Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa"

Transkriptio

1 1 Kurssin käytännön järjestelyt Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313 Luennoitsija TkT Mitri Kitti Vastaanotto luentojen yhteydessä Luentomoniste kurssin verkkosivuilla Laskuharjoitukset torstaisin luokassa Y307 Laskuharjoitusassistentti tekn. yo. Ilkka Leppänen Ensimmäinen laskuharjoitus torstaina Harjoitustehtävät kurssin verkkosivuilla 1.1 Kurssimateriaali Kirk, D.E., Optimal Control Theory, An Introduction, Dover Publications, Inc., Amazon.com: $17,79. Kamien, M.L & Schwartz, N.L, Dynamic Optimization The Calculus of Variations and Optimal Control in Economics and Management, 2nd Edition, North Holland, Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa Betts, J. T., Practical Methods for Optimal Control Using Nonlinear Programming, Society for Industrial and Applied Mathematics, Philadelphia, Amazon.com: $ Osia, jaetaan opetusmonisteissa Bertsekas, D. P., Dynamic Programming and Optimal Control, Athena Scientific, Massachusettes, Osia, jaetaan opetusmonisteissa 1.2 Kurssin suorittaminen ja ohjelma Kurssi suoritetaan tentillä. Kotitehtäviä jaetaan viikottain, joista saadut pisteet huomioidaan tenteissä seuraavaan luennointikertaan saakka. 1. Historiaa, dynaamisen optimointitehtävän määrittely, tilaesitys 2. Optimiohjaustehtäviä, dynaaminen ohjelmointi 3. Diskreetin ja jatkuvan ajan tilasäätäjät, H-J-B-yhtälö 4. Variaatiolaskennan perusteet 5. Variaatiotehtävän transversaalisuusehdot 1

2 6. Rajoitetut variaatiotehtävät 7. Äärettömän aikavälin variaatiotehtävät 8. Ohjaustehtävä variaatioperiaatteella 9. Minimiperiaate, minimiaikatehtävät 10. Minimiponnistustehtävät, singulaariset ratkaisut 11. Vaihetasoanalyysi, diskontattu kohdefunktionaali 12. Optimisäätötehtävien numeeriset ratkaisumenetelmät 1.3 Kurssin tavoite Oppia ohjaamaan dynaamisia systeemeitä optimaalisesti jonkin annetun kriteerin suhteen. Tyypillisesti dynaamisen systeemin mallina käytetään 1. kertaluokan differentiaaliyhtälösysteemiä. Esimerkkejä: 1. Etsi lentokoneen ohjaus siten, että se lentää minimiajassa annetusta alkutilasta annettuun lopputilaan. 2. Pääomaa voidaan joko kuluttaa, mikä tuottaa hyötyä, tai laittaa kasvamaan korkoa. Etsi optimaalinen kulutus-säästöstrategia. 3. Biologinen malli: etsi optimaalinen kalastusstrategia, kun kokonaispopulaation koolle oletetaan jonkinlainen dynamiikka. 2 Dynaamiset optimointimallit: historiaa Tyrian prinsessa Didon maanmittausongelma, Karthago b max a S x(t)dt ds = b a 1 + ẋ2 (t)dt = L, x(a) = x(b) = 0. Brachistochrone-ongelma: millaista rataa x(t) pitkin kappale putoaa pisteestä A pisteeseen B lyhimmässä ajassa? Siis, etsi x(t), joka minimoi integraalin 0 dt = S ds v = b a [2gx(τ)] 1 2 [1 + ẋ(τ)] 1 2 dτ. }{{}}{{} 1 ds v Johann Bernoulli formuloi ongelman vuonna 1696; ratkaisun esittivät puoli vuotta myöhemmin Jacob Bernoulli, Leibnitz, Isaac Newton ja l Hospital. Leonhard Euler (1744): variaatiolaskenta, Eulerin yhtälö; välttämätön ehto variaatiotehtävän ratkaisulle luku: klassinen Lagrangen mekaniikka ja Hamiltonin periaate. 2

3 Hamiltonin periaate: kappale kulkee pisteestä A pisteeseen B siten, että integraali tb t A L(x, ẋ)dt minimoituu, missä Lagrangen funktio L(x, ẋ) on kappaleen kineettisen ja potentiaalienergian välinen erotus. Esim. jouselle L(x, ẋ) = 1 2 mẋ2 1 2 kx2. Lagrangen liikeyhtälö on edellä olevan tehtävän Eulerin yhtälö, mikä puolestaan on edellä olevan tehtävän Newtonin liikeyhtälö luku: dynaaminen optimointi, optimiohjaustehtävä variaatiotehtävän yleistys. Etsi ohjaus u(t), joka toteuttaa annetut rajoitukset ja minimoi annetun integraalin (kohdefunktio) L. S. Pontryagin: välttämättömät ehdot optimiohjaustehtävälle reuna-arvotehtävän muodossa. R. E. Bellman: dynaaminen ohjelmointi. Toinen tapa ratkoa erityisesti diskretoituja dynaamisia optimointitehtäviä; ns. optimaalisuusperiaatteen laskennallista soveltamista : yleistys laajojen järjestelmien optimointiin ja erilaisiin pelitehtäviin: sotilas- ja siviili-ilmailun sovellukset, taloussovellukset, tietoverkkojen reititysongelmat yms. 2.1 Dynaamisten ongelmien luokittelu Sen mukaan, montako kriteeriä ja päätöksentekijää (pelaajia, ohjaajia, optimoijia, säätäjiä) Päättäjät Kriteerit Optimiohjaus, dynaaminen optimointi 1 (ohjaus u) 1 Nollasummainen differentiaalipeli 2 (ohjaus u 1, u 2 ) 2; J 1 = J 2 Monitavoitteinen optimointi 1 (ohjaus u) useita Dynaamisia joukkuetehtäviä useita (u 1,...,u n ) 1 Ei-nollasummainen differentiaalipeli useita useita Huomaa, että päättäjänä, päätösmuuttujana tai ohjausmuuttujana voi olla useita ohjauskomponentteja; u(t) R m. Muita jakoja: stokastiset deterministiset, jatkuvan ajan diskreetin ajan tehtävät 3

4 2.2 DOT:n muodostaminen, systeemin tilaesitys Sivut ss. 4 8 pääosin lähteen [Kirk, Ch. 1] pohjalta Tilaesitys on ryhmä (yleensä 1. kertaluokan) differentiaali- tai differenssiyhtälöitä tilamuuttujille x i (t) ja ulkoisille ohjausmuuttujille u j (t). Vapaa muuttuja on usein aika, voi olla myös esim. paikka. Diskreettiaikaisille systeemeille tullaan aikaa merkitään alaindeksillä, siis tila on x k, missä k indeksoi ajanhetkeä. Määritelmä. Vektori x = [x 1 x n ] T on systeemin tila, jos jokaisella tarkasteluvälin hetkellä t 1 pätee, että kun tunnetaan x(t 1 ), niin ohjaus u(t), t t 1 määrää tilan kaikkina tulevina ajanhetkinä t t 1. Toisin sanoen tila pitää sisällään kaiken tulevaisuuden kannalta tarpeellisen informaation systeemin historiasta, riippumatta ohjauksesta, jolla siihen on tultu. Huom! Tilaesitys ei ole yksikäsitteinen. Toisin sanoen on olemassa monta tapaa kuvata systeemiä tilaesityksellä. Yleensä tilalle saadaan esitys ẋ 1 (t) = f 1 (x 1 (t),...,x n (t), u 1 (t),...,u m (t), t). ẋ n (t) = f n (x 1 (t),...,x n (t), u 1 (t),...,u m (t), t) Systeemin tila x(t) = [x 1 x n ] T, ohjaus u(t) = [u 1 u m ] T. Vektorimuodossa ẋ(t) = f(x(t),u(t), t). Usein tilaesitykseen liitetään ulkopuolista tarkkailijaa tai mittaussuureita kuvaavat ulostuloyhtälöt y j (t) = c j (x 1 (t),..., x n (t), u 1 (t),...,u m (t), t), j = 1,...,p, jotka määräävät sen, miten havaittu ulostulo riippuu systeemin tilasta x ja ohjauksesta u. Vektorimuodossa y(t) = c(x(t), u(t), t). Yleisesti dynaaminen systeemi S: { ẋ(t) = f(x(t),u(t), t), x(t0 ) = x S : 0 y(t) = c(x(t),u(t), t), x(t) on n-ulotteinen tilavektori, systeemin alkutila x 0 annettu y(t) on p-ulotteinen ulostulovektori u(t) on m-ulotteinen ohjausvektori Tällä kurssilla optimointitehtävissä oletetaan tila yleensä täydellisesti tunnetuksi: y(t) = x(t), t. 2.3 Esimerkki 1 Kitkattomasti liikkuvaa autoa, m = 1, ohjataan kaasupolkimella, kiihdyttävä voima α(t) 0, ja jarrupolkimella, hidastava voima β(t) 0, t. 4

5 Etäisyys alkupisteestä d. Valitaan tilamuuttujiksi paikka d ja nopeus v. Ohjaukset α(t) ja β(t). d(t) = v(t) v(t) = α(t) + β(t) [ ] [ ] [ ] [ ] d(t) α(t) x(t) =, u(t) = ẋ(t) = x(t) + u(t) v(t) β(t) }{{}}{{} A B 2.4 Esimerkki 2 Auto lähtee pysähtyneenä pisteestä O ja pysähtyy pisteeseen e: [ ] [ ] 0 e x( ) =, x(t 0 f ) = 0 Auto ei peruuta, kiihtyvyydet rajoitetut 0 x 1 (t) e 0 x 2 (t) 0 u 1 (t) M 1 M 2 u 2 (t) 0 Polttoainetta rajoitettu määrä G 2.5 Tilaesityksen edut [k 1 u 1 (t) + k 2 x 2 (t)] dt G Tilaesitys on vakiintunut tapa kuvata dynaamisia systeemeitä Esitystapa on matemaattisesti käyttökelpoinen Usein tilavektorin komponenteilla on fysikaalinen (todellinen) tulkinta Tilaesityksen avulla voidaan tutkia systeemin ominaisuuksia Ohjattavuus Tarkkailtavuus Stabiilisuus 2.6 Systeemien luokittelu Epälineaarinen a) aikavariantti ja b) -invariantti systeemi a) ẋ(t) = f(x(t),u(t), t) b) ẋ(t) = f(x(t),u(t)) 5

6 Lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t) tilayhtälön ratkaisu (ohjauksen u(t) vaste) on x(t) = ϕ(t, )x( ) + t ϕ(t, τ)b(τ)u(τ)dτ, missä ϕ(t, ) on systeemin tilansiirtomatriisi (kuvaa nollaohjauksella tilan muutosta hetkestä hetkeen t). Aikainvariantissa tapauksessa A ja B vakioita. ϕ(t, ) = ϕ(t ) = e A(t ), missä e At I + At + 1 2! A2 t 2 + Tilansiirtomatriisin ominaisuuksia: ϕ(t, t) = I ϕ(t 2, t 1 )ϕ(t 1, ) = ϕ(t 2, ) ϕ 1 (t 2, t 1 ) = ϕ(t 1, t 2 ) d d) = A(t)ϕ(t, ) Tilansiirtomatriisin määrittämiseksi on monia keinoja. Eräs tapa aikainvariantissa tapauksessa on määrittää eksponenttisarja numeerisesti. 2.7 Ohjaukset Ohjausfunktio u(t) on yleensä määritelty ja rajoitettu: u(t) U, missä U on esim. paloittain jatkuvien funktioiden joukko ja u(t) Ω, missä Ω kuvaa rajoitusjoukkoa U sisältää siis ne ohjaukset, joilla systeemiyhtälö on mielekäs ja Ω antaa toteutettavissa olevat ohjaukset Sallitut ohjaukset: u(t) Ω U Maalijoukko G, mihin tila halutaan ohjata, siis (x(t f ), t f ) G R n+1, kun t f on loppuaika Käypien ohjausten joukko (G;x 0 ) on niiden ohjausfunktioiden u(t) : [, t f ] R n, u(t) Ω U joukko, joilla maalijoukko G on saavutettavissa tilasta x Ohjattavuus Käypien ohjausten määrittämiseen liittyvä käsite. Tarkastellaan systeemiä alkutilassa x 0 = x( ), ja t. ẋ(t) = f(x(t),u(t), t) Määritelmä. Jos on olemassa äärellinen t 1 ja ohjaus u(t), t [, t 1 ], joka siirtää tilan x 0 origoon hetkeen t 1 mennessä, niin tila x 0 on ohjattava hetkellä. Jos kaikki x 0 :t ovat ohjattavia, niin systeemi on täydellisesti ohjattava. 6

7 Huom! Jos systeemi ei ole ohjattava, on optimiratkaisun etsiminen turhaa! Lause. Lineaarinen aikainvariantti n-ulotteinen systeemi ẋ(t) = Ax(t) + Bu(t) on täydellisesti ohjattava jos ja vain jos n mn- ohjattavuusmatriisin E [ B AB A 2 B... A n 1 B ] rangi on n eli matriisissa E on n lineaarisesti riippumatonta riviä. 2.9 Tarkkailtavuus Tarkastellaan systeemiä alkutilassa x 0 = x( ), ja t. ẋ(t) = f(x(t),u(t), t) y(t) = c (x(t),u(t), t) Määritelmä. Jos systeemin alkutila x 0 voidaan määrittää tarkkailemalla systeemin ulostuloa y(t) aikavälillä [, t 1 ], tilan x 0 sanotaan olevan tarkkailtava hetkellä. Jos kaikki alkutilat x 0 ovat tarkkailtavia kaikille, systeemi on täydellisesti tarkkailtava. Lause. Lineaarinen aikainvariantti systeemi ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) on täydellisesti tarkkailtava jos ja vain jos n qn -tarkkailtavuusmatriisin G [ C T A T C T (A T ) 2 C T... (A T ) n 1 C T] rangi on n eli matriisissa G on n lineaarisesti riippumatonta riviä Esimerkki 2 Tutkiaan edellisen autoesimerkin ohjattavuutta [ ] [ ] [ ] A =, B =, AB =, E = [ ] E:n rangi on 2, joten systeemi on täydellisesti ohjattava. Jos vain kaasu käytössä, niin [ ] [ ] [ ] [ ] A =, B =, AB =, E = E:n rangi on 2, joten systeemi on täydellisesti ohjattava myös pelkällä kaasulla. 7

8 3 Dynaamisen optimointitehtävän määrittely Optimointikriteeri Dynaamisessa optimoinnissa kriteeri on funktionaali eli funktio funktiosta, joka kuvaa funktion reaaliluvuille: J : C 1 (a, b) R Tarkastellaan vain kriteereitä, joilla on additiivisuusominaisuus Esim. kriteerillä J(u(t)) = 1 R t1 u(t)dt Olkoon annettu systeemi S: Tavoitejoukko G : (x(t f ), t f ) G Ohjausrajoitukset u(t) Ω U J(u (t0,t 1 )) = J(u (t0,t)) + J(u (t,t1 )) t (, t 1 ) ei ole tätä ominaisuutta ẋ(t) = f(x(t),u(t), t), x( ) = x 0 Tavoitejoukko + ohjausrajoitukset käypien ohjausten joukko Kohdefunktionaali J(u(t)) Etsi sellainen ohjaus u (t), jolla J(u (t)) J(u(t)), u(t), u (t) on tällöin optimiohjaus Yleinen tehtävä min J ẋ(t) = f(x(t),u(t), t) x( ) = x 0, u(t) Ω U, missä J = h(x(t f ), t f ) + t f g(x(t),u(t), t)dt. Siis annetulla u(t) Ω U x(t) = x(u(t); t) tilayhtälöstä, sijoita x(u(t); t) J:hin, jolloin saat J = J(u(t)); eli J voidaan käsittää funktionaalina J : Ω U R 3.1 Optimiohjaustehtäviä [Kirk, Ch. 2] 1. Minimiaikatehtävä: ohjaa systeemi minimiajassa lopputilaan J = t f = 2. Lopputilakustannus: minimoi esim. lopputilan poikkeama annetusta tilasta J = [x(t) r(t)] T [x(t) r(t)] = x(t f ) r(t f ) 2 3. Minimiponnistustehtävä: minimoidaan esim. polttoaineenkulutusta J = dt u T (t)ru(t)dt = u(t) 2 R 8

9 4. Seurantatehtävä: halutaan systeemin tilan seuraavan annettua referenssirataa r(t) mahdollisimman tarkasti J = x(t) r(t) 2 Q(t) dt, missä Q(t) on symmetrinen, positiivisesti semidefiniitti n n- matriisi, eli x T (t)q(t)x(t) 0, x(t). Q(t):n valinta perustuu kunkin tilakomponentin oletettuun tärkeyteen. Jos ohjausta ei ole rajoitettu (esim. u i (t) 1), niin ohjauksen arvot voidaan pitää rajoitettuna ottamalla ohjaus mukaan kustannukseen. Myös maali r(t f ) voidaan ottaa mukaan samaan kustannukseen J = x(t f ) r(t f ) 2 H + [ ] x(t) r(t) 2 Q(t) + u(t) 2 R(t) dt H on symmetrinen positiivisesti semidefiniitti n n-matriisi R(t) on symmetrinen positiivisesti definiitti m m-matriisi t [, t f ]. Q(t) on symmetrinen positiivisesti semidefiniitti n n-matriisi t [, t f ] 5. Tilasäätäjä: kun r(t) = 0 t saadaan ns. tilasäätäjä- eli regulaattoritehtävä, jolla halutaan stabiloida systeemi origoon. Tilasäätäjissä ei painomatriiseilla H, Q(t) ja R(t) yleensä ole fysikaalista (tai taloudellista) merkitystä. Ne ovat viritysparametreja 6. Optimaalinen suunnittelu. Esim. rakennettava L:n korkuinen pylväs, joka kantaa jonkin kuorman ja minimoi käytetyn rakennusmateriaalin (tilavuuden) 7. Optimaalinen taloudenpito 3.2 Esimerkki Olkoon alkupääoma K( ) = K 0 [ ] ja pääoman tuottavuus F(K(t)) [ /aikayksikkö]. Pääoman tuotto voidaan ohjata joko kulutukseen C(t) tai pääoman kasvattamiseen (investointi) K(t). Paljonko kannattaa kuluttaa ja paljonko käyttää investointeihin? Olkoon kulutuksesta saatu hyöty U(C(t)): Koko elämänilo: J = t f U(C(t))dt Systeemi: K(t) = F(K(t)) C(t), nyt siis C(t) on ohjaus ja K(t) on tila Lopputilarajoitus: K(t f ) 0 Mikä on siis optimaalinen kulutusfunkio C (t)? 9

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla

Lisätiedot

1 Perusteita lineaarisista differentiaaliyhtälöistä

1 Perusteita lineaarisista differentiaaliyhtälöistä 1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause

Lisätiedot

Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa

Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa 1 Kurssin käytännön järjestelyt Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313 Luennoitsija TkT Mitri Kitti Vastaanotto luentojen yhteydessä email: mitri.kitti@hse.fi Luentomoniste kurssin verkkosivuilla

Lisätiedot

1.1 Kurssimateriaali. 1.2 Kurssin suorittaminen ja ohjelma. Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313

1.1 Kurssimateriaali. 1.2 Kurssin suorittaminen ja ohjelma. Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313 1 Kurssin käytännön järjestelyt Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313 Luennoitsija DI Janne Karelahti, U243 Vastaanotto tiistaisin klo 13 14 email: janne.karelahti@hut.fi Luentomoniste kurssin

Lisätiedot

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = = Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 11

Mat Dynaaminen optimointi, mallivastaukset, kierros 11 Mat-.148 Dynaaminen optimointi, mallivastaukset, kierros 11 1. Olkoon tehtaan tuotanto x(t) ajan hetkellä t ja investoitava osuus tuotannosta u(t). Tehdasta kuvaa systeemiyhtälö ẋ(t) = u(t)x(t) x() = c

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 3

Mat Dynaaminen optimointi, mallivastaukset, kierros 3 Mat-2.48 Dynaaminen optimointi, mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: Kustannusfunktio: J = 2 xt NHx

Lisätiedot

[xk r k ] T Q[x k r k ] + u T k Ru k. }.

[xk r k ] T Q[x k r k ] + u T k Ru k. }. Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+

Lisätiedot

6 Variaatiolaskennan perusteet

6 Variaatiolaskennan perusteet 6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.

Lisätiedot

x = ( θ θ ia y = ( ) x.

x = ( θ θ ia y = ( ) x. Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2429 Systeemien Identifiointi 5 harjoituksen ratkaisut Esitetään ensin systeemi tilayhtälömuodossa Tiloiksi valitaan

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),... Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

8. kierros. 1. Lähipäivä

8. kierros. 1. Lähipäivä 8. kierros 1. Lähipäivä Viikon aihe Tilaestimointi Tilasäätö Saavutettavuus, ohjattavuus Tarkkailtavuus, havaittavuus Mitoitus Kontaktiopetusta: 8 tuntia Kotitehtäviä: 4 tuntia Tavoitteet: tietää Saavutettavuus

Lisätiedot

k = 1,...,r. L(x 1 (t), x

k = 1,...,r. L(x 1 (t), x Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun

Lisätiedot

Mat Työ 1: Optimaalinen lento riippuliitimellä

Mat Työ 1: Optimaalinen lento riippuliitimellä Mat-2.132 Työ 1: Optimaalinen lento riippuliitimellä Miten ohjaan liidintä, jotta lentäisin mahdollisimman pitkälle?? 1 työssä Konstruoidaan riippuliitimen malli dynaamisen systeemin tilaesitys Simuloidaan

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

8. kierros. 2. Lähipäivä

8. kierros. 2. Lähipäivä 8. kierros 2. Lähipäivä Viikon aihe Tilaestimointi Tilasäätö Saavutettavuus, ohjattavuus Tarkkailtavuus, havaittavuus Mitoitus Kontaktiopetusta: 8 tuntia Kotitehtäviä: 4 tuntia Tavoitteet: tietää Saavutettavuus

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4. DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 3. harjoituksen ratkaisut. Vapaan vasteen löytämiseksi asetetaan ohjaukseksi u(t)

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Malliprediktiivinen säädin konttinosturille. Laboratoriotyön ohje. Olli Sjöberg Eero Vesaoja

Malliprediktiivinen säädin konttinosturille. Laboratoriotyön ohje. Olli Sjöberg Eero Vesaoja Malliprediktiivinen säädin konttinosturille Laboratoriotyön ohje Olli Sjöberg Eero Vesaoja Contents 1 Johdanto 2 2 MPC säädin 4 21 MPC:n yleinen toimintaperiaate 4 22 LQ-säätimen perusteet 5 23 MPC optimoituna

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön 4 Differentiaaliyhtälöryhmät 41 Ryhmän palauttaminen yhteen yhtälöön 176 Ratkaise differentiaaliyhtälöryhmät a) dt = y +t, b) = y z + sinx x 2 dt = x +t, c) + z = x2 = y + z + cosx + 2y = x a)x = C 1 e

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

9 Singulaariset ratkaisut

9 Singulaariset ratkaisut 9 Singulaariset ratkaisut Singulaarisuus tarkoittaa, että Hamiltonin funktion minimiehto ei ksikäsitteisesti määrää ohjausta Singulaarisuus liitt usein ohjauksen suhteen lineaarisiin ssteemeihin ja kohdefunktioihin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

6. Tietokoneharjoitukset

6. Tietokoneharjoitukset 6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

3.6 Feynman s formulation of quantum mechanics

3.6 Feynman s formulation of quantum mechanics 3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

1 UUSIUTUMATTOMAT LUONNONVARAT

1 UUSIUTUMATTOMAT LUONNONVARAT 1 UUSIUTUMATTOMAT LUONNONVARAT 1.1 Johdantoa optimiohjausteoriaan Kaikissa kurssilla esitetyissä malleissa oletetaan, että luonnonvaran tila (tilamuuttuja = state variable) muuttuu ajassa ennalta tiedetyllä

Lisätiedot

Reuna-arvotehtävien ratkaisumenetelmät

Reuna-arvotehtävien ratkaisumenetelmät Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot