PERUSKOULUSTA PITKÄLLE

Koko: px
Aloita esitys sivulta:

Download "PERUSKOULUSTA PITKÄLLE"

Transkriptio

1 Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007

2 SISÄLLYS Saatteeksi Luku Murtoluku desimaaliluku Desimaaliluku murtoluku Laskutoimitukset Laskujärjestys Potenssi Potenssin määritelmä Potenssisäännöt Nollas potenssi Negatiivinen potenssi Murtoluvun potenssi Desimaaliluvun potenssi Kymmenpotenssiesitys Juuret Neliöjuuri Kuutiojuuri Polynomi Peruskäsitteitä Peruslaskutoimitukset Muistikaavat Summan ja erotuksen tulo Summan neliö Erotuksen neliö Tekijöihin jako Kokonaislukujen jaollisuusehtoja Kokonaisluvun jakaminen tekijöihin.. 25 Polynomin jako tekijöihin Rationaalilausekkeet Supistaminen Kertolasku Jakolasku Yhteen- ja vähennyslasku Yhtälö Peruskäsitteitä Ensimmäisen asteen yhtälö Toisen asteen yhtälö Vaillinaiset yhtälöt Täydellinen yhtälö Prosenttilasku Erityyppisiä prosenttilaskutehtäviä Prosenttiyksikkö Promille Sanalliset tehtävät Epäyhtälö Peruskäsitteitä asteen epäyhtälö Yhtälöpari Yhteenlaskukeino Sijoituskeino Sanallinen yhtälöpari Geometriaa Yksiköiden muunnoksia Pituusyksiköt Pinta-alayksiköt Tilavuusyksiköt Tasokuvioiden piirit ja pinta-alat Monikulmiot Ympyrä Suorakulmaisen kolmion geometriaa. 56 Avaruusgeometriaa Harjoitustehtävien ratkaisuja Liitteet Joukko-oppia Merkintöjä ja symboleja Aloitustesti

3 2. Potenssi Samojen lukujen summa voidaan esittää tulon muodossa, esimerkiksi voidaan kirjoittaa: = 3 5. Vastaavasti samojen lukujen tulo voidaan lyhentää: = 5 3. Tämä merkintätapa on nimeltään potenssi, jossa 5 on kantaluku ja 3 eksponentti. Yleistämällä saadaan Potenssin määritelmä 3. (a m ) n = a mn potenssin potenssi 4. (ab) n = a n b n tulon potenssi a ( b) n = an b n 5. osamäärän potenssi 6. a 0 = nollas potenssi (a 0, 0 0 ei tarkoita mitään) a n = a a a, jossa n Z + n kpl 7. a n = a n ( a b) n b = ( b a) n = n a n negatiivinen potenssi (n > 0) Potenssisäännöt Määritelmän perusteella saadaan seuraavat laskusäännöt (MAOL s. 8). Laskusääntöihin liittyvät esimerkkilaskut:. a 6 a 3 = a = a a m a n = a m + n a m a n = am n samankantaisten potenssien tulo samankantaisten potenssien osamäärä a 6 a 3 = a6 3 = a 3 ( a 6 ) 3 = a 6 3 = a 8 (ab) 6 = a 6 b 6

4 9. Toisen asteen yhtälö Toisen asteen yhtälöksi sanotaan yhtälöä, jossa muuttujan suurin eksponentti on kaksi. Täydellinen toisen asteen yhtälö on muotoa ax 2 + bx + c = 0, jossa a, b ja c ovat vakioita ja lisäksi a 0. Jos ensimmäisen asteen termi bx tai vakiotermi c puuttuu, yhtälöä kutsutaan vaillinaiseksi toisen asteen yhtälöksi. Esimerkiksi 4x 2 2x + 5 = 0 on täydellinen, mutta 4x = 0 ja 4x 2 2x = 0 ovat vaillinaisia toisen asteen yhtälöitä. Vaillinaiset yhtälöt. Muotoa ax 2 = c oleva yhtälö Jakamalla edellisen yhtälön molemmat puolet a:lla, saadaan x 2 = c, josta ratkaisut c a x = ± a. Esimerkkejä. Ratkaise yhtälö x 2 = 6. Ratkaisuja on kaksi, eli x = 4, koska 4 2 = 6 ja x = 4, koska myös ( 4) 2 = 6. Tämä voidaan merkitä lyhyemmin muodossa x = ± Ratkaise yhtälö 4x 2 2 = 0. Ratkaistaan ensin x 2 kuten ensimmäisen asteen yhtälöstä. 4x 2 2 = 0 4x 2 = 2 : 4 x 2 = 2 = 3 4 x = ± 3 Vastaus jätetään neliöjuurimuotoon, jo ka on tarkka arvo. Laskimesta on saatavissa vain likiarvo, esim. viiden desimaalin tarkkuudella x ±, Ratkaise yhtälö 3x = 0. 3x = 0 3x 2 = 2 : 3 x 2 = 7 Koska toinen potenssi ei koskaan ole negatiivinen, niin yhtälöllä ei ole ratkaisua. 2. Muotoa ax 2 + bx = 0 oleva yhtälö Ratkaisu saadaan jakamalla vasen puoli tekijöihin (yhteinen tekijä, ks. luku 6) ja käyttämällä tulon nollasääntöä. Tulon arvo on 0 silloin ja vain silloin, kun jokin tekijöistä on 0. 34

5 PROSENTTILASKU 4. Parturi- ja kampaamomaksut muodostuvat verottomasta hinnasta ja arvonlisäverosta, joka on 22 % palvelun verottomasta hinnasta. Hiusten leikkaus maksoi 20. Kuinka suuri tämä maksu olisi ollut, jos arvonlisävero olisi ollut 0 prosenttiyksikköä pienempi? Jos veroton hinta on x, niin verollinen hinta on,22x. Saadaan yhtälö,22x = 20, josta x = 20 ( 6,40). Koska uusi arvonlisävero on 2 %, on uusi verollinen hinta,22,2x =,2 20 8,36. Tämä pyöristetään käytännössä ylöspäin 0, :n tark-,22 kuuteen. Vastaus: Maksu olisi ollut 8, Erään tuotteen hinta nousi tammikuussa 0 % ja joulukuussa 2 %. Kuinka monta prosenttia sen hinta nousi kaikkiaan? [S-77-L-] Alkuperäinen hinta = 00a. Hinta on tammikuun korotuksen jälkeen, 00a = 0a ja joulukuun korotuksen jälkeen,2 0a = 23,2a, joka on 23,2 % korkeampi kuin alkuperäinen hinta 00a. Vastaus: Hinta nousi kaikkiaan 23,2 %. Harjoitustehtäviä Kuinka paljon on. 5 % 2000:sta? % :sta? ,3 %,9:sta? 4. 2 % 80:stä? % min 40 s:sta? 6. 2,0 8,5 l:sta? Kuinka monta % on 900:sta? 8. on 3 :sta? m on 2,5 km:stä? 0. 8 on pienempi kuin 2?. 40 min on lyhyempi aika kuin h 5 min? 2. 0 m/s on nopeampi vauhti kuin 30 km/h? 3. kg 250 g on painavampi kuin 0,5 kg? Mikä luku on 4. 0 % suurempi kuin 995? % suurempi kuin 00? % pienempi kuin 7? % pienempi kuin 50? Mistä luvusta % on 40? % on 8? 20. Lukua suurennetaan 0 %. Kuinka mon ta % alkuperäinen luku on saatua lukua pienempi? 43

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

Talousmatematiikan perusteet, L2

Talousmatematiikan perusteet, L2 Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja.

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. 113 11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. Esim. Kun sulatetaan 63 g kuparia ja 37 g sinkkiä, saadaan 100 g messinkiä. 63 100 = 114

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Matematiikan didaktiikka, osa II Estimointi

Matematiikan didaktiikka, osa II Estimointi Matematiikan didaktiikka, osa II Estimointi Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Arviointi Arvionti voidaan jakaa kahteen osaan; laskutoimitusten lopputulosten arviointiin ja arviontiin

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS K. V Ä I S Ä L Ä A L G E B R A N O P P I - J A E S I M E R K K I K I R J A I KAHDESTOISTA PAINOS PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ Kouluhallituksen hyväksymä WERNER SÖDERSTRÖM OSAKEYHTIÖN KIRJAPAINOSSA

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja. PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan.

Lisätiedot

MAS- linjan matematiikan kurssit

MAS- linjan matematiikan kurssit Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan

Lisätiedot

MABK1 Kurssimateriaali. Eiran aikuislukio 2005

MABK1 Kurssimateriaali. Eiran aikuislukio 2005 MABK1 Kurssimateriaali Eiran aikuislukio 2005 Sisältö 1 Sanasto 1 2 Luvut ja laskutoimitukset 5 2.1 Lukujoukot................................ 5 2.2 Peruslaskutoimitukset.......................... 6 2.3

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

(1) Desimaaliluvut ja lukujen pyöristäminen

(1) Desimaaliluvut ja lukujen pyöristäminen (1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Pasi Leppäniemi OuLUMA, sivu 1 POLYNOMIPELI Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Luokkataso: 8-9 lk Välineet: pelilauta, polynomikortit, monomikortit, tuloskortit,

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti.

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti. 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä

Lisätiedot

matematiikkaa maahanmuuttajille Eeva Rinne

matematiikkaa maahanmuuttajille Eeva Rinne matematiikkaa maahanmuuttajille Eeva Rinne 1 Turun kristillisen opiston oppimateriaaleja -sarja Tekijä: Eeva Rinne Julkaisija: Turun kristillisen opiston säätiö, Lustokatu 7, 20380 Turku. www.tk-opisto.fi

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9 Sisällysluettelo 1 Laskutoimituksia 3 Peruslaskutoimitukset luvuilla 3 Peruslaskutoimitukset polynomeilla 5 Prosentti 7 Prosenteilla vertaaminen 9 Kuvaaminen koordinaatistossa 11 2 Lausekkeesta yhtälöksi

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla 1. Tehtävänanto Pohdi kuinka opettaisit yläasteen oppilaille murtolukujen peruslaskutoimitukset { +, -, *, / } Cuisenairen lukusauvoja apuna

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Lukujen uusi maailma: p-adiset luvut

Lukujen uusi maailma: p-adiset luvut Solmu 3/2008 1 Lukujen uusi maailma: p-adiset luvut Tauno Metsänkylä Matematiikan laitos, Turun yliopisto Kun kokonaislukujen 0,1,2,... joukkoa laajennetaan vaiheittain ottamalla mukaan negatiiviset kokonaisluvut,

Lisätiedot

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan

Lisätiedot

Tehtäväkohtaisia havaintoja. Tehtävä 1. Kuinka suuri on kellon viisarien välinen kulma, kun kello on a) 8.00 b) 12.45

Tehtäväkohtaisia havaintoja. Tehtävä 1. Kuinka suuri on kellon viisarien välinen kulma, kun kello on a) 8.00 b) 12.45 Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointia vuodelta 2010 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Kuinka sopiva peruskoulun matematiikkakilpailun

Lisätiedot

MATEMATIIKKA/Vuosiluokat 7-9

MATEMATIIKKA/Vuosiluokat 7-9 MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Desimaaliluvut, mitä ne oikeastaan ovat?

Desimaaliluvut, mitä ne oikeastaan ovat? Desimaaliluvut, mitä ne oikeastaan ovat? Matti Lehtinen Desimaaliluvut ovat niin jokapäiväisiä ja niillä laskemiseen niin totuttu, ettei yleensä tule miettineeksi, mitä ne oikeastaan ovat. Joskus kauan

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

AMMATILLINEN OPETTAJAKORKEAKOULU

AMMATILLINEN OPETTAJAKORKEAKOULU Tampereen ammattikorkeakoulu AMMATILLINEN OPETTAJAKORKEAKOULU Opettajankoulutuksen kehittämishanke Matematiikan osaaminen peruskoulun jälkeen Tarja Puurunen 007 PUURUNEN TARJA: Matematiikan osaaminen peruskoulun

Lisätiedot

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas

Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla 7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

ALGEBRA I. Antti Majaniemi. 1 1 A x2 y2 1. x x y y. x x y y ISBN 978-952-93-5799-4

ALGEBRA I. Antti Majaniemi. 1 1 A x2 y2 1. x x y y. x x y y ISBN 978-952-93-5799-4 ALGEBRA I Antti Majaniemi x y A x y x y x x y y x x y y 05 ISBN 978-95-9-5799-4 Tämä teos on lisensoitu Creative Commons Nimeä-EiKaupallinen 40 Kansainvälinen -lisenssillä Tarkastele lisenssiä osoitteessa

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Prosenttikäsite-pelin ohje

Prosenttikäsite-pelin ohje 1(5) Prosenttikäsite-pelin ohje Yksi neljäsosa kakkua Tässä pelissä opitaan yhdistämään * murtoluvun kuva ja sanallinen kuvaus sekä murtolukumerkintä * murto- ja desimaali- sekä %-luvun merkinnät. 0,25

Lisätiedot

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1)

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1) Lasku-Lassin maatila - Harjoituslista Sivu 1 / 20 Luokka 0-1 Vertailua (Luokka 0-1) 1. Etsi erilainen Kuvavalinta 2. Mikä ei kuulu joukkoon? Kuvavalinta 3. Pitempi, lyhyempi Kuvavalinta 4. Mikä ei kuulu

Lisätiedot

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta Espoon suomenkielisen perusopetuksen opetussuunnitelma Luvut 13 15 OPPIAINEIDEN OPETUSSUUNNITELMAT Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto,

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku 5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan

Lisätiedot

1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa

1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa 1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa (Lähde: Lamon, S. 1999. Teaching fractions and ratios for understanding. New Jersey: Lawrence Erlbaum Publishers.) Murtolukujen alueelle siirryttäessä

Lisätiedot

Matematiikan olympiavalmennus: Diofantoksen yht al oit a

Matematiikan olympiavalmennus: Diofantoksen yht al oit a Matematiikan olympiavalmennus: Diofantoksen yht al oit a Heikki M antysaari 25. helmikuuta 2007 V ah an teoriaa Diofantoksen yht al o: tuntemattomia enemm an kuin yht al oit a. Lukiossa esim. 4x + 8y =

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 3.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.2.2010 1 / 36 Esimerkki: asunnon välityspalkkio Kirjoitetaan ohjelma, joka laskee kiinteistönvälittäjän asunnon

Lisätiedot

6. luokka 7. luokka. 6. luokka 7. luokka

6. luokka 7. luokka. 6. luokka 7. luokka VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

TI-30X II funktiolaskimen pikaohje

TI-30X II funktiolaskimen pikaohje 0 TI-30X II funktiolaskimen pikaohje Sisältö Näppäimet... 1 Resetointi... 1 Aiempien laskutoimitusten muokkaaminen... 2 Edellisen laskutoimituksen tuloksen hyödyntäminen (ANS) ja etumerkki... 3 DEL ja

Lisätiedot

Vapaa matikka. Määritelmä sanalle rekursio: ks. rekursio. Polynomifunktiot (MAA2)

Vapaa matikka. Määritelmä sanalle rekursio: ks. rekursio. Polynomifunktiot (MAA2) Vapaa matikka Polynomifunktiot (MAA2) Määritelmä sanalle rekursio: ks. rekursio. Sisältö on lisensoitu avoimella CC BY 4.0 -lisenssillä. Versio 0.90 (22.9.2014) LISENSSI Tämän teoksen käyttöoikeutta koskee

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA 1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Yleisohje... 2 Peruslaskutoimitukset... 8 Tieteislaskutoimitukset... 10 Tilastolaskenta... 17

Yleisohje... 2 Peruslaskutoimitukset... 8 Tieteislaskutoimitukset... 10 Tilastolaskenta... 17 Tieteislaskin Yleisohje... 2 Virta... 2 Näppäimistö... 2 Näytön merkinnät... 3 Esitysmuodot... 3 Laskujärjestys... 5 Korjaaminen... 5 Tarkkuus ja kapasiteetti... 5 Ylivuoto- tai virhetilanteet... 8 Peruslaskutoimitukset...

Lisätiedot