaaliaskel Potentiaalivalli ja tunneloituminen Aaltopaketti ja aineaallon eteneminen
3 Potentiaaliaskel E > U 0 Tarkastellaan elektronisuihkua, joka etenee vasemmalta oikealle Suihku kohtaa potentiaaliaskeleen { 0, x < 0 U(x) = U 0, x > 0 Askeleen kohdalla elektroni kohtaa hetkellisen voiman, muuten siihen ei kohdistu voimia E Energia 0 E U 0 x
4 Alue x < 0 Alueessa potentiaali = 0, joten Schrödingerin yhtälö on 2 2 ψ 2m x = Eψ 2 2mE Vastaus: ψ(x) = A e ikx + B e ikx, missä k = 2 Kuvaavat oikealle (tuleva) ja vasemmalle (heijastunut) etenevia hiukkassuihkuja Tasoaallot eivät normalisoitavissa, po. aaltopaketteja, mutta käsitellään nyt tasoaaltoina (palataan myöhemmin) Ratkaisu ei kvantitu ei mitään syytä kvantittumiselle kaikki energian arvot sallittuja
5 Alue x > 0 Alueessa potentiaali = U 0, joten Schrödingerin yhtälö on 2 2 ψ 2m x + 2 U 0ψ = Eψ Vastaus: ψ(x) = C e ik x + D e ik x 2m(E, missä k U0 ) = 2 Kerroin D oltava nolla, koska alueessa x > 0 ei ole mitään minkä takia elektronisuihku kulkisi vasemmalle Tämäkään ratkaisu ei kvantitu
6 Kokonaisratkaisu ψ(x) = { A e ikx + B e ikx, x < 0 C e ik x, x > 0 Klassisesti heijastuminen edellyttää pistettä, jossa kineettinen energia nolla ja voimaa F, joka kääntäisi liikesuunnan Kvanttimaailmassa kyseessä aallot ja aaltoliikkeen perusolemukseen liittyy heijastuminen aina kun ympäristö muuttuu 1 Lisäksi hiukkasten lukumäärä/todennäköisyys ei säily, jollei oteta huomioon sekä läpäissyttä että heijastunutta hiukkasvirtaa
7 Heijastus- ja läpäisytodennäköisyydet Jatkuvuus- ja sileysehdoista saadaan ψ x<0 (0) = ψ x>0 (0); dψ x>0 = dψ x<0 dx x=0 dx = A + B = C k(a B) = k C x=0 Jatkuvuusehdoistakaan ei seuraa kvantittumista! Lasketaan heijastus- ja läpäisytodennäköisyydet hiukkasten lukumäärästä Avuksi tarvitaan käsite todennäköisyysvirta tai todennäköisyysvuo
8 Digress: Todennäköisyysvirta Kirjan ulkopuolelta Todennäköisyysvirta (engl. probability current) kertoo, miten hiukkasten todennäköisyys virtaa paikasta toiseen. NB! Ei liity sähkövirtaan! Määritellään j(x, t) = ( Ψ Ψ 2im x Ψ ) x Ψ Todennäköisyysvirta kytkeytyy todennäköisyysamplitudiin derivaattojen kautta 2 Yleistyy myös kolmeen ulottuvuuteen t P(x, t) = ( Ψ Ψ ) = j(x, t) t x Säilymislaki: todennäköisyys ei häviä, vaan muutosta todennäköisyystiheydessä/-amplitudissa vastaa aina muutos ko. alueeseen tulevassa vuossa
9 Todennäköisyysvirta potentiaaliaskeleen ympärillä Kun x < 0 (c.c. = ed. lausekkeen kompleksikonjugaatti): j(x, t) = [ (A e ikx + B e ikx)( ika e ikx ikb e ikx) c.c.] 2im Kun x > 0: j(x, t) = k C 2 m Tarkastellaan tasaista hiukkasvirtaa, eli tilanne ei riipu ajasta Molemmissa alueissa pätee P(x, t) = 0 = t =... = k m j(x, t) = 0 = j(x, t) = vakio x ( A 2 B 2 )
10 Todennäköisyysvirta potentiaaliaskeleen ympärillä Tulos tarkoittaa sitä, että todennäköisyysvirta on vakio molemmilla puolilla askelta Todennäköisyysvirrassa ei myöskään ole hyppäystä askeleen luona, joten k m ( A 2 ) B 2 = k C 2 m Näillä varustautuneena voidaan laskea heijastus- ja läpäisyamplitudit 3 R = k k k + k = missä R = B/A ja T = C/A E E U0 E + E U0 ja T = 2k k + k = 2 E E + E U0 NB! Heijastus- ja läpäisytodennäköisyydet ovat R 2 ja T 2, sekä kirjan R kalvojen R 2 ja T kalvojen T 2.
11 Huomiot 1. Vastoin klassisen mekaniikan ennusteita, elektronisuihku heijastuu potentiaaliaskeleesta takaisinpäin. Seuraus aaltoluonteesta 2. Kun E U 0, R 2 0, eli askel on pelkkä häiriö aaltofunktiolle 3. Jos E < U 0, k on kompleksinen ja kun x > 0, ψ(x) = TA e k x Vaikka R 2 = 1, T 0! Tarkoittaa sitä, että aaltofunktio tunkeutuu valliin, mutta häviää vallin sisällä eksponentiaalisesti pois Elektronit eivät tunkeudu valliin ja heijastu pois (miksi?) Tunkeutumissyvyys δ = 2m(U0 E) Vapaat tilat Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos Harris luku 6
12 Potentiaaliaskel Potentiaalivalli ja tunneloituminen Aaltopaketti ja aineaallon eteneminen
13 Potentiaalivalli E > U 0 Tarkastellaan elektronisuihkua, joka etenee vasemmalta oikealle Suihku kohtaa potentiaalivallin { 0, x < 0 ja x > L U(x) = U 0, 0 < x < L Energia Ratkaisut e ikx + R e ikx, x < 0 ψ(x) = C e ik x + D e ik x, 0 < x < L T e ikx x > L R ja T ovat todennäköisyysamplitudin heijastus- ja läpäisykertoimet (suhteessa tulevaan vuohon) E 0 U 0 L x
14 Heijastus- ja läpäisytodennäköisyydet Jatkuvuus- ja sileysehdoista saadaan 1 + R = C + D k(1 R) = k (C D) C e ik L + D e ik L = T e ikl k(c e ik L D e ik L ) = kt e ikl Jatkuvuusehdoista ei taaskaan seuraa kvantittumista! Pienen algebrallisen jumpan jälkeen saadaan T 2 = 4k 2 k 2 (k 2 k 2 ) 2 sin 2( k L ) + 4k 2 k ( 2 ) 2 k 2 k 2 R 2 = sin 2( k L ) sin 2( k L ) + 4k 2 k 2 (k 2 k 2 ) 2 Resonanssitransmissio: heijastuskerroin menee nollaksi kun E = U 0 + n2 π 2 2 (miksi?) 2mL 2
15 Tunnelointi E < U 0 Tarkastellaan elektronisuihkua, joka etenee vasemmalta oikealle Suihku kohtaa potentiaalivallin { 0, x < 0 ja x > 0 U(x) = U 0, 0 < x < L Ratkaisut e ikx + R e ikx, x < 0 ψ(x) = C e αx + D e αx, 0 < x < L T e ikx x > L Eksponentiaalinen vaimeneminen (ja kasvu) vallissa α = E Energia U 0 0 L 2m(U0 E) 2 x
16 Heijastus- ja läpäisytodennäköisyydet Jatkuvuus- ja sileysehdoista saadaan 1 + R = C + D ik(1 R) = α(c D) C e αl + D e αl = T e ikl α(c e αl D e αl ) = ikt e ikl Kaamean algebrallisen jumpan jälkeen saadaan T 2 = 4k 2 k 2 (k 2 k 2 ) 2 sinh 2( k L ) + 4k 2 k ( 2 ) 2 k 2 k 2 R 2 = sinh 2( k L ) sinh 2( k L ) + 4k 2 k 2 (k 2 k 2 ) 2
17 Huomiot Hiukkasella todennäköisyys läpäistä valli vaikka E < U 0 Analoginen tilanne sähkömagneettisille aalloille FTIR (frustrated total internal reflection) Tunnelointi puhtaan kvanttimekaaninen ilmiö; seuraus todennäköisyyden säilymisestä
18 Sovelluksia Alfahajoaminen (Alpha Decay): kahden protonin ja kahden neutronin muodostama hiukkanen pakenee ytimen potentiaalista tunneloitumalla Tunnelointidiodi (Tunneling diode): puolijohderakenteen sisällä sähköstaattinen potentiaalivalli (materiaali tai sen ominaisuus vaihtuu). Ilman jännitettä elektronit tunneloituvat ohuen potentiaalin läpi molempiin suuntiin (ei nettovirtaa). Ulkoinen jännite rikkoo symmetrian ja elektronit tunneloituvat todennäköisemmin vain yhteen suuntaan. Kytkentänopeus erittäin suuri. SQUID (Superconducting quantum interference device): Kahden suprajohteen välinen eriste, jonka läpi elektronit tunneloituvat pareittain. Elektronien aaltofunktiot kytkeytyvät toisiinsa ja voivat interferoida joko desktruktiivisesti tai konstruktiivisesti, mikä havaitaan virran kulkuna. Interferenssi erittäin herkkä ulkoiselle magneettikentälle.
19 Lisää sovelluksia Kenttäemissio (Field Emission): metallin johde-elektronit tarvitsevat työfunktion verran energiaa paetakseen metallista. Tyypillisesti lisäenergia saadaan lämpöliikkeestä tai fotoneista. Jos metallin lähelle tuodaan positiivinen elektrodi, ilman muodostama potentiaaliaskel muuttuu potentiaalimuuriksi, jonka läpi elektronit voivat tunneloitua, jolloin saadaan aikaan elektronisuihku ilman lämmitykseen tuhlattua energiaa ja sen tuomaa sähköistä kohinaa. Tunnelointimikroskooppi (Scanning Tunneling Microscope). Koska tunnelointitodennäköisyys on erittäin herkkä vallin paksuudelle, voidaan sitä käyttää atomiresoluution kuvantamiseen. Ohut metallineula viedään erittäin lähelle tutkittavaa pintaa, ja samalla mitataan pinnasta tunneloituvien elektronien muodostamaa virtaa. Tällä tavoin voidaan kuvata näytteen pintatopologiaa. STM:llä voidaan jopa havaita pinnalta puuttuvia atomeja. Nanotieteilijän perustyökaluja elektronimikroskoopin lisäksi.
20 Potentiaaliaskel Potentiaalivalli ja tunneloituminen Aaltopaketti ja aineaallon eteneminen
21 Aaltopaketti Tähän asti käsiteltiin tasoaaltojen etenemistä Hieman ongelmallisia: tasoaaltoa ei voi esim. normalisoida Jotta voisi kuvata lokalisoitua hiukkasta, tarvitaan aaltopaketti Aaltopaketista keskusteltiin aiemmin epätarkkuusperiaatteen yhteydessä Fourier-teorian mukaisesti aaltopaketin muodostaminen edellyttää useiden eri aaltonumeroisten tasoaaltojen summaamista Osa-aallot etenevät omalla vaihenopeudellaan ja aaltopaketti ryhmänopeudella Vaihenopeus riippuu taajuudesta dispersio aaltopaketti leviää ajan funktiona
22 Vaihe- ja ryhmänopeus Yksinkertainen aaltopaketti Ψ(x, t) = A e i(k 1x ω 1 t) + A e i(k 2x ω 2 t) Valitaan k 1 = k 0 + dk, k 2 = k 0 dk, ω 1 = ω 0 + dω, sekä ω 2 = ω 0 dω ja lasketaan lauseke läpi: Ψ(x, t) = 2A e i(k 0x ω 0 t) cos(x dk t dω) Ensimmäinen termi häviää todennäköisyystiheyden lausekkeesta vaihenopeus häviää Ψ(x, t) 2 = 4A 2 cos 2 (x dk t dω) Osa-aaltojen nopeudella ei hiukkasen etenemisen kannalta merkitystä, mutta funktio ω = ω(k) keskeisessä asemassa
23 Dispersiorelaatio Edellinen aalto on periodinen ja todennäköisyystiheys levinnyt edelleen pitkin avaruutta Yleisin aaltopaketin muoto saadaan Fourier-relaation kautta: Ψ(x, t) = A(k) e i(kx ωt) dk Aika t ja paikka x riippumattomia toisistaan, mutta mistä saadaan ω? Energia ja liikemäärä riippuvat toisistaan, joten taajuus ja liikemääräkin riippuvat toisistaan. Miten? Vapaan hiukkasen tapauksessa ω = k 2 /2m, mikä seuraa lausekkeesta E = p 2 /2m Yleisessä tapauksessa riippuvuutta kuvataan dispersiorelaatiolla ω = ω(k)
24 Dispersiorelaatio ja vaihenopeus! SMG-tasoaallon dispersiorelaatio tyhjiössä: ω(k) = ck Vapaan hiukkasen aineaallon dispersiorelaatio: ω(k) = k 2 2m Vaihenopeudet vastaavasti: v p,smg = c ja v p,aine = k/2m Tyhjiössä kulkevan smg-aaltopulssin kaikki osa-aallot kulkevat samalla nopeudella, mutta aineaallon osa-aallot eivät! (samoin smg-aallot muualla kuin tyhjiössä) Dispersiolla perustavanlaatuinen merkitys aaltoliikkeessä (lisää esim Materiaalien ominaisuudet -kurssi ja kuituoptiikkaa, laserfysiikkaa tai radiotekniikkaa käsittelevät kurssit)
25 Gaussinen aaltopaketti Tarkastellaan aaltopakettia, jolla jakauma aaltonumeroita keskiaaltonumeron k 0 ympärillä Valitaan A(k) = e α(k k 0) 2, jolloin Ψ(x, t) = Yleisessä tapauksessa dispersiorelaatiota ei tunneta e α(k k 0) 2 e i(kx ω(k)t) dk Oletetaan sen olevan hitaasti vaihteleva funktio k 0 :n ympäristössä, jolloin Taylorin sarjakehitelmästä saadaan ω(k) ω(k 0 ) + (k k 0 ) dω dk + 1 k0 2 (k k 0) 2 d 2 ω k0 dk 2 vaihetekijä (phase factor), ryhmänopeus v g (group velocity) ja dispersiokerroin (dispersion coefficient) tai ryhmänopeusdispersio β (group velocity dispersion)
26 Gaussinen aaltopaketti ja dispersio Sijoittamalla saatu sarjakehitelmä aallon lausekkeeseen saadaan Ψ(x, t) ( 2 π 2 ) 1 2 = e α 2 + β 2 t 2 (x vg t)2 ( ) 2α 1+ β2 t 2 α 2 Tämä on gaussinen pulssi, joka leviää ajan kasvaessa (mitä se tarkoittaa?) Se on myös Schrödingerin yhtälön ratkaisu! Aaltopulssin törmäykset potentiaalivalleihin monimutkaisia: läpäisy- ja heijastuskertoimet riippuvat aaltonumerosta tietokone ratkaisee
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotAineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotAineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
Lisätiedot1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
LisätiedotSidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
Lisätiedotdx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aaltofunktio ja todennäköisyystiheys
LisätiedotTilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
LisätiedotLisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotS Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
Lisätiedot1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Lisätiedot3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotLuku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
LisätiedotFononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
LisätiedotKvanttimekaniikkaa yhdessä ulottuvuudessa
Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet
LisätiedotJ 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
Lisätiedot3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
LisätiedotLuento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotAatofunktiot ja epätarkkuus
Aatofunktiot ja epätarkkuus Aaltofunktio sisältää tiedon siitä, millä todennäköisyydellä hiukkanen on missäkin avaruuden pisteessä. Tämä tunnelointimikroskoopilla grafiitista otettu kuva näyttää elektronin
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
Lisätiedot23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen
3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
Lisätiedoty x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotE p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
LisätiedotAineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat
Aieaaltodyamiikka Aikariiuva Scrödigeri ytälö Aieaaltoketä aikariiuvuude määrää ytälö Aieaaltokettie riiuvuus ajasta aikariiuva Scrödigeri ytälö Statioääriset ja ei-statioääriset tilat Aaltoaketit Kvattimekaiika
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotKvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
LisätiedotLuento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto
LisätiedotKVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
LisätiedotKVANTTIMEKANIIKAN PERUSTEET...57
KVANTTIMEKANIIKAN PERUSTEET...57.1 Johdanto... 57. Aaltofunktio ja todennäköisyystiheys... 58.3 Schrödingerin yhtälö... 61.3.1 Vapaan hiukkasen aaltofunktio... 6.4 Hiukkasen sironta potentiaaliaskeleesta...
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa
LisätiedotAINEAALTODYNAMIIKKA...105
AINEAALTODYNAMIIKKA...105 3.1 Aikariippuva Schrödingerin yhtälö... 105 3.1.1 Stationääriset tilat... 108 3.1.. Ei-stationääriset tilat... 109 3.1.3 Aaltofunktioon liittyvä todennäköisyysvirta... 113 3.1.4
Lisätiedotja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
Lisätiedot780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
LisätiedotLukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
Lisätiedot9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotLUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotLuku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Vibraatio eli värähdysliike Rotaatio eli pyörimisliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
LisätiedotKenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotMaxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
LisätiedotLukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio
LisätiedotTeoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotLeptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotLuento 15: Mekaaniset aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
LisätiedotAaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.
Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Lähd etään hakem aan ratkaisua y htälöistä (2 ) ja (3 ), kuten T E M -siirtolinjojen y htey d essä. N y t aaltoputkien tapauksessa z-kom
LisätiedotFYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
LisätiedotKYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan.
: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. Protoni Elektroni 17 protonia 19 electronia 1,000,000 protonia 1,000,000 elektronia lasipallo puu*uu 3 elektronia (A) (B) (C) (D) (E)
LisätiedotScanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
LisätiedotTodennäköisyys ja epämääräisyysperiaate
Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain
Lisätiedot4. Selitä sanoin ja kuvin miten n- ja p-tyypin puolijohteiden välinen liitos toimii tasasuuntaajana?
Tentti 4..2006. a) Selitä Braggin laki röntgensäteiden heijastukselle kiteistä. b) Tutki onko tasoissa (00), (0) ja () sammuneita heijastuksia tilakeskeisessä kuutiollisessa rakenteessa. Toista sama pintakeskeisessä
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu
LisätiedotSuprajohteet. 19. syyskuuta Syventävien opintojen seminaari Suprajohteet. Juho Arjoranta
Suprajohteet Syventävien opintojen seminaari juho.arjoranta@helsinki. 19. syyskuuta 2013 Sisällysluettelo 1 2 3 4 5 1911 H. K. Onnes havaitsi suprajohtavuuden Kuva: Elohopean resistiivisyys sen kriittisen
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
Lisätiedot4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotAineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
LisätiedotKVANTTIMEKANIIKKA I Johdatus alkuaineiden jaksolliseen järjestelmään A/S
KVANTTIMEKANIIKKA I Johdatus alkuaineiden jaksolliseen järjestelmään 76331A/S Mikko Saarela 13. elokuuta 013 Oppimateriaali Cohen-Tannoudji, Diu ja Laloë: Quantum Mechanics (volume one), 1977 Powell &
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
Lisätiedot.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
LisätiedotVaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1
Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni
LisätiedotLuku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
Lisätiedot