Fysiikan perusteet. SI-järjestelmä. Antti Haarto

Koko: px
Aloita esitys sivulta:

Download "Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi"

Transkriptio

1 Fysiikan perusteet SI-järjestelmä Antti Haarto

2 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles auktoriteettina keskiajalle asti Galileo Galilei ja Isaac Newton aloittivat kokeellisen tutkimuksen

3 Fysiikan tehtäväksi voidaan määritellä aineen ja säteilyn ominaisuuksien sekä niiden keskinäisten vuorovaikutuksien tutkiminen. Fysiikka tutkii kaikkien luonnonilmiöiden yhteisiä peruslakeja. Luonnontutkimuksen perustiede, jolle tekniikankin sovellukset pohjautuvat

4 Fysiikan jako Mekaniikka Termofysiikka Sähkö- ja magnetismioppi Aalto-oppi Kvanttifysiikka (atomi- ja ydinfysiikka) Klassinen fysiikka (1800-luvun lopulle) Moderni fysiikka (suhteellisuusteoria ja kvanttiteoria)

5 Fysikaalinen ajattelutapa Havaintojen tekeminen Järjestelmällisten kokeiden tekeminen (vain yhtä muuttujaa kerrallaan) Mallin laatiminen Mallin testaus Lopullinen teoria Eksaktitiede (voidaan esittää matemaattisesti)

6 Suure Suure on ainemäärän, kappaleen tai tapahtuman mitattavissa tai määritettävissä (laskettavissa) oleva ominaisuus Suure = lukuarvo yksikkö Yksikkö on sovittu vertailuarvo

7 Suure- ja mittayksikköjärjestelmä Perussuureet Perusyksiköt Muut suureet ja yksiköt johdetaan edellisistä Johdannaissuureet Johdannaisyksiköt Kerrannaisia käyttämällä 10 n -kertojia

8 SI-järjestelmä Perussuureet ja perusyksiköt

9 Johdannaisyksiköt

10

11 Radioaktiivisen säteilyn lajit α-säteily (helium-atomin ytimiä) β-säteily (elektroneja) γ-säteily (suurienergisiä fotoneja) neutronisäteily (neutroneita)

12 Muut yksiköt, joita voidaan käyttää

13 Kokeellisesti saadut SI-yksiköt

14 Kerrannaisyksiköt Suuria tai pieniä lukuja käytettäessä. Huom! Kilogrammassa on jo etuliite kilo.

15 Kurssilla käytettäviä suureita aika (t ; s) massa (m ; kg) tasokulma (α, ; rad, º) voima (F, ; N) työ (W ; J) teho (P ; W) energia (E ; J) matka, paikka (s, x, ; m) nopeus (v ; m/s) kiihtyvyys (a ; m/s 2 ) nopeuden muutosnopeus

16 Yksikkötarkastelu Yksikkötarkastelussa selvitetään suureiden yksiköiden perusteella onko yhtälö mahdollinen Tarkastetaan onko merkkien =, ja + välisillä osilla sama yksikkö Esim. Tarkasta yksikkötarkastelulla onko suureyhtälö mahdollinen. teho = voima kiihtyvyys ( P = Fa )

17 Tarkista yksikkötarkastelulla ovatko yhtälöt mahdollisia pituus = nopeus aika ( l = vt ) teho = työ aika ( P = Wt ) energia = ½ massa nopeus² ( E = ½mv² )

18 Kirjoitus- ja käyttöohjeita Kerroin valitaan niin, että lukuarvo on välillä 0, Etuliite valitaan niin, että edellinen toteutuu 10 eksponentti yleensä 3 jaollinen Yksiköiden tunnukset pystykirjaimilla Suureet kursiivilla

19 Muunna eksponenttimuotoon ja etuliitteelliseen muotoon 0, m m m K 0, K 0,00174 Km kg 0, g

20 Merkitsevät numerot Luvun alussa olevat nollat eivät ole merkitseviä ,00045 Luvun lopussa olevat nollat ovat merkitseviä, jos niitä on desimaalipilkun jälkeen 5,3400 Kokonaisluvun lopussa olevien nollien merkitsevyys on epäselvää ,

21 Mikä on merkitsevien numeroiden määrä? 1,2304 0,0034 0, ,30 34,00 0,

22 Lukujen katkaisu Jos ensimmäinen pois jätettävä numero on Pienempi kuin 5, niin ei tehdä korotusta Suurempi kuin 5 tai 5, jonka perässä on nollasta poikkeava desimaali, niin tehdään korotus 5, jonka perässä ei ole nollasta poikkeavaa desimaalia, niin pyöristetään lähimpään parilliseen numeroon

23 Katkaise luvut sadasosan tarkkuuteen 0,234 23,567 0,0080 5,505 9,055 0,00125

24 Tulosten ilmoittamisen tarkkuus Kun kerrotaan tai jaetaan eri suureita keskenään, lopputuloksen merkitsevien numeroiden määrä on sama kuin sen suuren merkitsevien numeroiden määrä, missä niitä on vähiten. Lopputuloksen lukuarvon katkaisu normaalien sääntöjen mukaisesti 3,25 m 0,0042 m = 0,01365 m 2 0,014 m 2

25 Yhteen- ja vähennyslaskussa tulos ilmaistaan niin monella desimaalilla kuin niitä on vähiten desimaaleja sisältävässä luvussa. 23,0 m + 0,253 m = 23,253 m 23,3 m

26 Laske ja ilmoita oikealla tarkkuudella 12 kg + 4,3 kg 24,34 s + 3,66 s 16,7 m 8,3 m 2,3 m/s 12,5 s 25,2 m 39,8 m (135 m) (4,50 s) (24,6 m²) (3,7 m)

27 Laskutehtävien suoritusohjeita Varaa riittävästi tilaa Kokoa annetut lähtötiedot suorituspaperiin ja muunna SIyksiköiksi sekä kerrannaiset kymmenen potensseiksi Tunnista mistä aihealueesta on kyse Mieti onko voimassa jokin säilymislaki Mieti tehtävän looginen ratkaisu

28 Tee tarpeelliset piirrokset tilannekuva vapaakappalekuva Johda riittävästi perustellen suureyhtälö, josta kysytty suure ratkaistaan Alleviivaa loppuyhtälö Laske sekä lukuarvoilla että yksiköillä Tarkista, että vastaus on fysikaalisesti mielekäs Lopputulos selkeästi ja oikeassa muodossa Tarkista, että olet vastannut kysymykseen

29 TIIVISTETTYNÄ Pyri selkeään ja systemaattiseen esitykseen. Harjoitustehtävien ratkaiseminen on hyvä keino insinöörimäisen ajattelutavan kehittämiseen. Samalla voit todeta omat tiedot ja taidot.

1. Fysiikka ja mittaaminen

1. Fysiikka ja mittaaminen 1. Fysiikka ja mittaaminen 1.1 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units OPAS Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units Sisällys Esipuhe....3 1 Kansainvälinen mittayksikköjärjestelmä SI...4 2 Suure ja yksikkö....5 3 ISQ-suurejärjestelmä

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14 Yksikkömuunnokset Pituus pinta-ala ja tilavuus lördag 8 februari 4 SI-järjestelmän perussuureet ja yksiköt Suure Suureen tunnus Perusyksikkö Yksikön lyhenne Määritelmä Lähde: Mittatekniikan keskus MIKES

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

FYS01: Fysiikka luonnontieteenä

FYS01: Fysiikka luonnontieteenä FYS01: Fysiikka luonnontieteenä kurssin muistiinpanot Rami Nuotio päivitetty 29.10.2009 Sisältö 1. Johdanto 3 1.1. Mitä fysiikka on? 3 1.2. Miksi fysiikkaa? 3 2. Mittaaminen 3 2.1. Suure 3 2.2. Yksikönmuunnoksia

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ

STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ HEI OPISKELIJA! Tämä opas on tehty Hei muistuttamaan opiskelija! standardisoinnin tärkeydestä ja kertomaan Oletko huomannut, että maailma toimii standardien avulla?

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia

Lisätiedot

Julkaistu Helsingissä 8 päivänä joulukuuta 2014. 1015/2014 Valtioneuvoston asetus. mittayksiköistä. Annettu Helsingissä 4 päivänä joulukuuta 2014

Julkaistu Helsingissä 8 päivänä joulukuuta 2014. 1015/2014 Valtioneuvoston asetus. mittayksiköistä. Annettu Helsingissä 4 päivänä joulukuuta 2014 SUOMEN SÄÄDÖSKOKOELMA Julkaistu Helsingissä 8 päivänä joulukuuta 2014 1015/2014 Valtioneuvoston asetus mittayksiköistä Annettu Helsingissä 4 päivänä joulukuuta 2014 Valtioneuvoston päätöksen mukaisesti

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA 1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan 1. Kolmiossa yksi kulma on 60 ja tämän viereisten sivujen suhde 1 : 3. Laske

Lisätiedot

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan.

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan. Fysiikka 1 Etäkurssi Tervetuloa Vantaan aikuislukion fysiikan ainoalle etäkurssille. Kurssikirjana on WSOY:n Lukion fysiikka sarjan Vuorovaikutus, mutta mikä tahansa lukion fysiikan ensimmäisen kurssin

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

- Suoritukset tarkastaa ja alustavasti arvostelee (esteetön) asianomaisen aineen opettaja.

- Suoritukset tarkastaa ja alustavasti arvostelee (esteetön) asianomaisen aineen opettaja. FYSIIKAN YO-KOKEEN RAKENNE - Osa reaalikoetta, jolloin koeaika 6 tuntia. Alkaa klo. 9.00, poistua saa klo. 1.00 ja päättyy klo. 15.00 - Tarvittavat välineet: kirjoitus- ja piirustustarvikkeet (punaista

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli

Lisätiedot

Matemaattisesta mallintamisesta

Matemaattisesta mallintamisesta Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

(1) Desimaaliluvut ja lukujen pyöristäminen

(1) Desimaaliluvut ja lukujen pyöristäminen (1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden

Lisätiedot

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN:

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: 6 LIITE PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: K m K 1 A K t K m A K K t K ' K 1 Kirjainten ja merkkien selitykset: ' ' K luoton numero K lyhennyksen

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

FY1 Fysiikka luonnontieteenä

FY1 Fysiikka luonnontieteenä Ismo Koponen 10.12.2014 FY1 Fysiikka luonnontieteenä saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

Perusvuorovaikutukset

Perusvuorovaikutukset Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja. PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan.

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

9.11 a Fysiikka. Espoon kaupungin opetussuunnitelmalinjaukset. Nöykkiön koulu Opetussuunnitelma Fysiikka

9.11 a Fysiikka. Espoon kaupungin opetussuunnitelmalinjaukset. Nöykkiön koulu Opetussuunnitelma Fysiikka 9.11 a Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Matematiikan ja fysiikan peruskokeet

Matematiikan ja fysiikan peruskokeet Matematiikan ja fysiikan peruskokeet Mikael Lumme Insinöörikoulutuksen foorumi 2010 Hämeenlinna 17.-18.3.2010 Insinööri Latinan sana ingenium tarkoittaa laajoja käsitteitä kuten synnynnäinen kyky, luontainen

Lisätiedot

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto Ekspontentiaalinen kasvu Eksponenttifunktio Logaritmifunktio Yleinen juurenotto Missä on eksponenttimuotoista kasvua tai vähentymistä? Väestönkasvu Bakteerien kasvu Koronkorko (useampivuotinen talletus)

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Johdatus numeerisiin ja algebrallisiin menetelmiin

Johdatus numeerisiin ja algebrallisiin menetelmiin Johdatus numeerisiin ja algebrallisiin menetelmiin Jalkapallo ei ole täydellinen Kuten tiedät, ykkössäteisen, origokeskisen pallon yhtälö karteesisessa koordinaatistossa on x 2 y 2 z 2 =1 Pallo tai tarkemmin

Lisätiedot

The permanent address of the publication is http://urn.fi/urn:nbn:fi:uta- 201212121096

The permanent address of the publication is http://urn.fi/urn:nbn:fi:uta- 201212121096 This document has been downloaded from Tampub The Institutional Repository of University of Tampere The permanent address of the publication is http://urn.fi/urn:nbn:fi:uta- 201212121096 Kustantajan versio

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoimaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Tarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää.

Tarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää. Yhtälörhmä Lineaarisen htälörhmän alkeisoperaatiot ovat ) kahden htälön järjestksen vaihto ) htälön kertominen puolittain nollasta eroavalla luvulla ja ) luvulla puolittain kerrotun htälön lisääminen johonkin

Lisätiedot

NAKKILAN LUKION OPPIKIRJALISTA LV. 2015-16

NAKKILAN LUKION OPPIKIRJALISTA LV. 2015-16 NAKKILAN LUKIO 22.5.2014 1 (4) Printie 13 29250 NAKKILA NAKKILAN LUKION OPPIKIRJALISTA LV. 2015-16 Oppiaine Oppikirja Kurssi Kustantaja ISBN ÄIDINKIELI Särmä Sumen kieli ja kirjallisuus P Otava 978-951-1-23436-4

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot