1 Sovelluksia. Sovelluksia 1

Koko: px
Aloita esitys sivulta:

Download "1 Sovelluksia. Sovelluksia 1"

Transkriptio

1 Sovelluksia 1 1 Sovelluksia 1.1 Tausta ja tärkeimpiä määritelmiä Kalvo 1 Aloitetaan tutustumaan luennolla tarkasteltaviin prosesseihin. Tarkempia selityksiä, esimerkiksi Brownin liikkestä, löytyy kertauksesta, jota suositellaan vahvasti opiskeltavaksi ennen kurssia, ja johdannosta. Lisäksi myös kirjallisuudesta kannattaa asiat katsoa ja selvittää itselleen. Luennon johdannon pohjana on ollut John C. Hullin teos Options, Futures and Other Derivatives. Luennon ymmärtämiseksi on kertausluennoista ymmärrettävä hyvin ainakin seuraavat käsitteet ja ominaisuudet: Ehdollinen odotusarvo σ-algebra, filtraatio Kalvo 2 Martingaalit Lisäksi ymmärtämisessä auttaa, jos muutkin asiat ovat jo tuttuja. Tällä luennolla keskeisiä käsitteitä ovat: Stokastinen prosessi on joukko satunnaismuuttujia, jotka saavat erilaisia arvoja ajan muuttuessa jatkuvia diskreettejä Markov prosessi on stokastinen prosessi, jossa ainoastaan nykyinen arvo on relevantti ennustettaessa tulevaisuuden arvoa. Osakkeiden hintaprosessia pidetään usein stokastisena prosessina. Esimerkisi, jos Nokian osakkeen hinta olisi tänään 10 euroa ja haluttaisiin tietään, mitä se on viikon päästä. Ajateltaessa prosessin olevan Markov -prosessi hintaan ei vaikuta hinta eilen tai hinta viikko sitten vain ainoastaan hinta tänään. Näin

2 Sovelluksia 2 Kalvo 3 ajateltaessa osakkeen hinnan jakauma, millä tahansa tulevaisuuden hetkellä, ei ole riippuvainen siitä polusta, jota hinta on seurannut menneisyydessä. Vain tarkasteluhetki on tärkeä. Standardi Brownin liike on useilla eri tieteen aloilla käytetty Markov prosessi, jolla odotusarvo on 0 ja varianssi t, prosessi on jatkuva, ei missään differentioituva ja prosessin lisäyksille W ti W ti 1 pätee E(W ti W ti 1 ) = 0 V ar ( ) W ti W ti 1 = ti t i 1 keskihajonta = V ar ( ) W ti W ti 1 = ti t i 1 Yleistetty Brownin liike voidaan määritellä dx = adt + bdw t, missä W t on Brownin liike. Merkitään usein myös W (t). Termi adt antaa muutokselle suunnan, nyt x kasvaa/vähenee a aikayksikköä kohti. Muuttujaa a kutsutaan kasvukertoimeksi Ensimmäisestä termistä saadaan Kalvo 4 ja integroimalla dx = adt dx dt = a x = x 0 + at ajanjaksolla [0, T ] x kasvaa arvoon x 0 + at Toinen termi bdw t on kohina termi, satunnaisuutta kuvaava termi, missä kohinan määrä on b kertaa Brownin liikkeen muutos. Pienellä aikavälillä δt := t i 1 t i (merkitään pientä väliä nyt δ) muutos δx on δx = aδt + b δtɛ, (1.1)

3 Sovelluksia 3 Kalvo 5 missä ɛ noudattaa standardinormaalijakaumaa ɛ N(0, 1). Tällöin saadaan odotusarvo ja varianssi seuraavasti E(δx) = aδt V ar(δx) = b 2 δt. Kalvo 6 KUVA YLEISTETYSTÄ BM:stä

4 Sovelluksia 4 Kalvo 7 Esimerkki Tarkastellaan tilannetta, jossa yrityksen varallisuus (k e) noudattaa yleistettyä Brownin liike prosessia kasvukertoimella 20 ja varianssilla 900 vuotta kohti. Alkuhetkellä varallisuus on 50 ja vuoden jälkeen varallisuuden odotusarvo on 70 ja hajonta 900 eli 30. Kuuden kuukauden jälkeen varallisuuden odotusarvo on 60 ja hajonta 30 0, 5 = Edellä kuvatunlaisia prosesseja voidaan kutsua myös Ito prosesseiksi. Tällöin yleistetyn Brownin liikkeen kertoimet a ja b ovat funktioita, eli dx = a(x, t)dt + b(x, t)dw t. Pienellä aikavälillä [t, δt] muuttuu prosessi arvosta x arvoon x + δx, missä δx = a(x, t)dt + b(x, t) ɛ. Muutoksen δx arviointi vaatii samanlaista päättelyä, kuin kaavassa (1.1), lisäksi oletetaan, että kasvukerroin ja varianssi pysyvät vakioina, samoina kuin a(x, t) ja b(x, t), ajan muuttuessa hetkestä t hetkeen t + δt. Kalvo Osakkeiden hintojen käyttäytymisen mallintaminen Osakkeen hintaprosessi Osakkeen hintaprosessin voidaan olettaa noudattavan yleistettyä Brownin liikettä, jossa kasvukerroin (usein kutsutaan driftiksi) ja varianssi ovat vakioita. Oletetaan aluksi, että S on osakkeen hinta hetkellä t ja µs on osakkeen kasvunopeus. Toisin sanoen pienellä välillä δt hinnanmuutos on µsδt.

5 Sovelluksia 5 Kalvo 9 Osakkeen hinnan keskihajontaa aikayksikköä kohti kutsutaan osakkeen hinnan volatiliteetiksi. Se on tulevaisuuden hinnan muutosten epävarmuuden mitta. Volatiliteetin arvioimiseen käytetään apuna mm. aikasarja-analyysiä. Jos osakkeen hinnan volatiliteetti on nolla, niin tälloin epävarmuutta ei ole (vakiokorkoiset määräaikaistalletukset yms.) ja malli typistyy muotoon δs = µsδt ja välin pienetessä, kun δt 0 ds = µsdt tai ds S = µdt. Integroimalla nollasta arvoon T saakka saadaan S T = S 0 e µt, missä S 0 ja S T ovat osakkeen hintoja hetkillä nolla ja T. Toisin sanoen kun volatiliteetti on nolla, niin osakkeen hinta kasvaa kasvukertoimen mukaisesti. Kalvo 10 Käytännössä osakkeen hinnoissa on epävarmuutta eli niissä ilmenee volatiliteettiä. Tässä mallissa oletetaan, että hinnat seuraavat kasvukerrointa (odotusarvoa), mutta vaihtelevat sen ympärillä satunnaisesti normaalijakauman mukaisesti. Se, että epävarmuutta kuvataan normaalijakaumalla perustuu keskeiseen raja-arvolauseeseen. Normaalijakaumaa noudattavan satunnaisuuden ottamiseksi mukaan malliin lisäämme yhtälöön uuden termin ds = µsdt + σsdw t,

6 Sovelluksia 6 Kalvo 11 eli ds S = µdt + σdw t. Edelliset yhtälöt ovat käytetyimpiä osakkeen hinnan kehitysta kuvaavia malleja. Mallissa σ on osakkeen hinnan volatiliteetti ja µ on kasvukerroin. Esimerkki 1.1. Tarkastellaan osaketta ilman osto yms. kuluja, vuotuinen volatiliteetti on 30% vuotuinen korko on 15% (jatkuva) eli σ = 0.3 ja µ = Prosessi on ds S = 0.15dt + 0.3dW t. Jos S on osakkeen hinta tietyllä hetkellä ja δt on hinnan kasvu Kalvo 12 seuraavalla pienellä aikavälillä, niin missä ɛ N(0, 1). δs S = 0.15δt δtɛ, Tarkastellaan viikkoa ( vuotta) ja oletetaan, että osakkeen hinta alussa on 100 e. Tällöin δt = , S = 100e ja δs = 100 ( ) e = 0.288e e, josta nähdään, että hinnankasvu viikossa on satunnaismuuttuja, joka noudattaa normaalijakaumaa odotusarvolla 0,288 e ja keskihajonnalla 4.17 e. Osakkeen hinnankehityksen malli tunnetaan geometrisenä Brownin liikkeenä. Kertausluennoissa ko. malli johdettiin osakkeen

7 Sovelluksia 7 hintakehtyksen binomimallista. Mallin diskreettiaikainen versio on eli δs S = µδt + σ δtɛ (1.2) Kalvo 13 δs = µsδt + σs δtɛ. (1.3) Muuttuja δs kuvaa muutosta pienellä aikavälillä δt, ɛ N(0, 1), µ on osakkeen hinnan kasvukerroin aikayksikköä kohti ja σ on osakkeen hinnan volatiliteetti. Kaavassa 1.2 vasen puoli kuvaa osakkeen tuottoa ajan suhteen, ilman osakkeen hinnan vaikutusta, termi µδt on tuoton odotusarvo ja σs δtɛ on tuoton stokastinen komponentti. Toisin sanoen yhtälöstä 1.2 nähdään, että δs S on normaalijakautunut odotusarvolla µδt ja hajonnalla σ δt eli δs S N(µδt, σ δt). Kalvo Monte Carlo simulaatio Stokastisten prosessien Monte Carlo simulaatio on keino laskea otoksen tuloksia. Kurssilla myöhemmissä luennoissa tullaan tutustumaan enemmän myös Monte Carlo simuloinnin ideaan. Esimerkki 1.2. Oletetaan, että vuotuinen kasvukerroin tai odotusarvo on 14% ja volatiliteetti 20 %. Eli µ = 0.14 ja σ = 0.2. Tarkastellaan tilannetta, jossa δt = 0.1 eli tarkastelu tehdään 0.05 vuoden välein (18.25 päivää). Kaavasta (1.3) saadaan δs = S Sɛ. Osakkeen hinnan polku saadaan standardinormaalijakauman avulla ottamalla useita otoksia ɛ:lle. Seuraava taulukko selventää asiaa. Idea on se, että ensimmäisellä kierroksella tarkastellaan osakkeen hintaa ja

8 Sovelluksia 8 Kalvo 15 lasketaan seuraavan hetken hinta ensimmäisen hinnan ja normaalijakaumasta saatavan otoksen avulla. Näin saadaan toinen hinta. Kolmatta hintaa laskettaessa käytetään apuna toista hintaa ja normaalijakaumasta saatavaa otosta jne. Tutustu itsenäisesti ideaan ja erilaisiin polkuihin Matlabin m-tiedoston MCS.m avulla. Kalvo 16 Taulukko ja kuva

9 Sovelluksia Koonta Tarkastellaan nyt vielä hieman käsiteltyjen asioiden ideoita, että niistä jää selkeä mielikuva Kalvo 17 Stokastinen prosessi kuvaa satunnaisten ilmiöiden muuttumista ajan kuluessa. Simuloimalla voidaan tarkastella yhtä prosessin polun mahdollisuutta. Markov prosessi on tärkeä ja kiinnostava prosessi, jonka tulevaisuuden arvoon ei vaikuta menneisyys vaan ainoastaan nykyhetki. Brownin liike kuvaa normaalijakautuneiden satunnaismuuttujien käytöstä. Jos Brownin liike lähtee liikkeelle ajan hetkellä nolla paikasta x, niin prosessin odotusarvo ja varianssi ajanhetkellä T ovat x ja T. Kalvo 18 Yleistetty Brownin liike kuvaa kasvukertoimisten (driftillisten) normaalijakautuneitten satunnaismuuttujien käytöstä. Jos esimerkiksi kasvukerroin on vakio a ja varianssi aikayksikköä kohti vakio b 2, niin yleistetyn Brownin liikkeen, joka lähtee liikkeelle hetkellä 0 pisteestä x, odotusarvo ja varianssi hetkellä T ovat x + at ja b 2 T. Ito prosessi dt taas yleistää nämä edelliset. Se on prosessi, jolla kasvukerroin ja varianssi voivat olla itse muuttujan x ja ajan funktioita. Muuttujan x muutoksia hyvin pienillä aikaväleillä voidaan approksimoida normaalijakautuneiksi, mutta suurilla aika väleillä tämä ei ole mahdollista.

10 Sovelluksia 10 2 Black-Scholesin kaava Tämän kappaleen pohjana on osittain käytetty Paavo Salmisen ja Esko Valkeilan artikkelia, joka on julkaistu lehdessä Arkhimedes 3/99. Suosittelen artikkeliin tutustumista. Artikkeli löytyi ainakin internetistä osoitteesta Kalvo 19 Luennossa asia johdatellaan diskreetin mallin avulla ja paljon olennaista asiaa on jätetty pois. Siksi suosittelen tutustumaan tarkasti alan kirjallisuuteen. Asiaa on kuvattu luentoa tarkemmin mm. kirjassa J.Michael Steele, Stochastic Calculus and Financial Applications, Springer 2000, kappaleessa 14. Tarkastellaan Black-Scholesin markkinamallia ja heidän luomaansa kaavaa. 2.1 Ongelma Eurooppalainen osto-optio A haluaa osakkeen ja hänellä on K euroa vasta 30 päivän kuluttua. Kalvo 20 B lupaa myydä A:lle osakkeen 30 päivän kuluttua hintaan K euroa, korvausta vastaan. Eli A ostaa option B:ltä. Jos osakkeen hinta ko. päivänä < K, A ostaa pörssistä. > K, A:lle (S 30 K) euron etu Toisin sanoen option myyjä B lupaa maksaa A:lle rahasumman, jonka suuruus riippuu osakkeen hintavaihtelusta. Esimerkki 2.1. Ω = {ω 1, ω 2 } Todennäköisyysmitta

11 Sovelluksia 11 P : P (Ω) [0, 1] P (ω 1 ) = 0.8 P (ω 2 ) = 0.2 Osakkeen hinta on stokastinen prosessi Kalvo 21 S 0 = , jos ω 1 tapahtuu S 1 = 90, jos ω 2 tapahtuu Eurooppalaisen osakkeen S osto-optio X : Lunastusaika T = 1 Lunastushinta K = 105 A:lla oikeus lunastaa osake S hetkellä t = T = 1 hintaan K = 105. Option omistaminen on stokastista tuloa hetkellä T = 1 ja sen arvo on X = max {0, S 1 105} Mikä on option oikea hinta hetkellä t = 1? Kalvo 22 Odotusarvo hetkellä t = ( ) (0) = = 16. Oletetaan, että korko on 10% ja diskontataan nykyhetkeen, niin 1 16 = Saadaan yksi mahdollisuus hinnalle 14.5.

12 Sovelluksia Ratkaisusta Kehittivät Fisher Black ja Myron Scholes 1973 Robert Merton laajensi ratkaisun myös amerikkalaisile optioille. Kalvo 23 Scholes ja Merton (Black kuoli v. 1995) saivat taloustieteen Nobelin palkinnon vuonna Malli Kahdenlaisia sijoituksia: Oblikaatiot, riskitön tuotto korkoprosentin mukaan, B t Osake, riskillinen tuotto/tappio, S t Oletetaan nyt, että osakkeen hintaprosessi on edellä käsitellyn mallin mukainen ds t = µs t dt + σs t dw t, S 0 = s, (2.1) Kalvo 24 missä W on Brownin liike, σ > 0 on volatilitetti (keskihajonta ajan suhteen) ja µ on osakkeen tuottavuus, kasvukerroin. Differentiaaliyhtälö on mahdollista ratkaista, jolloin saadaan S t = se (µ 1 2 σ2 )t+σw t, W 0 = 0. Oblikaation hinta saadaan differentiaaliyhtälöstä db t = rb t dt, B 0 = b, (2.2) missä r > 0 on korkokerroin.

13 Sovelluksia Strategia Määritellään, että Y T on myyjän lupaama rahasumma hetkellä t = T. Hintakehitys määrää Y T :n arvon. β t oblikaatioiden määrä Kalvo 25 γ t osakkeiden määrä. Se kuinka paljon osakkeita ja oblikaatioita myyjän kannattaa pitää vaikuttaa myyjällä olevaan varallisuuteen. Stokastista prosessia π t = (β t, γ t ), t 0, joka kertoo näiden lukumäärät eri ajan hetkillä, kutsutaan strategiaksi. Varallisuus saadaan strategiasta V π t = β t B t + γ t S t. Oletetaan, että varallisuus voidaan kirjoittaa integraalimuotoon Kalvo 26 V π t = v + t 0 β s db s + t 0 γ s ds s, missä V π 0 = v. Jos näin voidaan tehdä, niin strategia on omavarainen. Lisäksi oletetaan, että omavarainen strategia on alhaalta rajoitettu. Näillä oletuksilla strategia on sallittu. 2.4 Diskreetti markkinamalli t = 1, 2,.... r = oblikaation korkokerroin ja B t+1 = (1 + r) B t, t = 0, 1, 2,...

14 Sovelluksia 14 Osakkeen hinta nousee tai laskee: S t+1 = (1 + a) S t tai S t+1 = (1 + y) S t, t = 0, 1, 2,... (2.3) missä a < 0 < r < y. Ko. teoria pätee vain, kun hinnalla on mahdollisuus saada vain kaksi arvoa. Kalvo 27 Y T on rahasumma, jonka option myyjä lupaa maksaa, kun t = T, merkitään Y T = f (S T ). Myyjä tekee suojausstrategian π = {(β i, γ i ) : i = 1, 2,... T }, s.e. varallisuus on sama kuin myyjän lupaama hinta V π T = β T B T + γ T S T, = Y T (2.4) = f (S T ). Kalvo 28 Suojauksen rakentaminen t = T 1, tiedetään S T 1, hinnan kaksi mahdollista arvoa hetkellä T sekä korkokerroin r. Yhtälöstä (2.5) saadaan yhtälöryhmä β T B T + γ T S T 1 (1 + a) = f (S T 1 (1 + a)). β T B T + γ T S T 1 (1 + y) = f (S T 1 (1 + y)) Ja varallisuus V π T 1 = β T B T 1 + γ T S T 1. (2.5) t = T 2 tiedetään S T 2, korkokerroin r sekä osakkeen hinnan kaksi arvoa hetkellä T 1. Option myyjän varallisuus hetkellä T 1 pitäisi olla V π T 1. voidaan rarkaista β T 1 ja γ T 1. Rekursiota jatkamalla saadaan selville V0 π, joka on tasapuolinen option hinta.

15 Sovelluksia 15 V π 0 : laskeminen Oletetaan P(hinta nousee) = q ja P(hinta laskee) = 1 q. Hinnanlasku tai -nousu ei riipu osakkeen aikaisemmasta historiasta. Olkoon Q todennäköisyysmitta, jolle Yhtälö (2.5) voidaan kirjoittaa q = r a y a. Kalvo 29 VT π 1 = (1 r) 1 E Q (f (S T ) S T 1 ), (2.6) Riippumattomuusoletuksen perusteella voidaan S T 1 n paikalle laittaa koko historia E Q (f (S T ) S T 1 ) = E Q ( f (S T ) FT S ) 1 missä Ft S on osakkeen hinnan generoima σ-algebra, eli osakkeen hinnan koko historia hetkeen t saakka. Induktiolla saadaan V π t = (1 r) (T t) E Q ( f (S T ) F S t ), ja strategialle pätee, että että diskontattu varallisuusprosessi on martingaali mitan Q suhteen. Optiosopimuksen tasapuolinen hinta V π 0 saadaan V π 0 = (1 r) T E Q (f (S T )). (2.7) Kalvo Black-Scholesin kaava eurooppalaiselle osto-optiolle Jatkuva kaava saadaan diskreetistä mallista, kaava (2.7). Kaava (2.7) kirjoitetaan binomitodennäköisyyden avulla ja binomijakauma suppenee kohti normaalijakaumaa, jolloin saadaan option oikea hinta V π 0 = e rt E Q (f(s T )).

16 Sovelluksia 16 Eurooppalaisen option arvoksi saadaan tällöin V π 0 = e rt E (max {S T K, 0}) (2.8) ( { }) = e rt E max se (r 1 2 σ2 )T +σw T K, 0, (2.9) Kalvo 31 missä W T N(0, T ) ja T on varianssi. Ratkaisu voidaa ilmaista käyttäen normaalijakauman kertymäfunktiota Φ. Laskuissa korko ja volatiliteetti pitäisi tuntea. Reilu hinta saadaan laskettua muotoon missä ja V π 0 = sφ (α + ) Ke rt Φ (α ), α ± = 1 σ T (log sk ) ) (r + ± σ2 T 2 Φ (z) = 1 2π z e u2 2 du. Kalvo 32 Termeistä: B&S:n kaavassa käytetään kreikkalaisia kirjamia kuvaamaan osittaisderivaattoja funktion muuttujien suhteen. Niillä kuvataan option arvon herkkyyttä (muutosta) parametrin arvon muutoksen suhteen. Esimerkiksi: = Φ(α + ) = (f(s T )) S T kuvaa option arvon herkkyyttä osakkeen hinnan muutoksien suhteen. Γ = Φ (α + ) S T σ = 2 (f(s T )) taas kuvaa option arvon kaarevuutta T ST 2 osakkeen hinnan suhteen eli deltan herkkyyttä osakkeen hinnan muutoksien suhteen. Θ on option hinnan aikaderivaatta ja se kuvaa option hinnan herkkyttä ajan suhteen.

17 Sovelluksia 17 Esimerkki 2.2. Osakkeen hinta 80e Kalvo 33 Volatiliteetti 0.40 Aika T=4 kk Toteutushinta 85e Mikä on option reilu hinta, jos korko on 8%? Kalvo 34 Lasketaan aluksi α + ja α α + = 1 (ln σ sk (r T + + σ2 2 ( 1 = ln ) ) T ( = α = 1 (ln σ sk (r T + σ2 2 = = ( ln ) ) T ( ) ) 1 3 ) ) 1 3

18 Sovelluksia 18 Sijoitetaan saadut tulokset kaavaan v = sφ (α + ) Ke rt Φ (α ) Kalvo 35 = 80Φ ( 0.031) 85e 0.08( 1 3) Φ ( ) = e = 6.18 Arvot funktiolle Φ saa taulukosta tai laskemalla koneella. Kalvo Muita stokastisiin prosesseihin perustuvia malleja Edellä käytettiin malleja, jotka pohjautuvat Brownin liikkeeseen. Useissa tilanteissa ei Markov prosessi ole kuitenkaan riittävä kuvaamaan malleja, koska Markov prosesseissa ei tulevaisuus perustu, yhtä hetkeä lukuunottamatta, menneisyyteen. Menneisyyttä tarvitsevista malleista voidaan ottaa esimerkkinä Gaussinen prosessi, Fraktionaalinen Brownin liike, jolla on mallinnettu tietoliikennepakettien kulkua verkossa. Kyseessä on Brownin liikkeen yleistys, jolla ei ole riippumattomia lisäyksiä, kuten Brownin liikkeellä, vaan lisäykset ovat ainoastaan stationaarisia. Molemmat prosessit ovat kuitenkin itse-similaarisia, joka tarkoittaa, että tarkennettaessa (zoomatessa) polkua tarkemmaksi näyttää prosessin polku koko ajan samanlaiselta. Fraktionaarisella Brownin

19 Sovelluksia 19 Kalvo 37 liikkeellä on kuitenkin paksuhäntäinen jakauma, jota Brownin liikkeellä ei ole. Eli fraktionaarisella Brownin liikkeellä voidaan mallintaa informaatiota, jossa ominaisuutena on pitkän aikavälin riippuvuus. Lisätietoa teleliikenteen mallintamisesta ja fraktionaarisesta Brownin liikkeestä voit aluksi vilkaista mm. Ilkka Norroksen artikkelista ja sen jälkeen etsiä itsenäisesti vaikka VTT:n verkkosivuilta. Kalvo 38 3 Lähdeluettelo Luentomateriaali pohjautuu pääosin seuraavaan kirjallisuuteen Hull J.C. Options, Futures and Other Derivatives, Fifth edition. Prentice Hall, New Jersey, Shreve, S. Lectures on Stochastic Calculus and Finance, chal/shreve.html Klebaner, F. C, Introduction to Stochastic Calculus with application. Imperial College Press, London Salminen P.,Valkeila E. Matemaattisen rahoitusteorian peruselementti: Black-Scholesin kaava. Arkhimedes 3/99. Steele J.M., Stochastic Calculus and Financial Applications. Springer 2000.

20 Sovelluksia 20 Kalvo 39 Williams, D. Probability with Martingales. Cambridge University Press, The Pitt Building, Trumpington Street Cambridge CB2 1RP Öksendal,B. Stochastic Differential Equations. Springer-Verlag, 1998

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja 44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu Rahoitsriskit ja johdannaiset Matti Estola lento 1 Binomipt ja optioiden hinnoittel 1. Optiohintojen mallintaminen Esimerkki. Oletetaan, että osakkeen spot -krssi on $ ja spot -krssilla 3 kk:n kltta on

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen Rahoitusriskit ja johdannaiset Matti Estola luento 2 ermiini- ja futuurihintojen määräytyminen 1. ermiinien hinnoittelusta Esimerkki 1 Olkoon kullan spot -hinta $ 300 unssilta, riskitön korko 5 % vuodessa

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Edellä rajakustannuksia MC(x) ja rajahyötyä MB(x) tarkasteltaessa käsiteltiin vain tapausta, jossa x on diskreetti suure (mahdollisia

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot