ARK-A3000 Rakennetekniikka: Käytettävien yhtälöiden koonti

Koko: px
Aloita esitys sivulta:

Download "ARK-A3000 Rakennetekniikka: Käytettävien yhtälöiden koonti"

Transkriptio

1 ARK-A3000Rakennetekniikka:Käytettävienyhtälöidenkoonti Tässä dokumentissa esitellään ja eritellään kurssilla tarvittavat yhtälöt. Yhtälöitä ei tulla antamaan tentin yhteydessä, joten nämä on käytännössä osattava ulkoa. Toivottavasti tästä dokumentista on apua niin tehtäviä tehdessä kuin tenttiinkin valmistautuessa. Tukivoimat on esitetty omassa monisteessaan. Mekaniikka: Voimien jakaminen ja yhdistäminen Kaikki vinot voimat voidaan jakaa niiden vaaka- ja pystysuoriin osakomponentteihin eli x- ja y-akselin suuntaisiin voimiin. Jakaminen tapahtuu joko kulman/trigonometrian tai voimakolmion avulla. Voima F, jota ollaan jakamassa, on esitetty punaisella nuolella. Tämän voiman F ja vaakatason (x-akselin) välillä on kulma, jonka avulla osavoimat voidaan määrittää. Kulman viereisen voiman (kuvassa x-akselin suuntainen sininen voima) suuruus on alkuperäinen voima F kertaa Kosiini kulmasta. Kulman vastainen voima (kuvassa y-akselin suuntainen vihreä voima) saadaan kertomalla alkuperäinen voima F kulman sinillä. Osakomponentit voidaan vaihtoehtoisesti määrittä voimakolmiota käyttämällä. Tämä on tehokas tapa silloin kun ainakin kaksi kolmion sivunmitoista on tunnettuja. Yllä esitetyssä kuvassa on vaiheittain voimakolmion kasaaminen. Tehtävän annossa on annettu kolmion kahden sivun mitat, jolloin kolmas mitta voidaan määrittää Pythagoraan lauseella (a 2 + b 2 c 2 ). Kolmion hypotenuusa (vinosivu) kuvaa voimaa ja vaaka- sekä pystysuuntaiset sivut sen osakomponentteja (x- ja y-akselin suuntaisia voimia). Joskus

2 sivunmitoille löydetään yksi yhteinen jakaja, jolloin lukuja saadaan sievennettyä. Tämä ei ole välttämätöntä, mutta kuvan tapauksessa kummassakin rivissä tämä yhteinen jakaja on viisi. Kun voima F (hypotenuusa) halutaan jakaa sen osavoimiin, käytetään kolmion sivujen mittojen suhteita hyväksi. Kunkin osavoiman voimakertoimena käytetään sen sivun pituutta jaettuna hypotenuusan pituudella. Näin saadulla voimakolmiolla voidaan korvata aikaisemmat sini ja kosiini ilmaisut. Voimatasapaino Kaikki kurssilla käsitellyt mekaniikan laskut ovat staattisia laskuja eli kaikkien voimien lausekkeiden summa on aina nolla. Aina kun laskettavana on tuntemattomia voimia, tulee meillä olla käytettävissä yhtä monta lauseketta kun on tuntemattomiakin. Vain silloin voidaan ratkaista tehtävä. Ristikko tehtävissä tämä tarkoittaa kahta tasapainolauseketta (vaaka- ja pystysuuntaiset voimat) ja staattisesti määrättyjen palkkisekä pilaritehtävien tapauksessa kolmea tasapainolauseketta (vaaka- ja pystysuuntaiset voimat + momenttitasapaino). Vaaka- ja pystysuuntaisten voimien tasapaino on yksinkertainen plus-miinus-lasku, jossa ensin lasketaan kaikki pystysuuntaiset voimat yhteen ennalta sovitun positiivisen suunnan mukaisesti (+ on ylöspäin) ja määrätään ne nollaksi. Sitten sama tehdään vaakasuunnassa (+ on oikealle). Momentintasapainossa tulee ensin valita momenttipiste eli se piste minkä suhteen momenttitasapaino lasketaan. Yleensä hyvä tällainen piste on jokin tukipisteistä. Mitä useampi voima kulkee suoraan momenttipisteen läpi (on silloin 0-voima), sitä parempi. Momentti voiman plus ja miinus merkki määräytyy sen mukaan, kumpaan suuntaan voima lähtisi pyörimään momenttipisteen ympäri, jos se pystyisi liikkumaan. Plus suunnaksi on yleisesti sovittu vastapäivä. Momentti voimana koostuu voimasta [N] ja momenttivarresta [m]. Momentti varsi on voiman kohtisuora etäisyys valitusta momenttipisteestä. Esim. x-

3 akselin suuntaiselle voimalle momenttivarsi on y-akselin suuntainen etäisyys ja toisinpäin. Momenttitasapaino lasketaan kertomalla voima sen momenttivarrella ja laskemalla näin saadut momentit yhteen ja määräämällä summa nollaksi. Jos momenttipisteessä vaikuttaa tukimomentti, merkitään se yhtälöön suoraan merkinnällä M [Nm], koska se on jo momenttivoima. Kaatuminen vs. Liukuminen Kurssilla on käsitelty yksi dynamiikkaa sivuava tehtävä, jossa laskettiin kaatumis- ja liukumisvarmuutta. Varmuutta tarkasteltaessa verrataan aina kahta voimaa toisiinsa. Ulkoisen voiman vaikutusta verrataan sisäisen voiman vaikutuksiin. Kun ulkoinen voima jaetaan sisäisellä voimalla, saadaan tapahtumalle varmuusluku (ts. käyttöaste). Kun varmuusluku on alle yhden, ulkoisen voiman vaikutus ei näy. Jos se taas on yli yhden, ulkoisen voiman vaikutus näkyy. Kaatumisvarmuus: Liukumisvarmuus: Ä [] ] [] ] ] ] ] ] [] ] ] Kun K 1, esine kaatuu ja kun L 1, esine liukuu. Esine ei voi sekä kaatua että liukua samaan aikaan.

4 Rakennusfysiikka Lämpö Rakennusfysiikassa keskeinen arvo, kun kyseessä on lämmönliike, on rakenteen U-arvo [W/m 2 K] eli lämmönläpäisykerroin. U-arvo kertoo kuinka paljon lämpöenergiaa [W] läpäisee yhden neliömetrin suuruisen alueen, kun lämpötilaero rakenteen yli on yhden asteen [K tai C]. Pienin sallittu U-arvo vuoden 2010 määräysten mukaisesti on: ulkoseinä 0,17 W/m 2 K, yläpohja 0,09 W/m 2 K, alapohja 0,16 W/m 2 K, ikkunat ja ovet 1,0 W/m 2 K. U-arvon laskemiseksi meidän tulee määrittää ensin koko tarkasteltavan rakenteen lämmönvastus R TOTAL [m 2 K/W], mikä koostuu tarkasteltavan rakenteen rakennekerrosten lämmönvastuksista sekä sisä- ja ulkopintojen pinnanvastuksista. Kunkin rakennekerroksen lämmönvastus koostuu sen materiaalin normaalisesta lämmönjohtavuudesta [W/mK] ja kerroksen paksuudesta d [m]. Rakennekerroksen lämmönjohtavuus saadaan, kun jakamalla kerroksen paksuus sen materiaalin lämmönjohtavuudella. Rakenteessa voi olla hyvin ohuita verraten tiiviitä ainekerroksia kuten muovikalvo, rakennuspaperi, pahvija huopakerrokset. Tällaisille kerroksille annetaan suoraan lämmönvastus R q [m 2 K/W]. Ohuen kerroksen lämmönvastus R q on 0,02 m 2 K/W, jos vain toinen ainekerroksen pinnoista on jäykkää alustaa (esim. lautaseinä) vasten. Lämmönvastus R q on 0,04 m 2 K/W, jos ainekerros on jäykkien pintojen välissä. Jokaisen rakenteen pinnalla oletetaan olevan häviävän ohut liikkumaton ilmakerros, joka otetaan huomioon pintavastuksella. Sisäpuolenpintavastuksen R si suuruus riippuu lämpövirran suunnasta: vaakasuora 0,13 m 2 K/W, alaspäin 0,17 m 2 K/W ja ylöspäin 0,10 m 2 K/W. Ulkopuolenpintavastus R se on kaikissa suunnissa 0,04 m 2 K/W. Jos rakenteessa on hyvin tuuletettu ilmarako, tulkitaan tämä ilmarako ulkotilaksi ja sen ulkopuolisia rakenteita ei huomioida laskuissa. Hyvin tuuletetussa ilmaraossa ulkopinnanpintavastuksena käytetään sisäpinnanpintavastusta. [] äö[ ], missä i on kunkin rakennekerroksen numero U-arvo on rakenteen kokonaislämmönvastuksen R TOTAL käänteisarvo. Kun rakenteen rakennekerroskohtaiset lämmönvastukset R i :t sekä rakenteen kokonaislämmönvastus R TOTAL on tiedossa, voidaan sille laskea lämpötilajakauma kaavalla: ( Ä ), missä T i on halutun kerrosvälin lämpötila, T i-1 on edellinen tunnettu lämpötila, R i on ylitettävän kerroksen lämmönvastus, R TOTAL on koko rakenteen lämmönvastus ja (T SISÄ T ULKO ) on koko rakenteen yli oleva lämpötilaero.

5 Tässä muodossa yhtälö toimii vain laskettaessa jakaumaa sisältä ulospäin. Jos jakauma halutaan laskea ulkoa sisäänpäin, tulee T i-1 :en jälkeinen miinus korvata plussalla. Laskenta aloitetaan aina tunnetusta lämpötilasta (sisätilasta tai ulkotilasta) ja toteutetaan askelittain jokaisen lämpöä vastustavan kerroksen yli. Laskentaa jatketaan siten, että lämpötila josta vähennetään (johon lisätään) on aina edellinen laskettu. Kosteus Ilmalla on lämpötilasta riippuva kapasiteetti kaasumaiselle kosteudelle (vesihöyry). Tätä mitataan suhteellisella kosteudella RH (Relative Humidity) [%], joka ilmoittaa kuinka lähellä vesihöyryn maksimikapasiteettia tietyn lämpöinen ilma on. Mitä lämpimämpää ilma on, sitä enemmän siihen mahtuu vesihöyryä. Kun suhteellinen kosteus saavuttaa arvon 100 %, on ilman kapasiteetti vesihöyrylle täynnä ja ylimääräisen vesihöyryn täytyy tiivistyä vedeksi. Jos ilman sisältämän vesihöyryn pitoisuus [g/m 3 ] tai sen osapaine [Pa] tunnetaan, voidaan taulukoista katsoa ilmalle kastepiste eli pienin mahdollinen lämpötila, jossa se pystyy vielä pitämään kyseisen kosteuden sisällään vesihöyrynä. Kun käsitellään kosteutta, on jokaisella rakennekerroksella sen materiaalista ja paksuudesta riippuva kosteudenläpäisyvastus Z [(m 2 spa)/kg], joka vastaa lämpöteknistä lämmönvastusta. Kosteudenläpäisyvastus ja sen laskenta eroaa lämmönvastuksesta kahdella tavalla. Toisin kuin lämmönvastuksella kosteudenläpäisyvastuksella ei ole pintavastuksia. Toisin sanoen siinä missä ohuen ohut seisova ilmakerros rakenteen pinnassa vastustaa lämmön etenemistä se ei estä kosteuden liikettä millään tavalla. Materiaalien kosteudenläpäisyvastus on ilmoitettu valmiiksi kerrospaksuusriippuvaisena arvona Z P, esim Betoni (100 mm) Z P 50*10 9 (m 2 spa)/kg ja laastitasoite (10 mm) Z P 1*10 9 (m 2 spa)/kg. Koska materiaalikohtainen kosteudenläpäisyvastus Z P ilmoitetaan jo valmiiksi kerrospaksuudelle laskettuna, tulee meidän korjata arvoa suhteessa todelliseen kerrospaksuuteen ] ] spa [ kg ], missä Z i on rakennekerroksen i kosteudenläpäisyvastus [(m 2 spa)/kg], d i on materiaalikerroksen i todellinen paksuus [m], d ip on materiaalin kosteudenläpäisyvastuksen määrityksessä käytetty ainepaksuus [m] ja Z ip on rakennekerroksen i materiaalille määritetty kosteudenläpäisyvastus [(m 2 spa)/kg]. Kosteusjakauman määrittäminen rakenteelle alkaa lämpötilajakauman määrittämisellä. Kun lämpötilajakauma rakenteelle on selvillä, poimitaan taulukoista jokaiselle saadulle lämpötilalle kriittinen vesihöyryn osapaine p k [Pa]. Vesihöyryn kriittinen osapaine on vesihöyryn maksimi osapaine (RH on 100 %)

6 tarkasteltavassa lämpötilassa. Näitä arvoja tarvitaan rakenteen kosteusteknistä toimivuutta arvioitaessa sekä ulko- ja sisätilan todellisen vesihöyryn osapaineen (p SISÄ ja p ULKO ) määrittämiseksi. Tehtävän annossa on annettu sisä- ja ulkotilojen lämpötilat sekä suhteellinen kosteus, joten esim. Ä Ä [] [%], missä p SISÄ on sisätilan todellinen vesihöyryn osapaine [Pa], p k on vesihöyryn kriittinen osapaine sisätilan lämpötilassa [Pa] ja RH SISÄ on tehtävän annossa annettu sisätilan suhteellisen kosteuden arvo [%]. Ulkotilan todellinen vesihöyryn osapaine p ULKO [Pa] lasketaan samalla tavalla. Kun rakenteen rakennekerroskohtaiset kosteudenläpäisyvastukset Z i :t sekä rakenteen kokonaiskosteudenläpäisyvastus Z TOTAL on tiedossa ja sisä- ja ulkotilojen vesihöyryn osapaineet on laskettu, voidaan rakenteelle laskea kosteusjakauma kaavalla: ( Ä ), missä p i on halutun kerrosvälin vesihöyryn osapaine, p i-1 on edellinen tunnettu vesihöyryn osapaine, Z i on ylitettävän kerroksen kosteudenläpäisyvastus, Z TOTAL on koko rakenteen kosteudenläpäisyvastus ja (p SISÄ p ULKO ) on koko rakenteen yli oleva vesihöyryn osapaine-ero. Tässä muodossa yhtälö toimii vain laskettaessa jakaumaa sisältä ulospäin. Jos jakauma halutaan laskea ulkoa sisäänpäin, tulee p i-1 :en jälkeinen miinus korvata plussalla. Laskenta aloitetaan aina tunnetusta vesihöyryn osapaineesta (sisätilasta tai ulkotilasta) ja toteutetaan askelittain jokaisen kosteutta vastustavan kerroksen yli. Laskentaa jatketaan siten, että lämpötila josta vähennetään (johon lisätään) on aina edellinen laskettu. Kosteusjakauma lasketaan rakenteelle siksi, että halutaan tarkastella suhteellisen kosteuden kehitystä rakenteessa. Ainekerrosten välissä oleva suhteellinen kosteus saadaan jakamalla kullekin välille saatu vesihöyryn osapaineen arvo p i siinä välissä olevalla vesihöyryn kriittisellä osapaineella p k. Jos suhteellinen kosteus ylittää arvon 1 (eli 100 %) tiivistyy siihen väliin kosteutta ja rakenne on kelvoton.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

HIRSITALON LISÄERISTYKSEN TUTKIMUS

HIRSITALON LISÄERISTYKSEN TUTKIMUS HIRSITALON LISÄERISTYKSEN TUTKIMUS Jarno Karjalainen Oulun seudun ammattikorkeakoulu 2011 HIRSITALON LISÄERISTYKSEN TUTKIMUS Jarno Karjalainen Opinnäytetyö 2011 Rakennustekniikan koulutusohjelma Oulun

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

RAKENTEIDEN LÄMMÖNERISTÄVYYDEN SUUNNITTELU

RAKENTEIDEN LÄMMÖNERISTÄVYYDEN SUUNNITTELU 466111S Rakennusfysiikka (aik. 460160S) RAKENTEIDEN LÄMMÖNERISTÄVYYDEN SUUNNITTELU Raimo Hannila / (Professori Mikko Malaska) Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma, osat

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn

Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Asiakas: Työn sisältö Pahtataide Oy Selvityksessä tarkasteltiin kosteuden tiivistymisen riskiä yläpohjan kattotuolien

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

KOSTEUS. Visamäentie 35 B 13100 HML

KOSTEUS. Visamäentie 35 B 13100 HML 3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma

Lisätiedot

RAKENTEEN LÄMPÖTILAN MÄÄRITTÄMINEN

RAKENTEEN LÄMPÖTILAN MÄÄRITTÄMINEN 460160S Rakennusfysiikka RAKENTEEN LÄMPÖTILAN MÄÄRITTÄMINEN Raimo Hannila / (Luentomateriaali: Professori Mikko Malaska) Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma, osat C ja

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Rakennuksen omistaja valitsee vaihtoehdon. Vaihtoehto 2*: Rakennuksen laskennallinen energiankulutus on säädettyjen vaatimusten mukainen.

Rakennuksen omistaja valitsee vaihtoehdon. Vaihtoehto 2*: Rakennuksen laskennallinen energiankulutus on säädettyjen vaatimusten mukainen. 3 Energiatehokkuuden minimivaatimukset korjaus rakentamisessa Taloyhtiö saa itse valita, kuinka se osoittaa energiatehokkuusmääräysten toteutumisen paikalliselle rakennusvalvontaviranomaiselle. Vaihtoehtoja

Lisätiedot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo

Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Referaatti: CLT-rakenteiden rakennusfysikaalinen toimivuus Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Tehtävän kuvaus Selvitettiin laskennallista simulointia apuna

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Marko Ylitalo. Rakennetyyppien päivittäminen

Marko Ylitalo. Rakennetyyppien päivittäminen 1 Marko Ylitalo Rakennetyyppien päivittäminen Opinnäytetyö Kevät 2013 Tekniikan yksikkö Rakennustekniikan koulutusohjelma Talonrakennustekniikan suuntautumisvaihtoehto 2 SEINÄJOEN AMMATTIKORKEAKOULU OPINNÄYTETYÖN

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Ryömintätilaisten alapohjien toiminta

Ryömintätilaisten alapohjien toiminta 1 Ryömintätilaisten alapohjien toiminta FRAME-projektin päätösseminaari Tampere 8.11.2012 Anssi Laukkarinen Tampereen teknillinen yliopisto Rakennustekniikan laitos 2 Sisältö Johdanto Tulokset Päätelmät

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Ilmansulku + Höyrynsulku Puurakenteen ulkopuolinen eristäminen. Puurakentamisen seminaarikiertue, syksy 2014

Ilmansulku + Höyrynsulku Puurakenteen ulkopuolinen eristäminen. Puurakentamisen seminaarikiertue, syksy 2014 Ilmansulku + Höyrynsulku Puurakenteen ulkopuolinen eristäminen. Puurakentamisen seminaarikiertue, syksy 2014 Esityksen sisältö Saint-Gobain Rakennustuotteet Oy Höyrynsulku, Ilmansulku vai molemmat? ISOVER

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

LÄMMÖNLÄPÄISYKERTOIMEN LASKENTA

LÄMMÖNLÄPÄISYKERTOIMEN LASKENTA 466111S Rakennusfysiikka LÄMMÖNLÄPÄISYKERTOIMEN LASKENTA Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma, osat C3

Lisätiedot

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä. Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet Näin lisäeristät 4 Sisäpuolinen lisäeristys Tuotteina PAROC extra ja PAROC-tiivistystuotteet Tammikuu 202 Sisäpuolinen lisälämmöneristys Lisäeristyksen paksuuden määrittää ulkopuolelle jäävän eristeen

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

Akselipainolaskelmat. Yleistä tietoa akselipainolaskelmista

Akselipainolaskelmat. Yleistä tietoa akselipainolaskelmista Yleistä tietoa akselipainolaskelmista Kun kuorma-autoa halutaan käyttää mihin tahansa kuljetustyöhön, tehtaalta toimitettua alustaa täytyy täydentää jonkinlaisella päällirakenteella. Yleistä tietoa akselipainolaskelmista

Lisätiedot

Massiivirakenteiden sisäpuolinen lämmöneristäminen

Massiivirakenteiden sisäpuolinen lämmöneristäminen Massiivirakenteiden sisäpuolinen lämmöneristäminen FRAME YLEISÖSEMINAARI 8.. Sakari Nurmi Tampereen teknillinen yliopisto Rakennustekniikan laitos 8.. Haasteita Massiivirakenteiset seinät (hirsi-, kevytbetoni-

Lisätiedot

KARTOITUSRAPORTTI. Rälssitie 13 01510 VANTAA 567/2609 25.9.2013

KARTOITUSRAPORTTI. Rälssitie 13 01510 VANTAA 567/2609 25.9.2013 KARTOITUSRAPORTTI Rälssitie 13 01510 VANTAA 567/2609 25.9.2013 KARTOITUSRAPORTTI 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 JOHTOPÄÄTÖKSET JA SUOSITUKSET...

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

ARK-A.3000 Rakennetekniikka (4op) Rakenteiden mekaniikka II. Dipl.Ins. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Rakenteiden mekaniikka II. Dipl.Ins. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Rakenteiden mekaniikka II Dipl.Ins. Hannu Hirsi. Objectives in lecture 2 of mechanics : A thorough understanding of how to draw and use a freebody diagram is absolutely

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) 18 ( 9) ( ) ( + ) lim = lim = lim + + ( + ) = lim ( 6) = ( ) 6 = 1 + 6 ( ) + 6 0 lim = = = 0 6 8 K. a) f () =,

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Akselipainolaskelmat. Yleistä tietoa akselipainolaskelmista

Akselipainolaskelmat. Yleistä tietoa akselipainolaskelmista Kun kuorma-autoa halutaan käyttää mihin tahansa kuljetustyöhön, sen alustaa täytyy täydentää jonkinlaisella päällirakenteella. Akselipainolaskelmien tavoitteena on optimoida alustan ja päällirakenteen

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

7. PINTA-ALAFUNKTIO. A(x) a x b

7. PINTA-ALAFUNKTIO. A(x) a x b 7. PINTA-ALAFUNKTIO Edellä on käsitelty annetun funktion integraalifunktion määrittämiseen liittyviä asioita kurssille asetettuja vaatimuksia jonkin verran ylittäenkin. Jodantoosassa muistanet mainitun,

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset

Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset Kuormien laskemisessa noudatetaan RakMK:n osaa B1, Rakenteiden varmuus ja kuormitukset sekä Rakenteiden kuormitusohjetta (RIL 144) Mitoituslaskelmissa

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään

Lisätiedot

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvihuoneen kasvutekijät ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvien kasvuun vaikuttavat: - Lämpö - Valo - Vesi - Ilmankosteus - Hiilidioksidi - Ravinteet - Kasvin perinnölliset eli geneettiset

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen

Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen FRAME 08.11.2012 Tomi Pakkanen Tampereen teknillinen yliopisto, Rakennustekniikan laitos Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen - Kokeellinen tutkimus - Diplomityö Laboratoriokokeet

Lisätiedot

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

SUOMEN KUITULEVY OY Heinola/Pihlava TUULENSUOJALEVYT. -tyyppihyväksyntä n:o 121/6221/2000. Laskenta- ja kiinnitysohjeet. Runkoleijona.

SUOMEN KUITULEVY OY Heinola/Pihlava TUULENSUOJALEVYT. -tyyppihyväksyntä n:o 121/6221/2000. Laskenta- ja kiinnitysohjeet. Runkoleijona. SUOMEN KUITULEVY OY Heinola/Pihlava TUULENSUOJLEVYT -tyyppihyväksyntä n:o 121/6221/2000 Laskenta- ja kiinnitysohjeet Runkoleijona Tuulileijona Vihreä tuulensuoja Rakennuksen jäykistäminen huokoisella kuitulevyllä

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,. Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

CLT-rakenteiden rakennusfysikaalinen toimivuus

CLT-rakenteiden rakennusfysikaalinen toimivuus CLT-rakenteiden rakennusfysikaalinen toimivuus Tutkija: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Laatinut: Lappia / Martti Mylly Tehtävän kuvaus Selvitettiin laskennallista

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta) MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi

Lisätiedot