HAVAINNOINTI JA TUTKIMINEN

Koko: px
Aloita esitys sivulta:

Download "HAVAINNOINTI JA TUTKIMINEN"

Transkriptio

1 ilumuoto st ksvtu luun ou perusk d Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A1 Muotoilun milm j muotoilusuunnistus Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Etsitään j löydetään muotoilu ympäristöstä. Aloitetn muotoilun milmn tutustuminen. Tutustutn vlmiin kuvesityksen, kysymysten, keskustelun j piirrostehtävän vull muotoilun ilmenemismuotoihin oppiliden rjess, sekä muotoilun ln liittyviin mmttiryhmiin. Tutustutn luonnoskirjn käyttöön. Opitn käyttämään luonnoskirj ktiiviseen luonnosteluun j muistiinpnojen tekemiseen. Hvinnoidn kouluympäristöstä löytyvää muotoilu muotoilusuunnistuspelin vull. Jtketn hvinnointi koton j tehdään kotitehtävä luonnoskirjn. Tvoite: Ensimmäisen kksoistunnin tvoite on, että oppilt huomvt muotoilun roolin omss ympäristössään. Oppilt ymmärtävät millist hyvä muotoilu voi oll j oppivt rvostmn sitä. He pystyvät suhtutumn muotoiluun kriittisesti j esittämään omi vihtoehtoisi ideoitn. Hvinnoidn sekä julkisen että yksityisen tiln muotoilu: Kouluss olevn muotoiluun tutustutn suunnistuspelin vull, opetelln luonnoskirjn käyttöä, nope luonnostelutekniikk j tiimityöskentelyä. Kotitehtävässä siirrytään kodin esineiden hvinnointiin. Koto löytyvään muotoiluun tutustutn jokisest kodist löytyvän mukin ti kupin trkstelun kutt. Vinkki! Muotoiluprosessin tltioiminen on tärkeää. Mutku-tuntej j tehtäviä voidn dokumentoid myös oppiliden omill kännykkäkmeroill. Til: Luokkhuone, muu kouluympäristö sopimuksen mukn Välineet: Dttykki esityksen näyttämistä vrten. Luonnoskirjt j värejä. Muotoilusuunnistuspeli. Vlmistelut ennen tunti: Muotoilusuunnistuksen pelikorttien tulostminen j leikkminen. Pelikorttipohjt löytyvät Mutkun Open oppn lopust.

2 d TUNNIN KULKU Kuvesitys j keskustelu (25 min) Aloitetn Mutku opettjn johdoll ktsomll yhdessä ensimmäisen tunnin kuvesitys kysymyksineen. Kysymykset löytyvät PowerPoint-esityksen opettjlle näkyvästä osiost. esim. Mikä tässä luokss on muotoiltu? Minkälisi erilisi ominisuuksi esineillä on? Kuink muuttisit näitä ominisuuksi? Onko kyseinen esine mielestäsi hyvin muotoiltu, kunis ti käytännöllinen? Luonnoskirjt (15 min) Luonnoskirjojen jkminen oppilille Mutku-työskentelyä vrten. Luonnoskirj käytetään jtkoss muotoiluksvtuksen tunneill tehtävien muistiinpnojen j kotitehtävien tekemiseen. Otetn luonnoskirj käyttöön kirjoittmll siihen om nimi j tehdään ensimmäinen luonnos. LUONNOSTELU on nope piirtämistä. Luonnokset eivät ole vlmiit j täydellisiä kuvi, vn suunt-ntvi, nopeit hhmotelmi. Luonnos voi jäädä kesken. Se on piirretty muistiinpno, joss esitetään vin tärkeimmät sit. Luokk jetn 3 4 oppiln ryhmiin seurvn tunnin Muotoilusuunnistust vrten. (5 min) Vinkki! Keskustelun ei trvitse toteutu pelkästään viittmll j puheenvuoro pyytämällä. Trkoituksen on luod keskustelu opettjn j oppiliden välille. Vlmiit kysymykset j suunnistuspeli uttvt vihtmn mielipiteitä sekä jkmn jtuksi j ideoit. Välitunti

3 d Muotoilusuunnistus (40 min) Muotoilusuunnistus utt oppilit hvitsemn rkiympäristössä esiintyvää muotoilu. Suunnistuksen ikn hvinnoidn muotoilu koulun tiloiss eli puolijulkisess tilss j hrjoitelln nope piirtämistä luonnoskirjn. Trkoitus ei ole jäädä hiomn täydellistä kuv löydetystä esineestä, vn piirtää se nopesti muistiin omn kirjn j jtk suunnistust eteenpäin. Tiiminä toimiminen on yksi muotoilun tärkeistä toiminttvoist kun tehdään esim. yhteistyöprojektej. Muotoilusuunnistuksess toimitn omn ryhmän knss tiiminä, eli etsitään korttien esineitä yhdessä j päätetään yhdessä, mikä esine piirretään luonnoskirjoihin. Opettj voi sovelt peliä ryhmien koon j käytössä olevn jn j tiln mukn. Jetn luokk 3 4 oppiln ryhmiin Käydään ohjeet läpi j jetn jokiselle ryhmälle 2 3 suunnistuskortti (5 min) Suunnistust omn ryhmän knss koulun tiloiss (15 min) Pluu luokkn sovittun ikn! Löytöjen esittely muulle luoklle (20 min) Peliohjeet: Etsikää ryhmissä kortteihin kirjoitetut esineet ti sit koulun tiloist. Kun ryhmäsi löytää oiken esineen, luonnostelk se nopesti piirtäen ti kuvilk sitä snoill, jokinen omn luonnosvihkoons. Miettikää ryhmän knss, mikä tämän esineen muotoiluss on hyvää j mikä huono. Onko esine trpeellinen? Toimiv? Kivn näköinen? Käytännöllinen? Minkälinen esine on? Keksikää yhdessä inkin yksi esinettä kuvv sn! Kirjoittk se muistiin. Mitä muutoksi tähän esineeseen voisi tehdä? (väri, muoto, mterili ) Kirjoitetn muutosehdotukset muistiin omiin luonnoskirjoihin esineen kuvn viereen. Sovi opettjn knss, millä lueell voitte liikku suunnistuksen ikn. Muistthn nt muille luokille työruhn kun liikutte luokn ulkopuolell! Sovi opettjn knss mihin ikn pltn luokkn. Löytöjen esittely muulle luoklle (20 min) Vlitk yhdessä yksi löydöistänne j esitelkää se muille ryhmille. Esitelkää kikki omt luonnoksenne tästä esineestä. Kertok minkälinen esine oli. Kertok muille jokin esineeseen yhdessä ideoitu muutos. Luokk voi kommentoid muutosehdotuksi j tehdä lisää ehdotuksi. Keskustelu voidn jtk yhdessä luokn knss. Opettj voi ohjt keskustelu tekemällä hullujkin muutosehdotuksi trkkillen smll oppiliden rektioit. Trtutn sekä negtiivisiin että positiivisiin rektioihin j keskustelln niistä. Mikä on mhdollist j mikä ei.

4 d Kotitehtävä Tehtävän ohjeistus 5 min MUN MUKI Kodin esineitä hvinnoivn piirustustehtävän iheen on koto löytyvä muki. Jtk muotoilun hvinnoimist koton: Vlitse tehtävän kohteeksi kotosi muki ti kuppi. Se voi kuulu myös toiselle perheenjäsenelle, jos st lint sitä! Luonnostele se luonnoskirjn. Voisiko mukiss muutt jotin? Piirrä nyt viereiselle sivulle miten hluisit muutt muki. Vrudu esittelemään muki seurvll tunnill. Voit kirjoitt vstukset muistiin luonnoskirjn. Miksi vlitsit juuri tämän mukin? Kuk sen on hnkkinut j mistä? Kuk sen on tehnyt ti suunnitellut? Missä se on vlmistettu? Kuk muki käyttää j kosk? Mikä siinä on hyvää j mikä huono? Muist ott muki j luonnoskirj seurvlle tunnille mukn! Kotitehtävä voidn käydä seurvn tunnin luss läpi niin, että mukit järjestetään ryhmiin pöydille värien, koon ti mukeiss olevien kuvien j tekstien mukn. Mukit käydään läpi ryhmä kerrlln j oppilt esittelevät luonnoksens j idens mukien muutoksist. Tätä ihepiiriä voi hlutessn syventää lisätehtävällä.

5 d LISÄTEHTÄVÄ: Niille, jotk hluvt jtk hvinnointiteem j syventää A1 tunnin iheiden priss työskentelyä. Tehtävä voidn toteutt missä viheess Mutku-kokonisuutt thns ti itsenäisenä tehtävänä. TUOTEKUVAUS Vlokuvtn esineryhmiä ministudioss Kuvustilnne: Lsten koto tuomi mukej sijoitetn vlkoiselle pperille pöydän päälle j niitä kuvtn ryhmissä, jotk on järjestetty esimerkiksi värien, koon ti mukeiss olevien kuvien j tekstien mukn. Tuotekuvukseen voidn tuod myös vikk omi lempiesineitä, ti kuvt koulust löytyviä esineitä. Välineistö: Kuvmisess voidn käyttää kmer ti oppiliden omi kännykkäkmeroit. Jos käytössä on tulostin, voidn lsten ottmt tuotekuvt tulost myöhemmin j liittää mukej esittävien luonnosten viereen omiin luonnoskirjoihin. Ministudion rkentminen: Sijoitetn pieni pöytä seinän viereen. Teiptn rullss olevn vlkoisen pperin ylälit seinään noin metrin korkeudelle pöydän pinnst. Annetn pperin lskeutu seinältä pöydälle j siitä lttille. Tvoitteen on sd rypytön vlkoinen tust kuvttvlle esineelle. Kuvustilnteess pyritään välttämään kovien vrjojen syntymistä ottmll huomioon vlon suunt.

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

Prosessin analysointi ja töiden viimeistely

Prosessin analysointi ja töiden viimeistely ilumuoto a st kasvatu luun ou perusk Tuntikehyksen osa-alue: D1 Logon ja mainonnan suunnittelu Kesto: 1 kaksoistunti, 45 min + 45 min Aihe: Pohitaan koko Mutku-opintojaksoa prosessina ja tehään töitä jotka

Lisätiedot

Valmennuksen ja arvioinnin tukijärjestemä (VAT)

Valmennuksen ja arvioinnin tukijärjestemä (VAT) Vlmennuksen j rvioinnin tukijärjestemä (VAT) Työhön kuntoutuksen trkoitus on utt sikst kuntoutumn siten, että siirtyminen koulutukseen ti työelämään on mhdollist. VAT -järjestelmä on kehitetty kuntoutumisen

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

Kustaankartanon vanhustenkeskus Vanhainkoti Päivätoiminta Palvelukeskus

Kustaankartanon vanhustenkeskus Vanhainkoti Päivätoiminta Palvelukeskus Kustnkrtnon vnhustenkeskus Vnhinkoti Päivätoimint Plvelukeskus 1 Kustnkrtnoss tärkeinä pidettyjä sioit: sukkn hyvä olo hyvä elämä hyvä yhteistyö omisten knss gerontologisen hoidon osminen työntekijöiden

Lisätiedot

FRIGO NESTEJÄÄHDYTTEISET JA ILMALAUHDUTTEISET VEDENJÄÄHDYTTIMET. RCGROUP SpA C_GNR_0508

FRIGO NESTEJÄÄHDYTTEISET JA ILMALAUHDUTTEISET VEDENJÄÄHDYTTIMET. RCGROUP SpA C_GNR_0508 FRIGO NESTEJÄÄHDYTTEISET JA ILMALAUHDUTTEISET VEDENJÄÄHDYTTIMET Jäähdytysteho Jäähdytysteho Kylmäine Mikroprosessori 127,0 4 149,0 155,0 1 761,0 mäntä/ruuvi/keskipko R407C/R134 MP99/MP.COM MONIPUOLINEN

Lisätiedot

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus E i j L e h t i n i e m i M e r v i Wä r e S L I N E N P I N E N H R J O I T U S V I H K O SLINEN KIRJSTO Hrjoitusvihkon Eij Lehtiniemi OPETTJN OHJEET Erityisopetus HRJOITUSVIHKON SISÄLTÖ Vlmiushrjoitukset

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Asennusohje EPP-0790-FI-4/02. Kutistemuovijatkos Yksivaiheiset muovieristeiset. Cu-lanka kosketussuojalla 12 kv & 24 kv.

Asennusohje EPP-0790-FI-4/02. Kutistemuovijatkos Yksivaiheiset muovieristeiset. Cu-lanka kosketussuojalla 12 kv & 24 kv. Asennusohje EPP-0790-FI-4/02 Kutistemuovijtkos Yksiviheiset muovieristeiset kpelit Cu-lnk kosketussuojll 12 kv & 24 kv Tyyppi: MXSU Tyco Electronics Finlnd Oy Energy Division Konlntie 47 F 00390 Helsinki

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Kasvihuonekaasupäästöjen kehitys pääkaupunkiseudulla

Kasvihuonekaasupäästöjen kehitys pääkaupunkiseudulla YTV MUISTIO 1 Asi 7 / Liite 1 PÄÄKAUPUNKISEUDUN ILMASTOSTRATEGIA 2030 YTV:n hllitus on kokouksessn 14.12.2006 hyväksynyt Pääkupunkiseudun ilmstostrtegiluonnoksen 2030 lusuntojen j knnnottojen pyytämistä

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä.

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä. Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Tuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama

Tuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama Tuen rkenteiden toteuttminen Pispln kouluss Rehtorin näkökulm ren työhön Rehtori Stu Sepänniitty- Vlkm Pispln koulu Khdess toimipisteessä Pispl vl 1.-6. oppilit 232 Hyhky vl 1.-6. oppilit 164 yht. 396

Lisätiedot

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty

Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty Grfinen ohjeisto Julkis- j yksityislojen toimihenkilöliitto Jyty Julkis- j yksityislojen toimihenkilöliitto Jyty Grfinen ohjeisto Sisällysluettelo: 1. Johdnto 2. Peruselementit Tunnus j versiot...2.1 Tunnuksen

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

MaTänään otamme selvää, minkälaista sanomalehteä luemme.

MaTänään otamme selvää, minkälaista sanomalehteä luemme. MaTänään otamme selvää, minkälaista sanomalehteä luemme. Etsi lehdestä vastaukset seuraaviin kysymyksiin: a) Mikä on lehden nimi? b) Mikä on lehden ilmestymisnumero? c) Kuka on lehden päätoimittaja? d)

Lisätiedot

Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä

Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä Kttoeristeet - nyt entistä prempi kokonisrtkisuj Entistä suurempi Kuormituskestävyys j Jtkuv Keymrk- Lunvlvontjärjestelmä Rockwool-ekolvll kttoeristeet seisovt omill jloilln Ekolvoj käytettäessä työ on

Lisätiedot

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...

Lisätiedot

ArcGIS for Server. Luo, jaa ja hallitse paikkatietoa

ArcGIS for Server. Luo, jaa ja hallitse paikkatietoa ArcGIS Server ArcGIS for Server Luo, j j hllitse pikktieto ArcGIS Serverin vull voidn luod plveluit keskitetysti, hllinnoid näitä plveluit j jk niitä orgnistion sisällä sekä verkoss. Plveluj voidn helposti

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

3.5 Kosinilause. h a c. D m C b A

3.5 Kosinilause. h a c. D m C b A 3.5 Kosiniluse Jos kolmiost tunnetn kksi sivu j näien välinen kulm, sinilusett on sngen vike sovelt kolmion rtkisemiseen. Luse on työklun vuton myös kolmion kulmien rtkisemiseen tpuksess, jolloin kolmion

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Työpaikkakouluttajalle perehdytys, koulutus ja jatkuva tuen saamisen mahdollisuus Prosessin roolit

Työpaikkakouluttajalle perehdytys, koulutus ja jatkuva tuen saamisen mahdollisuus Prosessin roolit Tuettu oppisopimus Luokk Tukiprosessit Ydintehtävä Nuorten tukeminen oppisopimuskoulutuksen ikn Prosessin trkoitus Tutkinnon ti ostukinnon sminen oppisopimuskoulutuksell Prosessin lähtötilnne Työttömän

Lisätiedot

/-zîe. r/2 MANNERHEIMIN LASTENSUOJELULIITTO

/-zîe. r/2 MANNERHEIMIN LASTENSUOJELULIITTO Kruunupyyn kunt 26.L.2075 r/2 Sosili- j terveyslutkunt /-zîe MLL;n Lsten j nuorten puhelimen j netin vustus vuodelle 2015 f7o Toivomme, että kuntnne vust Lsten j nuorten puhelin- j nettiplvelun toimint.

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Unelma hyvästä Joulusta

Unelma hyvästä Joulusta Esite voimss jksoill 15-17/2015 23.10.-29.12.2015 Unelm hyvästä Joulust Aut SOS-Lpsikylää uttmn YOUR DREAMS OUR INSPIRATION TM Hengitämme sm ilm Eräänä tlvisen iltpäivänä tein lähtöä töistä kotiin, kun

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Jalkapallokentältä kaupankäynnin kentälle. Newbodyn tarina

Jalkapallokentältä kaupankäynnin kentälle. Newbodyn tarina Jlkpllokentältä kupnkäynnin kentälle Newbodyn trin Autmme kouluj j seuroj vrinkeruuss kisoj, hrjoitusleirejä j luokkretkiä vrten. Seurt sekä koululiset voivt nsit tuntuvsti rh tvoitteidens svuttmiseksi

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

OPETTAJA. Tehtävä 1. KULTTUURI

OPETTAJA. Tehtävä 1. KULTTUURI Tehtävä 4. Paikannimet ja maankohoaminen Tehtävän tavoitteena on saada oppilaat ymmärtämään, miten paikannimet ovat syntyneet, miten vanhoja ne voivat olla ja millaiselta luonto näytti paikkakuntien/ paikkojen

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife

Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife 999805711-02/2015 fi Muottimestrit. nkkurijärjestelmä Monotec Järjestelmämuotti rmx Xlife Käyttäjätieto sennus- j käyttöohje 9764-445-01 Johdnto Käyttäjätieto nkkurijärjestelmä Monotec dnto Joh- by ok

Lisätiedot

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu Harjoite 2 Tavoiteltava toiminta: Materiaalit: Eteneminen: TUTUSTUTAAN OMINAISUUS- JA Toiminnan tavoite ja kuvaus: SUHDETEHTÄVIEN TUNNISTAMISEEN Kognitiivinen taso: IR: Toiminnallinen taso: Sosiaalinen

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

AMMATILLINEN OPETTAJAKORKEAKOULU

AMMATILLINEN OPETTAJAKORKEAKOULU Tmpereen mmttikorkekoulu AMMATILLINEN OPETTAJAKORKEAKOULU KEHITTÄMISHANKE Opettjnkoulutuksen kehittämishnke Vpn sivistystyön käsityön lyhytkurssien sisällöllinen kehittäminen Anj Rosenberg 2008 TAMPEREEN

Lisätiedot

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT OUML6421B3004 3-tilohjttu venttiilimoottori KÄYTTÖKOHTEET i Lämmityksen säätö i Ilmnvihtojärjestelmät TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

NASTOLAN YRITYSPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 500, 501, 504-511 KOSKEVAT RAKENNUSTAPAOHJEET

NASTOLAN YRITYSPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 500, 501, 504-511 KOSKEVAT RAKENNUSTAPAOHJEET NASTOLAN YRISPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 00, 0, 0 - KOSKEVAT RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 00, 0, 0 - KOSKEVAT RAKENNUSTAPAOHJEET YLEISTÄ

Lisätiedot

Säännöt 2 7. Regler 8 13. Regler. Regler. Rules 26 31

Säännöt 2 7. Regler 8 13. Regler. Regler. Rules 26 31 Säännöt 8 9 Rules B tyhjä suositusruutu krtt rhmittri vesiruutu viinitrhruutu utio viinitrhruutu Sisällys C pelilut Viiniyhdistyksen suositus -ltt hintmerkkiä Ltikoit: punviiniltikko vlkoviiniltikko smppnjltikko

Lisätiedot

Harjoitustehtävä 1. Kiviä ja muita

Harjoitustehtävä 1. Kiviä ja muita Harjoitus 1. Kiviä ja muita Tehtävä 1. Jos kivet voisivat puhua Oppilaat saavat etsiä mieleisensä kiven. Tehtävä voidaan myös toteuttaa kotinä, jolloin oppilaat ottavat mukaan kiven kotoaan. - Mistä löysit

Lisätiedot

YRITYSTEN HENKILÖSTÖKOULUTUS

YRITYSTEN HENKILÖSTÖKOULUTUS AIKUISKOULUTUSTILASTOT M Itell Posti Oy YRITYSTEN HENKILÖSTÖKOULUTUS VUONNA 2010 'CONTINUING VOCATIONAL TRAINING SURVEY - CVTS4' TIEDUSTELU PERUSTUU TILASTOLAKIIN (LAKI 280/04) KYSELYLOMAKE SÄHKÖINEN LOMAKE:

Lisätiedot

Yhdessä tehden, oppien ja yrittäen -peli

Yhdessä tehden, oppien ja yrittäen -peli Yhdessä tehden, oppien ja yrittäen -peli PELIOHJEET JOHDANTO Yhdessä tehden, oppien ja yrittäen -pelin tarkoituksena on oppia uutta mielekkäällä ja hauskalla tavalla. Pelissä ei varsinaisesti ole voittajaa,

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN)

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN) Pyydämme lukemn käyttöohjeen huolellisesti läpi j noudttmn sitä! Ohjeiden liminlyönti voi joht kytkimen toiminthäiriöihin j siitä johtuviin vurioihin. Nämä käyttöohjeet (B.1.0.FIN) ovt os kytkintoimitust.

Lisätiedot

Palosuojakanavajärjestelmä tehalit.fwk

Palosuojakanavajärjestelmä tehalit.fwk Plosuojknvjärjestelmä tehlit.fwk Tuliplo voi nopesti iheutt vkvi seurmuksi kerrostlo-, julkisen sektorin sekä teollisuuden kiinteistöissä.siksi uusi sähkösennuksi koskevss setuksess määrätään, että porrskäytäville

Lisätiedot

uusi COOLSIDE JÄÄHDYTYSYKSIKKÖ PALVELIMILLE C_GNR_0608 Mikroprosessori RCGROUP SpA

uusi COOLSIDE JÄÄHDYTYSYKSIKKÖ PALVELIMILLE C_GNR_0608 Mikroprosessori RCGROUP SpA COOLS COOLSIDE uusi JÄÄHDYTYSYKSIKKÖ PALVELIMILLE Jäähdytysteho Kylmäine Puhllintyyppi Mikroprosessori jop 96,0 kw sroll R410A ksili MP.COM T: MONO DXA (R410A) Jäähdytysteho jop 21,9 kw Ilmluhdutteinen

Lisätiedot

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE PROMOTION JYRSIMET VALURAUDOILLE NEW CAST IRON FACE MILLING CUTTERS FI-00 AHX0W AHX l Uui tehok -ärmäinen kääntöterä. AHX0W [UUSIA RATKAISUJA [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] JYRSINTÄÄN VALURAUTOJEN

Lisätiedot

SOPU on päämiehen tuki ja ohjaajien apuväline. Sen paikka on päämiehen kodissa.

SOPU on päämiehen tuki ja ohjaajien apuväline. Sen paikka on päämiehen kodissa. SOPU-OHJEET YLEISTÄ SOPUa tehdään yhdessä päämiehen kanssa niin, että seuraavat periaatteet toteutuvat: päämies päättää omasta elämästään mahdollisimman paljon päämiehen toiveet ja unelmat otetaan huomioon

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

OMINAISUUS- JA SUHDETEHTÄVIEN KERTAUS. Tavoiteltava toiminta: Kognitiivinen taso: Ominaisuudet ja suhteet -kertaus

OMINAISUUS- JA SUHDETEHTÄVIEN KERTAUS. Tavoiteltava toiminta: Kognitiivinen taso: Ominaisuudet ja suhteet -kertaus Harjoite 12: Tavoiteltava toiminta: Materiaalit: OMINAISUUS- JA SUHDETEHTÄVIEN KERTAUS Kognitiivinen taso: Ominaisuudet ja suhteet -kertaus Toiminnan tavoite ja kuvaus: Oppilaat ratkaisevat paperi- ja

Lisätiedot

Kohteen turvaluokitus on

Kohteen turvaluokitus on LVI 03-10517 SIT 13-610091 KH X4-00513 INFRA 053-710109 ST 41.01 HANKETIETOKORTTI HT12 Hnketietokortiss esitetään rkennuskohteen lähtötiedot j tiljn edellyttämä ltutso suunnittelun työmäärän rviointi vrten.

Lisätiedot

ystävät LUONNON LAHJA Kaneli & appelsiini Minun valintani 1). Tuemme yhteisöjä, joista eteeriset öljymme ovat per

ystävät LUONNON LAHJA Kaneli & appelsiini Minun valintani 1). Tuemme yhteisöjä, joista eteeriset öljymme ovat per LUONNON Lhj LUONNOSTA ystävät Brighter Home -kokoelmmme on luotu ympäristöystävällisiä j sosilisesti vstuullisi käytäntöjä noudtten. Tästä kokoelmst löydät oiket lhjt kikille, jotk vlivt mpllomme. Kneli

Lisätiedot

Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä

Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä Sopimustekstin käännös 30.03.2015 (epävirllinen) Counil of Europe Trety Series - No. 199 Euroopn neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnllisest merkityksestä Fro, 27.10.2005 Johnto Euroopn

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

2011, Mercury Marine *8M0060980* 90-8M0060980

2011, Mercury Marine *8M0060980* 90-8M0060980 2011, Mercury Mrine *8M0060980* 90-8M0060980 910 SISÄLLYSLUETTELO Os 1 - Alkuvlmistelut VesselView yksikön tekniset tiedot...2 Yleisktsus...2 Näppäimistön toiminnot...3 "X" pinike...3 Kuittuspinike...3

Lisätiedot

-kortiston näyte RT 09-10692 ESTEETÖN LIIKKUMIS- JA TOIMIMISYMPÄRISTÖ SISÄLLYSLUETTELO YLEISTÄ

-kortiston näyte RT 09-10692 ESTEETÖN LIIKKUMIS- JA TOIMIMISYMPÄRISTÖ SISÄLLYSLUETTELO YLEISTÄ RT 09-09 ohjetiedosto mliskuu 999 () ESTEETÖN LIIKKUMIS- JA TOIMIMISYMPÄRISTÖ liikkumisesteiset, toimimisesteiset, esteettömyys hndikppde, funktionshindrde, tillgänglighet disled persons, ccessiility Tämä

Lisätiedot

Lue Tuotteen turvaohjeet ennen laitteen käyttöönottoa. Lue sitten tämä Pika-asennusopas oikeiden asetusten ja asennuksen onnistumisen takaamiseksi.

Lue Tuotteen turvaohjeet ennen laitteen käyttöönottoa. Lue sitten tämä Pika-asennusopas oikeiden asetusten ja asennuksen onnistumisen takaamiseksi. Pik-sennusops Aloit tästä ADS-2100 Lue Tuotteen turvohjeet ennen litteen käyttöönotto. Lue sitten tämä Pik-sennusops oikeiden setusten j sennuksen onnistumisen tkmiseksi. VAROITUS VAROITUS ilmisee mhdollisesti

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Virtuaalimuseon esineisiin tutustuminen

Virtuaalimuseon esineisiin tutustuminen Virtuaalimuseon esineisiin tutustuminen 5. Esineet ennen vanhaan (Tehtävä sovellettavissa eri ikäryhmillle) Oppilaat katselevat kuvia virtuaalimuseon vanhoista esineistä ja tutustuvat niihin opettajan

Lisätiedot

HIOMAKONEEN AUTOMATIIKKAVENTTIILIT. Asennus-, käyttöja huolto-ohjeet 5 GA 71 fi Painos 5/02

HIOMAKONEEN AUTOMATIIKKAVENTTIILIT. Asennus-, käyttöja huolto-ohjeet 5 GA 71 fi Painos 5/02 HIOMAKONEEN AUTOMATIIKKAVENTTIILIT Asennus-, käyttöj huolto-ohjeet 5 GA 71 fi Pinos 5/02 2 Sisällysluettelo 1 TOIMINTASELOSTUS................. 3 1.1 Yleistä.......................... 3 1.2 Pääkomponentit..................

Lisätiedot

1.Rajaustekijät Koulutuksia Opiskelijoita Vastaus % ,6. 1.Nainen 2.Mies Yhteensä 75,0% 25,0% 100,0%

1.Rajaustekijät Koulutuksia Opiskelijoita Vastaus % ,6. 1.Nainen 2.Mies Yhteensä 75,0% 25,0% 100,0% OPAL: 213 Koulutuksi Opiskelijoit Vstus % 1.1.213 31.12.213 4 52 84,6 TAUSTAKYSYMYKSET 1. Sukupuoli (u) 1.Ninen 2.Mies 33 11 44 75,% 25,% 1,% 2. Äidinkieli (u) 1.Suomi 2.Ruotsi 3.Muu 34 1 44 77,3%,% 22,7%

Lisätiedot

Kunnanhallitus 14/2007 550 (- 588)

Kunnanhallitus 14/2007 550 (- 588) POLVIJÄRVEN KUNTA KOKOUSPÖYTÄKIRJA Kunnnhllitus 14/2007 550 (- 588) KOKOUSAIKA Mnntin 17. syyskuut 2007 klo 17.30-18.15 KOKOUSPAIKKA nro Polvijärven kunnnvirsto, kunnnhllituksen kokoushuone sivu SAAPUVILLA

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

MUTKU. Muotoilukasvatusta. peruskouluun. Open opas

MUTKU. Muotoilukasvatusta. peruskouluun. Open opas Open opas MUTKU Muotoilukasvatusta peruskouluun Open opas Työryhmä: Tiina Leinonen, Anna Mannonen, Essi Rämä, Mari Savio Toimitustyö: Veera Jalava Ulkoasu ja taitto: Susanna Raunio Valokuvat: Saara Salama,

Lisätiedot

Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto

Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto kijn tiot kijn sukunimi kijn tunimt kijn llkirjoitus Lupkirjn tyyppi* Lupkirjn numro* Lupkirjn myöntänyt vltio kmus- j ilmoituslomk LPL, BPL, SPL, PPL, CPL, IR lupkirjoj vrtn vittv lntoko- j trkstuslntolusunto

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

2015, Mercury Marine VesselView 4 8M0102709 1214 fin

2015, Mercury Marine VesselView 4 8M0102709 1214 fin 2015, Mercury Mrine VesselView 4 8M0102709 1214 fin SISÄLLYSLUETTELO Os 1 - Alkuvlmistelut VesselView 4 yleisktsus... 2 Pinikkeet... 2 Näytön kielen vlint... 2 Tkpneeli... 3 VesselView 4 näytön sijinnit

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot