MT Sähkökemialliset tutkimusmenetelmät

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MT Sähkökemialliset tutkimusmenetelmät"

Transkriptio

1 .9. MT-. Sähkökemialliset tutkimusmenetelmät POTENTIO- JA GALVANOSTAATTISET MITTAUKSET Potentiostaattisissa menetelmissä näytettä pidetään vakiopotentiaalissa ja samalla mitataan kennosysteemin läpi kulkevaa virtaa ajan funktiona. Galvanostaattisissa menetelmissä pidetään kennon läpi kulkeva virta vakiona ja potentiaalin annetaan muuttua vapaasti. Polarisaatiokäyrällä haetaan ensimmäinen kuva systeemistä, ja kiinnostavat alueet tutkitaan tarkemmin potentio- tai galvanostaattisesti. Potentiostaattisissa kokeissa reaktiota ajava voima pidetään vakiona. Potentiostaattisia kokeita käytetään: luonnollisen korroosiotilanteen simuloimiseen nopeutettuihin korroosiokokeisiin galvaanisen korroosion mittaamiseen Menetelmillä voidaan tutkia korroosiosysteemin ominaisuuksia reaktiokinetiikkaa aktiivi-passiivimuutosta paikallisen korroosion kriittisiä potentiaaliarvoja RAJAPINTA PINNAN TODELLINEN POTENTIAALI PINNAN MITATTU POTENTIAALI KOMPENSOIMATON LIUOSVASTUS KENNOJÄNNITE BULKKILIUOS LIUOSVASTUS

2 .9. POTENTIOSTAATTINEN EI-FARADINEN TRANSIENTTI ΔE I = e R Ω t - R C Ω dl VIRTA, ma POTENTIAALIN MUUTOS, V... R Ω = Ω, C dl = µf ΔE = mv. ΔE = mv.. -. AIKA, s R Ω = Ω, C dl = µf ΔE = mv ΔE = mv - AIKA, s Potentiostaattisessa kokeessa faradinen virta on funktio kahdesta termistä. Toinen termi riippuu vain ylipotentiaalista ja toinen termi ylipotentiaalista ja ajasta. Vain ylipotentiaalista riippuva termi kuvaa varauksensiirtoreaktiota Butler-Volmerin yhtälön mukaan. Ylipotentiaalista ja ajasta riippuva termi sisältää varauksensiirtoreaktion lisäksi myös ajasta riippuvat reagoivien aineiden konsentraatiot. Puhdas diffuusiokontrolli Cottrellin yhtälö Pätee vain suurilla ylipotentiaaleilla ja lyhyillä koeajoilla, koska luonnollinen konvektio muuttaa tilannetta muutamassa sekunnissa. I d / z F DO = / π t / c D / + D / O / R e zf o ( E E ) RT Potentiostaattinen transientti koostuu ajasta riippumattoman termin ja ajasta riippuvan virran tulosta. Ajasta riippumaton termi lasketaan Butler-Volmerin tai Tafelin yhtälöstä. Ajasta riippuva termi lasketaan käyttämällä ylipotentiaalia sekä hapettuvien ja pelkistyvien aineiden konsentraatioita ja diffuusiokertoimia. Itseisvirrantiheys tai korroosiovirrantiheys vaikuttaa kummassakin termissä. 7

3 .9. α z F ( α ) z F η η i = RT RT const i e e i exp( zf / RT ) exp( ( ) zf / RT ) α η α η λ = + zf cr DR co DO i = i const e t λ erfc( λ t ) VIRRANTIHEYS, ma/cm i i const e t erfc( t) D = - cm /s, i =, ma/cm, η =, V Varauksensiirto kontrolloi, c O = mol/dm Aineensiirto kontrolloi, c O =, mol/dm Aineensiirto kontrolloi, c O =, mol/dm c O =, mol/dm simulointi ei toimi i const on ajasta riippumaton virrantiheys. AIKA, sekunteja 9 Kun λ/ t >, reaktio on diffuusion kontrolloima. z F D / π ( c cs ) i = t Kun λ/ t <, aktivaatiokontrolli on vallitseva. i = i const λ t π VIRRANTIHEYS, ma/cm Varauksensiirto kontrolloi, c O = mol/dm Aineensiirto kontrolloi, c O = - mol/dm D = - cm /s i =, ma/cm, η =, V i = i const AIKA, sekunteja e λ t erfc( λ t )

4 .9. Virrantiheys-aika -kuvaajan muodosta voi arvioida reaktionopeutta määräävää vaihetta: Jos virta pienenee hitaasti, reaktio on varauksensiirron kontrolloima. Aineensiirto on niin nopeaa, että se ei vaikuta. I=f(t / ) Jos virta pienenee nopeasti ja saavuttaa ajasta riippumattoman vakiotason, reaktio on aineensiirron kontrolloima. Jos I=f(/t / ), reaktio on diffuusion kontrolloima. Jos virta on aluksi funktio ajasta I=f(t / ), mutta muuttuu kokeen aikana funktioksi I=f(/t / ), systeemi on osittain varauksensiirtoreaktion ja osittain aineensiirron kontrolloima. VIRRANTIHEYS, ma/cm Lineaarinen riippuvuus D = - cm /s, i =, ma/cm, η =, V Varauksensiirto kontrolloi, c O = mol/dm Aineensiirto kontrolloi, c O =, mol/dm AJAN NELIÖJUURI j (ma/cm ) Potentiostatic sweeps, E = mv vs. Ag/AgCl ph ph.7 ph. ph. ph ph.7 ph. t (s)

5 .9.. ph = ph =. ph = ph =. j / ma/cm j / ma/cm neliöjuuri(t) 7 9 neliöjuuri(t) 7 ph =. ph = ph = ph =.. j / ma/cm j / ma/cm....e+.e-.e-.e-.e-.e- /neliöjuuri(t).e+.e-.e-.e-.e-.e- /neliöjuuri(t) 9

6 .9. POTENTIO- JA GALVANOSTAATTISET MENETELMÄT Galvanostaattisissa menetelmissä pidetään virtaa vakiona. Reaktion nopeus pidetään vakiona vaikka kineettiset edellytykset muuttuisivatkin. Galvanostaattisia menetelmiä käytetään muiden menetelmien tukena tutkittaessa reaktioita, joissa reaktiotuotekerroksen oletettu muodostumismekanismi ja koostumus tunnetaan. Potentiaalin muutos tietyllä ajanhetkellä viittaa uuteen reaktiovaiheeseen tai reaktiotuotekerroksen rakenteen muuttumiseen. Galvanostaattisessa kokeessa potentiaali kokeen alussa kasvaa ajan kuluessa ei-faradisten ilmiöiden takia. Piirtämällä potentiaali ajan funktiona voidaan leikkauspisteestä y-akselin kanssa laskea liuosvastuksen suuruus ja suoran kulmakertoimesta kaksoiskerroksen kapasitanssi. ΔE = I R Ω I t + C dl Galvanostaattisessa kokeessa ylipotentiaali kasvaa koska reagoivan aineen pintakonsentraatio muuttuu ajan kuluessa. Esimerkiksi katodisessa reaktiossa liuennutta ionia saostuu pintaan, joten pintakonsentraatio laskee ajan kuluessa. Pintakonsentraation muutos ajan funktiona saadaan yhtälöstä i t) = c zf πd c s ( t PITOISUUS, mol/dm... Profiili ajanhetkellä t c = mol/dm. t = s t = s t = s t = s. t = s t = s t = s t = s. t = s... ETÄISYYS PINNASTA, mm

7 .9. Galvanostaattinen transientti voidaan laskea ajasta riippumattoman ja ajasta riippuvan termin avulla. Ajasta riippumaton termi saadaan laskettua Butler- Volmerin yhtälöstä, vaatii jonkin aikaa kaksoiskerroksen kapasitanssin varautumisesta johtuen. Ajasta riippuva termi kuvaa diffuusioylipotentiaalin kasvua ajan kuluessa. RT t η = d ln zf τ POTENTIAALI η d Transitioaika τ AIKA PISTEKORROOSION TUTKIMINEN, pistekorroosion kriittiset potentiaalit Mittaus voidaan tehdä ehjälle pinnalle, joka polarisoidaan anodiseen suuntaan. Mittaus antaa tuloksena pistesyöpymien ydintymispotentiaalin. Jos virta kasvaa, niin asetuspotentiaali on ollut pistesyöpymien ydintymispotentiaalia korkeampi. Mittaus voidaan tehdä myös pinnalle, johon on aiheutettu pistesyöpymiä. Kun näyte nyt polarisoidaan katodiseen suuntaan saadaan selville suojapotentiaali. Virrantiheys laskee jos asetettu potentiaali on suojapotentiaalin alapuolella. 7 7

8 .9., pistekorroosion kriittiset potentiaalit PISTEKORROOSION TUTKIMINEN VIRRANTIHEYS AIKA E > E prot Olemassa olevat pisteet kasvavat. Kasvu on sitä voimakkaampaa mitä korkeampi potentiaali. E < E prot Olemassa olevat pisteet lakkaavat kasvamasta. Galvanostaattisilla kokeilla voidaan määrittää suojapotentiaali. Mikäli materiaalilla on taipumusta pistekorroosioon, niin potentiaali ensin nousee ja sitten laskee jyrkästi, minkä jälkeen potentiaali laskee hitaasti vakioarvoon. Huippuarvo on pistesyöpymien kriittinen ydintymispotentiaali Vakioarvo lopussa on suojapotentiaali. Potentiaalin nousu maksimiarvoonsa johtuu passivoitumisen ja pisteiden ydintymisen välisestä vuorovaikutuksesta. 9 PISTEKORROOSION TUTKIMINEN POTENTIAALI E pit Passivoituu, ei korroosiota TYÖ Potentiaali REF VASTA ZRA-mittaus galvaanisen korroosion virran mittaamiseen. Paikallista korroosiota, piste- tai rakokorroosiota + - E corr AIKA ZERO RESISTANCE AMMETER

9 .9. ZRA-MITTAUS ZRA-MITTAUS. ZRA asettaa kahden elektrodin välisen potentiaalieron nollaksi eli työelektrodin potentiaalin vastaelektrodin potentiaaliin. Jos ZRA-kytkennässä virta on positiivinen, niin työelektrodiliitännässä on anodi. Työelektrodi on epäjalompi ja liukenee. Jos virta on negatiivinen, niin työelektrodiliitännässä on katodi. Vastaelektrodiliitännässä on epäjalompi metalli eli liukeneva anodi. i / µa teräs syöpyy messinki syöpyy -. 7 aika / tuntia ZRA-MITTAUS KORROOSIOMONITOROINNISSA ZRA-MITTAUS KORROOSIOMONITOROINNISSA ZRA-mittaus Fe/Cu Rantakylä.... VIRTA, ma AIKA, vrk 9

10 .9. SÄHKÖMÄÄRÄ, mas ZRA-MITTAUS KORROOSIONSEURANNASSA ZRA-mittaus Fe/Cu Rantakylä, kumulatiivinen sähkömäärä 7, betoniraudoitteen mittaus Galvanostaattisella transientilla voidaan tutkia betoniraudoitteen tilaa. Kun systeemi on tasapainotilassa ja sille syötetään virtasignaali, elektrodin potentiaali muuttuu aluksi sähköisen kaksoiskerroksen varautuessa. Muutos jatkuu, kunnes potentiaali on saavuttanut arvon, jossa rajapintareaktio alkaa edetä AIKA, vrk E t = I app R Ω + I app R p (-e -t R p C dl ) 7, betoniraudoitteen mittaus., betoniraudoitteen mittaus -. y-akselin leikkauspiste = log(i*r p ). -. POTENTIAALI, V. log(e max -E t ) Kulmakerroin = -/(R p *C dl ). I app =, ma passiivi I app =, ma passiivi I app =, ma syöpyvä AIKA, sekunteja -. AIKA, sekunti 9

11 .9., betoniraudoitteen mittaus, anodien vertailu... Pb-.Ag TUT TUT TUT TUT TUT E, V vs. SHE t, hours, anodien vertailu, anodien rasitustesti,, 9. M Na SO + g/l NaCl, ph =, T = C. mol-% RuO Potential [V] vs SSE,,,, Pb-Ag alloy anodes g/dm Mn +,. g/dm Mn + g/dm Mn +, g/dm Mn + g/dm Mn +, Time [h] E / V vs. SSE 7 ma/cm ma/cm ma/cm ma/cm mol-% RuO mol-% RuO mol-% RuO mol-% RuO mol-% RuO 7 9 time / hours

12 .9., anodien rasitustesti 9 g/l NaCl, ph =, T = C. mol-% RuO mol-% RuO, katodisen suojauksen mitoitus 7 mol-% RuO mol-% RuO mol-% RuO mol-% RuO E / V vs. SCE ma/cm ma/cm ma/cm ma/cm ma/cm 7 9 time / hours, katodisen suojauksen mitoitus POTENTIAL, mv vs. Ag/AgCl sat No anode shield Ocean, S=.% NaCl i= ma/m Gulf of Finland, S=.% NaCl i= ma/m Gulf of Bothnia, S=.% NaCl i=9 ma/m REF. DISTANCE FROM ANODE, m 7

MT Sähkökemialliset tutkimusmenetelmät

MT Sähkökemialliset tutkimusmenetelmät MT-.66 Sähkökemialliset tutkimusmenetelmät VOLTAMETRIA Voltametriassa tutkitaan mittaussysteemissä kulkevan virran muutoksia ulkoisen jännitesignaalin muuttuessa. Voltametriassa virtaa pidetään funktiona

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

MT Sähkökemialliset tutkimusmenetelmät

MT Sähkökemialliset tutkimusmenetelmät MT-0.6016 Sähkökemialliset tutkimusmenetelmät MITTAKENNOT, LAITTEET JA KYTKENNÄT Sähkökemiallisissa mittauksissa mitataan potentiaalia, virtaa tai näitä molempia samanaikaisesti. Jännitettä eli potentiaalieroa

Lisätiedot

MT Korroosionestotekniikan perusteet

MT Korroosionestotekniikan perusteet MT-0.330 Korroosionestotekniikan perusteet. 2. Yksinkertaistetut korroosiojärjestelmät 3. Ilmastollinen korroosio 4. Sähkökemialliset mittaukset 5. Sähkökemian laitteisto 2 Ensimmäinen korroosiotutkimus

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Evansin diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 4 - Luento 4

Evansin diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 4 - Luento 4 Evansin diagrammit Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 4 - Luento 4 Tavoite Oppia hyödyntämään Evansin diagrammeja esimerkiksi hydrometallurgisissa tai korroosiotarkasteluissa 1 Termodynamiikka

Lisätiedot

MT , Sähkökemialliset tutkimusmenetelmät

MT , Sähkökemialliset tutkimusmenetelmät MT-., Sähkökemialliset tutkimusmenetelmät Impedanssispektroskopia Sähkökemiallinen impedanssipektroskopia Electrochemical Impedance Spectroscopy, EIS Mitataan pintaa kuvaavaa sähköistä piiriä eri taajuuksilla

Lisätiedot

Käytännön esimerkkejä on lukuisia.

Käytännön esimerkkejä on lukuisia. PROSESSI- JA Y MPÄRISTÖTEKNIIK KA Ilmiömallinnus prosessimet allurgiassa, 01 6 Teema 4 Tehtävien ratkaisut 15.9.016 SÄHKÖKEMIALLISTEN REAKTIOIDEN TERMODYNAMIIKKA JA KINETIIKKA Yleistä Tämä dokumentti sisältää

Lisätiedot

MT KORROOSIONESTOTEKNIIKAN PERUSTEET

MT KORROOSIONESTOTEKNIIKAN PERUSTEET LUENNON PÄÄASIAT MT0.330 KORROOSIONESTOTEKNIIKAN PERUSTEET Korroosion termejä Faradayn laki ja korroosionopeus Sähkökemiallinen potentiaali Korroosiokenno 2. luento, sähkökemiaa 2 KORROOSIOILMIÖT KORROOSIOILMIÖT

Lisätiedot

MT KORROOSIONESTOTEKNIIKAN PERUSTEET

MT KORROOSIONESTOTEKNIIKAN PERUSTEET LUENNON PÄÄASIAT MT-0.3301 KORROOSIONESTOTEKNIIKAN PERUSTEET Korroosiokenno Evansin diagrammi E-pH diagrammi Passivoituminen 3. luento, lisää sähkökemiaa 2 Merivesi Anodi Katodi Teräs Veteen liuennut happi

Lisätiedot

AKKU- JA PARISTOTEKNIIKAT

AKKU- JA PARISTOTEKNIIKAT AKKU- JA PARISTOTEKNIIKAT H.Honkanen Kemiallisessa sähköparissa ( = paristossa ) ylempänä oleva, eli negatiivisempi, metalli syöpyy liuokseen. Akussa ei elektrodi syövy pois, vaan esimerkiksi lyijyakkua

Lisätiedot

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7.

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7. HEM-A0 Kemiallinen reaktio Kevät 07 Laskuharjoitus 7.. Metalli-ioni M + muodostaa ligandin L - kanssa : kompleksin ML +, jonka pysyvyysvakio on K ML + =,00. 0 3. Mitkä ovat kompleksitasapainon vapaan metalli-ionin

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Oppikirjan tehtävien ratkaisut

Oppikirjan tehtävien ratkaisut Oppikirjan tehtävien ratkaisut Liukoisuustulon käyttö 10. a) Selitä, mitä eroa on käsitteillä liukoisuus ja liukoisuustulo. b) Lyijy(II)bromidin PbBr liukoisuus on 1,0 10 mol/dm. Laske lyijy(ii)bromidin

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Nd-Fe-B magneettien korroosio

Nd-Fe-B magneettien korroosio 1 Nd-Fe-B magneettien korroosio Elisa Isotahdon Magneettiteknologiakeskuksen miniseminaari Pori 24.1.2012 2 Sisältö Projektista Nd-Fe-B magneettien korroosiomekanismi Projektin kokeellinen osuus Mikrorakenteen

Lisätiedot

Korroosiomuodot KORROOSIOMUODOT 11/6/2015. MT Korroosionestotekniikan perusteet KORROOSIOMUODOT osa 2 KORROOSIO

Korroosiomuodot KORROOSIOMUODOT 11/6/2015. MT Korroosionestotekniikan perusteet KORROOSIOMUODOT osa 2 KORROOSIO MT-0.3301 Korroosionestotekniikan perusteet osa 2 Yleinen ja paikallinen korroosio Piste- ja rakokorroosio Raerajakorroosio Valikoiva liukeneminen Jännityskorroosio ja korroosioväsyminen Vetyhauraus 2

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 3 Derivaatta. a) Vastaus: Merenpinta nousee aikavälillä 00:00-06:00 ja :30-7:30. Merenpinta laskee aikavälillä 06:00-:30 ja 7:30-3:00. b) Merenpinta nousi 0,35 cm ( 0,) cm = 0,55 cm tuona aikana. Merenpinta

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

origo III neljännes D

origo III neljännes D Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

Kuparin korroosionopeuden mittaaminen kaasufaasissa loppusijoituksen alkuvaiheessa

Kuparin korroosionopeuden mittaaminen kaasufaasissa loppusijoituksen alkuvaiheessa Kuparin korroosionopeuden mittaaminen kaasufaasissa loppusijoituksen alkuvaiheessa TkT Jari Aromaa Teknillinen korkeakoulu Korroosion ja materiaalikemian laboratorio TAUSTAA Kuparin yleinen korroosio voi

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

DEE Polttokennot ja vetyteknologia

DEE Polttokennot ja vetyteknologia DEE-54020 Polttokennot ja vetyteknologa Polttokennon hävöt 1 Polttokennot ja vetyteknologa Rsto Mkkonen Polttokennon tyhjäkäyntjännte Teoreettnen tyhjäkäyntjännte E z g F Todellnen kennojännte rppuu er

Lisätiedot

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20 Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 5 Pisteet / 20 Glukoosidehydrogenaasientsyymi katalysoi glukoosin oksidaatiota

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä

Lineaarialgebra MATH.1040 / Piirianalyysiä Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen

Lisätiedot

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Lyhyt, kevät 2016 Osa A

Lyhyt, kevät 2016 Osa A Lyhyt, kevät 206 Osa A. Muodostettu yhtälö, 2x 2 + x = 5x 2 Kaikki termit samalla puolla, 2x 2 4x + 2 = 0 Vastaus x = x:n derivaatta on x 2 :n derivaatta on 2x f (x) = 4x + derivoitu väärää funktiota,

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen Vesi Hyvin poolisten vesimolekyylien välille muodostuu vetysidoksia, jotka ovat vahvimpia molekyylien välille syntyviä sidoksia. Vetysidos on sähköistä vetovoimaa, ei kovalenttinen sidos. Vesi Vetysidos

Lisätiedot

KORROOSIO KORROOSIOKENNO

KORROOSIO KORROOSIOKENNO MT-0.3301 Korroosionestotekniikan perusteet osa 1 Perusideoiden kertausta Yleinen ja paikallinen korroosio Yleinen tai tasainen korroosio Eroosiokorroosio 2 KORROOSIO KORROOSIOKENNO Korroosio fysikaalis-kemiallinen

Lisätiedot

luku2 Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen

luku2 Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen 1 Ennakkokysymyksiä 2 Metallien reaktioita ja jännitesarja Fe(s) + CuSO 4 (aq) Cu(s) + AgNO 3 (aq) taulukkokirja s.155 3 Metallien

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin. MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä

Lisätiedot

Teddy 10. harjoituksen malliratkaisu syksy 2011

Teddy 10. harjoituksen malliratkaisu syksy 2011 Teddy. harjoituksen malliratkaisu syksy 2. Tarkastellaan reaktioketjua k O 3 O2 +O () O 2 +O k O 3 (2) O 3 +O k 2 O 2 +O 2 (3) Vakiotilaolettamuksen mukaan välituotteen konsentraatio pysyy vakiona lyhyen

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

KANDIDAATINTYÖ Erika Gröhn

KANDIDAATINTYÖ Erika Gröhn KANDIDAATINTYÖ 2011 Erika Gröhn Aalto-yliopisto Sähkötekniikan korkeakoulu Bioinformaatioteknologian tutkinto-ohjelma ERIKA GRÖHN Impedanssimenetelmän käyttö in vitro -korroosiotutkimuksessa Kandidaatintyö

Lisätiedot

METALLITEOLLISUUDEN PINTAKÄSITTELYN PERUSTEET - KORROOSIO

METALLITEOLLISUUDEN PINTAKÄSITTELYN PERUSTEET - KORROOSIO METALLITEOLLISUUDEN PINTAKÄSITTELYN PERUSTEET - KORROOSIO 25.9.2014 Juha Kilpinen Tekninen Palvelu 1 METALLIN KORROOSIO Metallin korroosiolla tarkoitetaan sen syöpymistä ympäristön kanssa tapahtuvissa

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot