Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Koko: px
Aloita esitys sivulta:

Download "Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi."

Transkriptio

1 KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään seuraavia nimityksiä. Myyntituotto (100 %): Tuotteiden myynnistä saatava tuotto eli: hinta myyntimäärä laskelmissa käytetyt prosenttiosuudet määritetään myyntituotosta eli myyntituotto on perusarvo. Muuttuvat kustannukset (mukut) ovat kustannuksia, jotka riippuvat myyntimäärästä kuten tuotteen valmistus ja hankintakustannukset, jotka riippuvat tuotteiden määrästä. Samoin esimerkiksi ylityökorvaukset katsotaan muuttuviksi kustannuksiksi. Kiinteät kustannukset (kikut) sen sijaan ovat kustannuksia, jotka eivät riipu myyntimäärästä kuten liiketilojen vuokrat, peruspalkat yms. (eli myyntikate) tarkoittaa myyntituotosta jäljelle jäävää summaa, kun muuttuvat kustannukset on vähennetty. Toisin sanoen katetuotto on tuloksen ja kiinteiden kustannusten summa. Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. prosentti ilmoittaa katetuoton määrän prosentteina myyntituotosta. prosentista voidaan käyttää lyhennettä KTP. Tulos on myyntituotosta jäljelle jäävä summa, kun sekä muuttuvat kustannukset että kiinteät kustannukset on vähennetty. laskelmien ideaa voidaan havainnollistaa alla olevan kuvion avulla. MUKUT Myyntituotto KIKUT TULOS 1

2 Esimerkkejä 1. Yritys myy kuukaudessa tuotteita kappaletta hintaan 10 /kpl. Muuttuvat kustannukset ovat 4 /kpl ja kiinteät kustannukset ovat /kk. Laadi katetuottolaskelma. Myyntituotto kpl 10 /kpl = % Muuttuvat kustannukset kpl 4 /kpl = / % = 40 % = / % = 60 % Kiinteät kustannukset / % = 25 % Tulos = / % = 35 % Huomaa, että katetuotto on välitulos laskelmassa. Toisin sanoen tulos voitaisiin määrittää myös ilman katetuottoa: Tulos = = Vastaavasti tulos prosentteina on 100 % - 40 % - 25 % = 35 %. 2. Muuttuvat kustannukset ovat 5 /kpl ja kiinteät kustannukset 1200 /kk. Kuukaudessa myydään noin 600 tuotetta hintaan 12 /kpl. Laske a) yksikkökate (kate/kpl) b) myyntikate euroina ja prosentteina c) tulos euroina ja prosentteina d) Onko toiminta kannattavaa, jos myyntimäärä laskee 75 %? Ratkaisut: a) Yksikkökate tarkoittaa katetuottoa euroina yhden kappaleen myynnistä. Toisin sanoen yhden kappaleen myyntihinnasta vähennetään yhden kappaleen muuttuvat kustannukset: 12 /kpl 5 /kpl = 7 /kpl b ja c) Myyntikate on toinen nimitys katetuotolle. Määritetään myyntikate katetuottolaskelman avulla. Samalla saadaan laskettua tulos. Myyntituotto 600 kpl 12 /kpl = % Muuttuvat kustannukset 600 kpl 5 /kpl = / % 41,7 % = / % 58,3 % Kiinteät kustannukset / % 16,7 % Tulos = / % 41,7 % 2

3 d) Uusi myyntimäärä olisi 600 kpl 0,25 = 150 kpl. Laaditaan katetuottolaskelma uudelleen. Myyntituotto 150 kpl 12 /kpl = 1800 Muuttuvat kustannukset 150 kpl 5 /kpl = = 1050 Kiinteät kustannukset 1200 Tulos = Toiminta ei ole enää kannattavaa. Myöhemmin selvitämme mikä myyntimäärän tulee vähintään olla, jotta toiminta olisi kannattavaa. 3. Tuotteen myyntihinta on 20, muuttuvat kustannukset 7,5 /kpl. Tuotetta myydään 800 kappaletta. Laske kiinteät kustannukset, kun tulos on 24 %. Aloitetaan sijoittamalla katetuottolaskelmaan annetut arvot (mustalla). rivi on jätetty pois, koska sitä ei ole annettu eikä tarvita tehtävän ratkaisussa. Tämän jälkeen tarvittavat laskut on merkitty violetilla. Järjestys on merkitty numeroinnilla. Myyntituotto 800 kpl 20 /kpl = % Muuttuvat kustannukset 800 kpl 7,5 /kpl = (6000/ % = 37,5 %) Kiinteät kustannukset Tulos = = ,24 = % Tämän tehtävän olisi voinut ratkaista myös käyttämättä katetuottoa, jolloin kiinteät kustannukset olisi saatu: = Toinen mahdollinen ratkaisutapa on hyödyntää prosenttilukuja. Ensin voidaan selvittää muuttuvat kustannukset prosentteina (suluissa) ja tämän jälkeen laskea kiinteät kustannukset prosentteina: 100 % - 37,5 % 24 % = 38,5 %. Eli kiinteät kustannukset euroina ovat: ,385 =

4 Kriittinen piste Kriittisessä pisteessä toiminta on juuri ja juuri kannattavaa eli tulos on 0. Kriittinen piste ilmoitetaan usein myyntituottona, mutta se voidaan ilmoittaa myös myyntimääränä, mikäli myytäviä tuotteita on vain yksi. Kriittinen pisteen määrittämisessä voidaan myös hyödyntää katetuottolaskelmaa. Esimerkkejä 4. Luontaistuoteliikkeen katetuottoprosentti on 42 ja kiinteät kustannukset ovat Kuinka suuri täytyy myyntituoton olla, jotta toiminta on kannattavaa? Sijoitetaan annetut tiedot katetuottolaskelmaan. Muista, että myyntituotto on aina 100 %. Kun haetaan kriittistä pistettä, oletetaan, että tulos on 0. Silloin se on myös prosentteina 0 %. Myyntituotto 100 % Muuttuvat kustannukset 42 % Kiinteät kustannukset Tulos 0 0 % Näiden tietojen perusteella voidaan laskea kiinteät kustannukset prosentteina, joka on tietenkin 42 %. Eli 42 % myyntituotosta on , esimerkiksi yhtälön avulla saadaan: x 0,42 = => x = / 0,42 = Kriittiselle pisteelle voidaankin antaa seuraava kaava: kikut kriittinenpiste KTP kikut = kiinteät kustannukset KTP = katetuottoprosentti (desimaalimuodossa) 4

5 5. Muuttuvat kustannukset ovat 5 /kpl ja kiinteät kustannukset 1200 /kk. Tuotteiden myyntihinta on 12 /kpl. Millä tuotantomäärällä toiminta on kannattavaa? (vertaa esimerkkiin 2) Merkitään myyntimäärää x:llä. Jälleen tulokset oletetaan olevan 0. Myyntituotto x % Muuttuvat kustannukset x 5 Kiinteät kustannukset 1200 Tulos 0 Nyt voidaan laskea katetuotto sekä euroina kiinteiden kustannusten ja tulokset perusteella että myyntituoton ja muuttuvien kustannusten perusteella: : x 12 - x 5 = x 7 (katso esim. 2, mitä luku 7 tarkoittaa?) ja toisaalta katetuotto: = 1200 Eli x 7 = 1200, josta ratkaistaan myyntimäärä: x = 1200 / 7 = 171,42857 kpl 172 kpl. (kappalemäärä täytyy pyöristää kokonaisluvuksi ylöspäin) Kriittiselle pisteelle voidaan antaa myös tämän esimerkin perusteella kaava, mutta tätä voidaan käyttää vain tilanteissa, jossa myytäviä tuotteita on vain yksi: kriittinenpiste kikut yks ikkökat e 5

Kiinteät kustannukset Vuokrat 1500 Palkat 4200 Poistot 400 Korot 300 Muut Katetuottotavoite (%) 30 %

Kiinteät kustannukset Vuokrat 1500 Palkat 4200 Poistot 400 Korot 300 Muut Katetuottotavoite (%) 30 % Kiinteät kustannukset Vuokrat 1500 Palkat 4200 Poistot 400 Korot 300 Muut 200 6600 Katetuottotavoite (%) 30 % a) Kriittisessä pisteessä katetuottoa pitäisi kertyä kiinteiden kustannusten verran, joka on

Lisätiedot

(1) Katetuottolaskelma

(1) Katetuottolaskelma (1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto

Lisätiedot

Testaa tietosi. 1 c, d 2 a 3 a, c 4 d 5 d

Testaa tietosi. 1 c, d 2 a 3 a, c 4 d 5 d Testaa tietosi 1 c, d 2 a 3 a, c 4 d 5 d Tehtävä 1 En ole. Taseen vastattavaa-puolen tilien ns. normaalisaldot ovat aina tilin kredit-puolella. Esimerkiksi oma pääoma kasvaa kredit-puolella ja oman pääoma

Lisätiedot

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu Pilkeyrityksen liiketoimintaosaamisen kehittäminen Timo Värre Jyväskylän ammattikorkeakoulu 1 Talouden hallinnan keskeiset osat Tulevaisuus Pitääkö kasvaa? KASVU KANNATTAVUUS Kannattaako liiketoiminta?

Lisätiedot

Ajatuksia hinnoittelusta. Hinta on silloin oikea, kun asiakas itkee ja ostaa, mutta ostaa kuitenkin.

Ajatuksia hinnoittelusta. Hinta on silloin oikea, kun asiakas itkee ja ostaa, mutta ostaa kuitenkin. Ajatuksia hinnoittelusta Hinta on silloin oikea, kun asiakas itkee ja ostaa, mutta ostaa kuitenkin. Hinnoittelu Yritystoiminnan tavoitteena on aina kannattava liiketoiminta ja asiakastyytyväisyys. Hinta

Lisätiedot

Liike-elämän matematiikka Opettajan aineisto

Liike-elämän matematiikka Opettajan aineisto Liike-elämä matematiikka Opettaja aieisto Pirjo Saarae, Eliisa Kolttola, Jarmo Pösö ISBN 978-951-37-5741-0 Päivitetty 13.8.2014 Tehtävie ratkaisut - Luku 1 Verotus - Luku 2 Katelaskut ja talousfuktiot

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin. Reijo Käki www.reijokaki.com

Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin. Reijo Käki www.reijokaki.com Kokonaisvaltaista tilanpitoa - kannattavasti eteenpäin Reijo Käki www.reijokaki.com 1. PÄIVÄ I Voitto ja arvopohjainen päätöksenteko? II Kassavirta ja katetuotto III Heikot lenkit IV Marginaalituottavuus

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Viikkotehtävä 3 Katetuotto-, vaihtoehto- ja kustannuslaskenta Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori

Viikkotehtävä 3 Katetuotto-, vaihtoehto- ja kustannuslaskenta Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Viikkotehtävä 3 Katetuotto-, vaihtoehto- ja kustannuslaskenta Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Tehtävän suorittaminen Tehtävänanto sisältää sekä PowerPoint-muodossa

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Pääsykoe 2001/Ratkaisut Hallinto

Pääsykoe 2001/Ratkaisut Hallinto Pääsykoe 2001/Ratkaisut Hallinto 1. Osio 3/Tosi; Organisaatiokenttää ei mainita (s.35). 2. Osiot 1 ja 2/Epätosia; Puppua. Osio 3/Lähellä oikeata kuvion 2.1 mukaan (s.30). Osio 4/Tosi (sivun 30 tekstin

Lisätiedot

Talouden asioita 2012. Hiusalan pt. Heli Kiviaho

Talouden asioita 2012. Hiusalan pt. Heli Kiviaho Talouden asioita 2012 Hiusalan pt Heli Kiviaho 1 4 2 5 ja kaiken takana on 1 KATETUOTTOLASKENTA, KATETUOTTOHINNOITTELU 4 2 5 Katetuottolaskenta mitä? Katetuottolaskenta on yleinen yrityksen kannattavuutta

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

TU-22.1101 Tuotantotalouden peruskurssi Vastaava opettaja: Karlos Artto Tentin yhteyshenkilo: Atso Takala 050-3739252, atso.takala tkk.

TU-22.1101 Tuotantotalouden peruskurssi Vastaava opettaja: Karlos Artto Tentin yhteyshenkilo: Atso Takala 050-3739252, atso.takala tkk. TU-22.1101 Tuotantotalouden peruskurssi Vastaava opettaja: Karlos Artto Tentin yhteyshenkilo: Atso Takala 050-3739252, atso.takala tkk.fi Kesatentti, 16.6.2008 Opiskelijan tiedot IEtunimi: Sukunimi: Sivuja

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAB6. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

Tentissä saa olla mukana vain muistiinpanovälineet ja laskin. Laskut erilliselle konseptille, vastaus selkeästi näkyviin!!! Palauta tenttipaperi!!

Tentissä saa olla mukana vain muistiinpanovälineet ja laskin. Laskut erilliselle konseptille, vastaus selkeästi näkyviin!!! Palauta tenttipaperi!! 1 School of Business and Management Yliopisto-opettaja, Tiina Sinkkonen Opiskelijanumero ja nimi: CS31A0101 KUSTANNUSJOHTAMISEN PERUSKURSSI Tentti 01.02.2016 Tentissä saa olla mukana vain muistiinpanovälineet

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Opiskelijanumero ja nimi:

Opiskelijanumero ja nimi: 1 LUT School of Business and Management Yliopisto-opettaja, Tiina Sinkkonen Opiskelijanumero ja nimi: CS31A0101 KUSTANNUSJOHTAMISEN PERUSKURSSI Tentti 22.10.2015 Tentissä saa olla mukana vain muistiinpanovälineet

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista %

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista % Veroilmoituksesta laskettavat tunnusluvut Heikki Ollikainen, ProAgria Oulu Nopea tuloksen analysointi on mahdollista tehdä laskelmalla veroilmoituksesta muutamia yksinkertaisia tunnuslukuja, joiden perusteella

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

TAITAJAMÄSTARE 2012 YRITTÄJYYS Semifinaalit Joensuu/ Helsinki / Seinäjoki/ Rovaniemi 18.1.2012

TAITAJAMÄSTARE 2012 YRITTÄJYYS Semifinaalit Joensuu/ Helsinki / Seinäjoki/ Rovaniemi 18.1.2012 TAITAJAMÄSTARE 2012 YRITTÄJYYS Semifinaalit Joensuu/ Helsinki / Seinäjoki/ Rovaniemi 18.1.2012 Päivämäärä Lajin vastuuhenkilöt: Tea Ruppa, lajivastaava, Jyväskylän ammattiopisto Semifinaalikoordinaattori:

Lisätiedot

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta.

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta. Seuraava esimerkki on yhtälöparin sovellus tyypillisimmillään Lukion ekaluokat suunnittelevat luokkaretkeä Sitä varten tarvitaan tietysti rahaa ja siksi oppilaat järjestävät koko perheen hipat Hippoihin

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

Harjoitustehtävien ratkaisut. Joukko-opin harjoituksia. MAB1: Luvut ja lukujoukot 2

Harjoitustehtävien ratkaisut. Joukko-opin harjoituksia. MAB1: Luvut ja lukujoukot 2 MAB: Luvut ja lukujoukot Harjoitustehtävien ratkaisut Joukko-opin harjoituksia T Joukossa W V ovat kaikki joukkojen W ja V alkiot, siis alkiot, jotka ovat joko W :n tai V :n tai molempien alkioita. Siis

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Seuratiedote 2/09 LIITE 4

Seuratiedote 2/09 LIITE 4 CSA-järjestelmä Johdantoa USGAn Course Rating -järjestelmässä todetaan: USGAn Course Ratingin ja Slope Ratingin määritysten tulee vastata olosuhteita kauden aikana, jolloin suurin osa kierroksista pelataan.

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Mertim Oy Tapio Sipponen 3.5.2005 1(6) MYYNNIN JA TUOTANNON BUDJETOINTI. Myynnin budjetointi

Mertim Oy Tapio Sipponen 3.5.2005 1(6) MYYNNIN JA TUOTANNON BUDJETOINTI. Myynnin budjetointi Tapio Sipponen 3.5.2005 1(6) MYYNNIN JA TUOTANNON BUDJETOINTI Myynnin budjetointi Myyntiä budjetoitaessa arvioidaan yhdessä myyntimääriä ja myyntihintoja tuoteryhmittäin tai tuotteittain. Asiakasbudjetit

Lisätiedot

Jaollisuus kymmenjärjestelmässä

Jaollisuus kymmenjärjestelmässä Jaollisuus kymmenjärjestelmässä Lauseen 4.5 mukaan jokaiselle n N on yksikäsitteiset kokonaisluvut s 0 ja a 0, a 1,..., a s, joille n = a s 10 s + a s 1 10 s 1 + + a 1 10 + a 0 = a s a a 1... a 0, (1)

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Kannattavampaa tilaus-toimitusketjun toimitusketjun yhteistyötä. - sovellusten taustaa

Kannattavampaa tilaus-toimitusketjun toimitusketjun yhteistyötä. - sovellusten taustaa Kannattavampaa tilaus-toimitusketjun toimitusketjun yhteistyötä - sovellusten taustaa Jouni Sakki Oy tel. +358 50 60828 e-mail: jouni.sakki@jounisakki.fi www.jounisakki.fi B-to-b tilaus-toimitusketju (Supply

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

Kustannusten minimointi, kustannusfunktiot

Kustannusten minimointi, kustannusfunktiot Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Oy Yritys Ab ( Osasto TEK (10) ) 1.1.2010-31.12.2010 (TALGRAF ESITTELY) BUD - 1 - edelliset vuodet,bud ja ennuste, 6.4.2012

Oy Yritys Ab ( Osasto TEK (10) ) 1.1.2010-31.12.2010 (TALGRAF ESITTELY) BUD - 1 - edelliset vuodet,bud ja ennuste, 6.4.2012 Oy Yritys Ab ( Osasto TEK (10) ) 1.1.2010-31.12.2010 BUD - 1 - edelliset vuodet,bud ja ennuste, 6.4.2012 9000 9000 8000 8000 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 01121314151617181910

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Yrittäjän oppikoulu Osa 1 (25.9.2015) Tuloslaskelman ja taseen lukutaito sekä taloushallinnon terminologiaa. Niilo Rantala, Yläneen Tilikeskus Oy

Yrittäjän oppikoulu Osa 1 (25.9.2015) Tuloslaskelman ja taseen lukutaito sekä taloushallinnon terminologiaa. Niilo Rantala, Yläneen Tilikeskus Oy Yrittäjän oppikoulu Osa 1 (25.9.2015) Tuloslaskelman ja taseen lukutaito sekä taloushallinnon terminologiaa Niilo Rantala, Yläneen Tilikeskus Oy Oppitunnin sisältö Tuloslaskelma Mikä on tuloslaskelma?

Lisätiedot

Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi

Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi 1. / Ratk: Osio 1 / Epätosi; Ei, vaan tällöin vallitsevaa ihmiskuvaa on kuvattu mekanistiseksi (s.1). Osio 2 / Epätosi; Ei, vaan tällöin

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100 HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat

Lisätiedot

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke PORONLIHAN SUORAMYYNTI KOULUTUS HINNOITTELU Erkki Viero HINNOITTELU TAVOITTEET SISÄLTÖ OPETTAA KUSTANNUS- VASTAAVAA HINNOITTELUA

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

KIRJANPITO 22C Luento 4a: Hankintameno

KIRJANPITO 22C Luento 4a: Hankintameno KIRJANPITO 22C00100 Luento 4a: Hankintameno Luento 4 Hankintameno: Välittömät ja välilliset menot (ennen: muuttuvat ja kiinteät) Hankintamenon määrittäminen Tilinpäätöksen esittäminen: Tilinpäätöksen sisältö:

Lisätiedot

Liiketoimintasuunnitelma vuosille

Liiketoimintasuunnitelma vuosille Liiketoimintasuunnitelma vuosille Yrityskonsultointi JonesCon 2 TAUSTATIEDOT Laatija: Yrityksen nimi: Yrityksen toimiala: Perustajat: Suunnitelman aikaväli: Salassapito: Viimeisimmän version paikka ja

Lisätiedot

SUOMINEN YHTYMÄ OYJ OSAVUOSIKATSAUS ESITYS

SUOMINEN YHTYMÄ OYJ OSAVUOSIKATSAUS ESITYS SUOMINEN YHTYMÄ OYJ OSAVUOSIKATSAUS 1.1. - 30.6.2005 ESITYS 25.7.2005 Liikevaihdon jakautuma 1-6/2005 Joustopakkaukset 35,0 milj. euroa 33 % Muut 5,5 milj. euroa 5 % Kosteuspyyhkeet 32 % Kuitukankaat 30

Lisätiedot

Asuinrakennusten korjaustarve

Asuinrakennusten korjaustarve Asuinrakennusten korjaustarve Asuntoreformiyhdistys (ARY) 28.4.2015 Harri Hiltunen Roolitus Toteuttajat: PTT, VTT, KTI Tilaajat: Suomen Kiinteistöliitto, Kiinteistöalan koulutussäätiö, Rakennusteollisuus

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Rypsin viljely riskeistä ja kannattavuudesta. Pellervo Kässi

Rypsin viljely riskeistä ja kannattavuudesta. Pellervo Kässi Rypsin viljely riskeistä ja kannattavuudesta Pellervo Kässi Riski rypsin ja viljan viljelyssä Keväällä sidotaan panoksia maahan epävarmuudessa tulevan kesän sääoloista: Siemenet Lannoitteet Työ Sadon varmistamiseksi

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN:

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: 6 LIITE PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: K m K 1 A K t K m A K K t K ' K 1 Kirjainten ja merkkien selitykset: ' ' K luoton numero K lyhennyksen

Lisätiedot

(EUR) Osasto TEK Osasto TKR Osasto PMT Osasto TMP Osasto TKK Osasto THY Osasto STS

(EUR) Osasto TEK Osasto TKR Osasto PMT Osasto TMP Osasto TKK Osasto THY Osasto STS Laskentakohteet - Yhteenveto - rinnakkain, 13.8.2009 8000 8000 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 Osasto TEK (10) Osasto TKR (12) Osasto PMT (14) Osasto TMP (17) Osasto

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Allianssiurakoinnin mekanismien Ymmärtäminen vie aikaa

Allianssiurakoinnin mekanismien Ymmärtäminen vie aikaa Allianssiurakoinnin mekanismien Ymmärtäminen vie aikaa KOKEMUKSIA ALLIANSSIHANKKEEN TOTEUTUKSISTA MEILLÄ JA MAAILMALLA Sakari Pesonen Fira Oy 4.2.2015 Allianssiurakka Ei vakioitua Mallia! Olemassa olevia

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

TÄYTTÖOHJE SIVULLA KERROTAAN LASKELMAN SISÄLLÖSTÄ. TOTEUTUSJÄRJESTYS NÄKYY VASEMMALLA NUMEROIN.

TÄYTTÖOHJE SIVULLA KERROTAAN LASKELMAN SISÄLLÖSTÄ. TOTEUTUSJÄRJESTYS NÄKYY VASEMMALLA NUMEROIN. TÄYTTÖOHJE SIVULLA KERROTAAN LASKELMAN SISÄLLÖSTÄ. TOTEUTUSJÄRJESTYS NÄKYY VASEMMALLA NUMEROIN. Aloita tästä. Viimeisen vaiheen jälkeen tulostetaan lomakkeet paperille tai pdf-muotoon toimitettavaksi edelleen

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Uudelleen aloittavan yrityksen liiketoiminnan kannattavuuden arviointi

Uudelleen aloittavan yrityksen liiketoiminnan kannattavuuden arviointi Eveliina Kohtanen Uudelleen aloittavan yrityksen liiketoiminnan kannattavuuden arviointi Case Ompelimo X Opinnäytetyö Syksy 2016 SeAMK Liiketalouden ja kulttuurin yksikkö Liiketalouden tutkinto-ohjelma

Lisätiedot

Kannustinloukuista eroon oikeudenmukaisesti

Kannustinloukuista eroon oikeudenmukaisesti 2 2015 Kannustinloukuista eroon oikeudenmukaisesti JOHDANTO... 2 1 TYÖNTEON KANNUSTIMET JA KANNUSTINPAKETTI... 4 1.1 Kannustinpaketti... 5 2 KANNUSTINPAKETIN VAIKUTUKSET TYÖNTEON KANNUSTIMIIN JA TULONJAKOON...

Lisätiedot

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua. A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos

Lisätiedot

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo LP-mallit, L19 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla

Lisätiedot

Viikkotehtävä 4a ratkaisut Budjetointi ja eroanalyysi

Viikkotehtävä 4a ratkaisut Budjetointi ja eroanalyysi Viikkotehtävä 4a ratkaisut Budjetointi ja eroanalyysi Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Tehtävän suorittaminen Tehtävänanto sisältää sekä PowerPoint-muodossa

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot