Matlab-tietokoneharjoitus

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Matlab-tietokoneharjoitus"

Transkriptio

1 Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden, vahvistuksen ja resoluution merkitys. Selvittää loisteputken aiheuttama valaistusteho työpöydälle ja loisteputken säteilemän valon taajuus. Harjoituksessa on kursiivilla merkattuja kysymyksiä, joiden vastaukset tulee täyttää erilliseen vastauslomakkeeseen. 1. Tiedoston lukeminen. Avaa Matlab ja siellä uusi scripti. Matlabissa ohjelmointi kannattaa kirjoittaa scriptiin, jota on sitten helppo ajaa myöhemmin. Fotoresistorista on kerätty 10 sekunnin pituisia näytettä 40Hz:n ja 200Hz:n taajuuksilla ja lisäksi itse Labview:lla ottamasi näyte 2000Hz:n näytteenottotaajuudella. Käydään läpi kaksi eri tapaa tuoda dataa Matlabiin. Valitse ensin Import Data Matlabin työkaluriviltä, ja etsi Labview:ssa tallentamasi csv-tiedosto. Vaihda sarake-erottimeksi puolipiste ja desimaalierottimeksi piste kuvan 1 mukaisesti. Kuva 1. Datan tuominen Import Data -työkalulla. Työtilaasi pitäisi ilmestyä kaksi 20000x1 kokoista muuttujaa. Tallenna ne muuttujaan v2000 seuraavasti: v2000 = [VarName1,VarName2]; Seuraavaksi siirretään ohjelmallisesti kaksi muuta CSV-tiedostoa. Siirrä MyCoursesista ladatun kansion CSVtiedostot ja Matlab-funktiot nykyiseen Matlab-kansioosi. Näissä tiedostoissa on käytetty desimaalierottimena pilkkua, mutta Matlab käyttää desimaalierottimena pistettä. Lisäksi samalla rivillä olevat arvot on erotettu toisistaan puolipisteillä, kun Matlab haluaisi niiden olevan erotettuja pilkulla. Seuraavalla koodin avulla voit lukea väärässä muodossa olevan CSV-tiedoston suoraan muuttujiin. Lisää se scriptiisi. %% Luku CSV-tiedostoista %Muutetaan desimaalierottimen pilkut pisteiksi comma2point_overwrite('valo200.csv'); comma2point_overwrite('valo40.csv');

2 %Aloitetaan luku toiselta riviltä v200 = csvread('valo200.csv',1,0); v40 = csvread('valo40.csv',1,0); %Palautetaan tiedostot alkuperäiseen muotoon ongelmien välttämiseksi. point2comma_overwrite('valo200.csv'); point2comma_overwrite('valo40.csv'); %%- merkintä lisää uuden jakson. Tästä on se ilo, että komennolla ctrl+enter voit ajaa vain sen jakson scriptistäsi, jossa kursori sijaitsee. 2. Näytteenottotaajuuden vaikutus Tarkastellaan näytteitä aikatasossa. Äskettäin luotujen muuttujien ensimmäiset sarakkeet sisältävät mittaushetken ja toiset sarakkeet mittausarvon. Kopio seuraava pätkä scriptiisi, ja aja se. %% Näytteenottotaajuuden vaikutus plot(v2000(:,1),v2000(:,2)); plot(v200(:,1),v200(:,2),'c'); plot(v40(:,1),v40(:,2),'r'); axis([ ]); legend('fs = 2000','Fs = 200','Fs = 40'); Havaitaan, että näytteissä on aaltomaisuutta. Näytteet on otettu samassa koetilanteessa. Kysymys 1. Miksi pienemmillä näytteillä signaali on saha-aaltoa, ja miksi 40Hz:n näytteenottotaajuudella signaalin amplitudi on huomattavasti pienempää kuin kahdella muulla? Pienemmillä näytteillä näytteenottotaajuus on liian pieni, ja 40 Hz:n näyte on laskostunut. Pienempien näytteiden näytepisteiden vähyys aiheuttaa saha-aallon. Suuremmalla näytteenottotaajuudella kohinan määrä lisääntyy, mikä näkyy amplitudin kasvamisena ja aaltomaisuutena. Tutkitaan näytteitä Fourier-muunnoksella. Fourier-muunnos on matemaattinen työkalu, jonka avulla aikatason signaali voidaan siirtää taajuustasoon. Tässä yhteydessä ei käydä läpi muunnoksen matemaattisia perusteita, vaan opetellaan hyödyntämään Fourier-muunnosta signaalin taajuuksien etsimisessä. Matlabissa Fast Fourier Transform -menetelmää käytetään komennolla fft. Avaa työkaluriviltä Matlabin Help-dokumentti. Etsi dokumentista fft-funktio, ja suorita näytteille Fourier-muunnos dokumentin esimerkin ja alla olevan alustavan scriptin avulla. Huom! Tasajännitekomponentin jättäminen pois muunnoksesta selkiyttää kuvaajaa, kuten kohta tulet huomaamaan. %% FFT-analyysi T = 10; %Näytteenottoaika figure; %luodaan uusi kuvaaja % v2000, tasajännitekomponentti mukana L = length(v2000); %Näytteen pituus Y2000 = fft(v2000(:,2),nfft)/l; f2000 = Fs/2*linspace(0,1,NFFT/2+1); plot(f2000,2*abs(y2000(1:nfft/2+1)),'y');

3 % v2000 Y2000 = fft(v2000(:,2)-mean(v2000(:,2)),nfft)/l; f2000 = Fs/2*linspace(0,1,NFFT/2+1); Yf2000 = 2*abs(Y2000(1:NFFT/2+1)); plot(f2000,2*abs(y2000(1:nfft/2+1)),'b'); % v200 L = length(v200); Y200 = fft(v200(:,2)-mean(v200(:,2)),nfft)/l; f200 = Fs/2*linspace(0,1,NFFT/2+1); plot(f200,2*abs(y200(1:nfft/2+1)),'c'); % v40 L = length(v40); Y40 = fft(v40(:,2)-mean(v40(:,2)),nfft)/l; f40 = Fs/2*linspace(0,1,NFFT/2+1); plot(f40,2*abs(y40(1:nfft/2+1)),'r'); xlabel('taajuus (Hz)'); legend('fs = 2000, sis. tasajännitteen','fs = 2000','Fs = 200','Fs = 40'); axis([ ]); Kuvaajassa näkyy piikkeinä mittausnäytteistä erottuvat taajuudet. Mitä voit sanoa kuvaajan perusteella Fourier-muunnoksen muunnosalueesta (kaistasta)? Myöhemmin tulet oppimaan tämän yhteyden Nyqvistin rajataajuuteen. Määritä signaalissa esiintyvä ensimmäinen harmoninen taajuus. Taajuuden voit löytää esimerkiksi seuraavasti: %Etsitään ensimmäinen piikki [pks,locs] = findpeaks(yf2000,'minpeakheight',0.05,... 'MINPEAKDISTANCE',100); % % Ensimmäinen piikki löytyy taajuudella piikki = f2000(locs(end)); % Amplitudi tällä taajuudella Vpiikki = pks(end); Kysymys 2. Millä taajuudella loisteputki säteilee? 3. Resoluution merkitys Tutkitaan seuraavaksi näytteenottoresoluution merkitystä. Esimerkkinä lasketaan aikatason signaalista jännitteen peak-to-peak -amplitudi. Valmiit näytteet ovat kerätty käyttäen 14-bittistä Analog-to-Digital - muunninta. Näytteiden kvantisointivirhe on tällöin. (3) Muunnetaan ohjelmallisesti yksi näyte siten, kuin että se olisi muunnettu 8-bittisellä ADC:lla. Tutki kvantisointitasojen määrän vaikutusta seuraavalla koodilla: figure;

4 dis = 5/(2^8-1); v2000d = round(v2000(:,2)/dis)*dis; plot(v2000(:,1), v2000(:,2),'bo'); plot(v2000(:,1), v2000(:,2),'b'); plot(v2000(:,1),v2000d,'g+'); axis([ ]); legend('14-bit mittapisteet','14-bit interpoloitu käyrä','8-bit mittapisteet'); Seuraavassa koodissa on laskettu keskiarvot näytteiden huipuista ja pohjista, ja saatu peak-to-peak -jännite näiden erotuksena. Oletetaan, että virhettä aiheutuu ainoastaan kvantisoinnista. Lasketaan lopuksi alkuperäisen näytteen huippuarvojen keskiarvon keskivirhe. %% Peak-to-peak jännite aikatasosta %8-bit näytteelle [pks,locs] = findpeaks(v2000d); [btm,locm] = findpeaks(-v2000d); btm = -btm; ptop1 = mean(pks)-mean(btm); %alkuperäiselle näytteelle [pks2,locs] = findpeaks(v2000(:,2)); [btm2,locm] = findpeaks(-v2000(:,2)); btm2 = -btm2; ptop2 = mean(pks2)-mean(btm2); dis2 = 5/(2^14-1); %Alkuperäisestä näytteestä laskettu keskiarvon keskivirhe peak-to-peak %jännitteelle otoskeskihajonnan (std) avulla kakv = std(pks2-btm2)/sqrt(length(pks2)); fprintf('peak-to-peak jännite 8-bit muunnoksella: %0.4f +-%0.4f\n',ptop1,dis); fprintf('peak-to-peak jännite 14-bit muunnoksella: %0.4f +- %0.5f\n',ptop2,dis2); Kysymys 3. Mitä suuruusluokkaa eri resoluutioilla saadun tuloksen ero on? 10^-2 V 10^-3 V 10^-4 V Kysymys 4. Onko mielestäsi peak-to-peak jännitteen keskiarvon keskivirhe merkittävä verrattuna kvantisointivirheeseen? Keskiarvon keskivirhe on huomattavasti suurempi kuin kvantisointivirhe. Keskiarvon keskivirhe on samaa kokoluokkaa kuin kvantisointivirhe, ja se tulisi ottaa huomioon mittausepävarmuutta määritettäessä. Keskiarvon keskivirhe on huomattavasti pienempi kuin kvantisointivirhe. Kysymys 5. Vertaa peak-to-peak jännitettä aiemmin taajuustasosta laskettuun valon ensimmäisen harmonisen taajuuden amplitudiin (muuttuja Vpiikki). Mitä havaitset?

5 Vpiikki on noin puolet peak-to-peak jännitteestä. Vpiikki ja peak-to-peak jännite ovat likimain samat. Vpiikki on noin kaksinkertainen peak-to-peak jännitteeseen verrattuna. 4. Vahvistuksen merkitys Jatketaan 8-bittisellä muunnoksella. Monesti näytesignaalia pystytään vahvistamaan manuaalisesti, ennen kuin se kerätään tietokoneelle. Oletetaan nyt, että voimme säätää näytesignaalin käsittämään koko näytteenottoalueen. Lisää seuraava koodi scriptiisi. Siinä on ensin vahvistettu ja siirretty korkeussuunnassa alkuperäistä signaalia, jonka jälkeen signaali on muunnettu 8-bittisellä muuntimella. Eroa käsittelemättömään signaaliin on havainnollistettu kuvaajalla. %Näytteen "analoginen" vahvistus: vahvistus = (5/(max(v2000(:,2))-min(v2000(:,2)))); v2000v = (v2000(:,2)-min(v2000(:,2)))*vahvistus; v2000vd = round(v2000v/dis)*dis; figure; plot(v2000(:,1), v2000d,'b+'); plot(v2000(:,1),v2000vd,'g+'); axis([ ]); legend('8-bit mittapisteet','vahvistetun 8-bit signaalin mittapisteet'); Tutkitaan vielä tällä näytteellä saatua peak-to-peak arvoa: [pks3,locs] = findpeaks(v2000vd); [btm3,locm] = findpeaks(-v2000vd); btm3 = -btm3; %Muunnetaan takaisin, kun tunnetaan vahvistus ptop3 = (mean(pks3)-mean(btm3))/vahvistus; kvvirhe = dis/vahvistus; fprintf('peak-to-peak jännite vahvistetulle 8-bit signaalille: %0.4f +- %0.4f\n',ptop3,kvvirhe); Kysymys 6. Miten saavutettu tarkkuus suhtautuu aiemmin laskettuihin arvoihin? Vahvistetun 8-bittisen näytteen tarkkuus ei juuri eroa vahvistamattomasta 8-bittisestä näytteestä. Vahvistetun 8-bittisen näytteen tarkkuus on lähes yhtä hyvä kuin vahvistamattoman 14-bittisen näytteen. Vahvistetun 8-bittisen näytteen tarkkuus on parempi kuin vahvistamattoman 14-bittisen näytteen.

Värähtelymittaus Tämän harjoituksen jälkeen:

Värähtelymittaus Tämän harjoituksen jälkeen: Värähtelymittaus Tämän harjoituksen jälkeen: ymmärrät mittausvahvistimen käytön ja differentiaalimittauksen periaatteen, olet kehittänyt osaamista värähtelyn mittaamisesta, siihen liittyvistä ilmiöstä

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Tiedonkeruu ja analysointi

Tiedonkeruu ja analysointi Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit,

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

ELEC-C5070 Elektroniikkapaja (5 op)

ELEC-C5070 Elektroniikkapaja (5 op) (5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Lämpöantureilla mittaaminen Tämän harjoituksen jälkeen:

Lämpöantureilla mittaaminen Tämän harjoituksen jälkeen: Lämpöantureilla mittaaminen Tämän harjoituksen jälkeen: olet tutustunut mittausjärjestelyissä vastaan tuleviin elektronisiin piireihin, osaat tehdä yksinkertaisen lämpötilamittauksen analogisilla lämpöantureilla,

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus

Lisätiedot

A. SMD-kytkennän kokoaminen ja mittaaminen

A. SMD-kytkennän kokoaminen ja mittaaminen A. SMD-kytkennän kokoaminen ja mittaaminen Avaa tarvikepussi ja tarkista komponenttien lukumäärä sekä nimellisarvot pakkauksessa olevan osaluettelon avulla. Ilmoita mahdollisista puutteista tai virheistä

Lisätiedot

1 PID-taajuusvastesuunnittelun esimerkki

1 PID-taajuusvastesuunnittelun esimerkki Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )

Lisätiedot

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and

Lisätiedot

DSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio

DSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio DSP:n kertausta Kerrataan/käydään läpi: ffl Spektri, DFT, DTFT ja FFT ffl signaalin jaksollisuuden ja spektrin harmonisuuden yhteys ffl aika-taajuusresoluutio Spektri, DFT, DTFT ja aika-taajuusresoluutio

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa

Lisätiedot

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse

Lisätiedot

KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma

KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma KON-C34 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma Mitattava suure Tarkka arvo Mittausjärjestelmä Mitattu arvo Ympäristö Mitattava suure Anturi Signaalinkäsittely

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

T140103 Sähkömittaustekniikka

T140103 Sähkömittaustekniikka T140103 Sähkömittaustekniikka Pekka Rantala Kevät 2015 (9.3.2015) Vaadittavat suoritukset Välikokeiden tai tentin hyväksytty suorittaminen Harjoituksissa/labrassa läsnäolo (100 %) Harjoitusten/labrojen

Lisätiedot

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan

Lisätiedot

1. Yleistä. 2. Ominaisuudet. 3. Liitännät

1. Yleistä. 2. Ominaisuudet. 3. Liitännät 1. Yleistä SerIO on mittaus ja ohjaustehtäviin tarkoitettu prosessorikortti. Se voi ohjemistosta riippuen toimia itsenäisenä yksikkönä tai tietokoneen ohjaamana. Jälkimmäisessä tapauksessa mittaus ja ohjauskomennot

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina.

Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina. TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki 1 Kirjan lukuun 3 liittyvää lisäselitystä ja esimerkkejä Kirjan luvussa 3 (Signals Carried over the Network) luodaan katsaus siihen, minkälaisia

Lisätiedot

Rasterikarttojen ja liiteaineistojen päivitysohje SpatialWeb5 Karttapaikka

Rasterikarttojen ja liiteaineistojen päivitysohje SpatialWeb5 Karttapaikka SpatialWeb5 Karttapaikka 22.3.2006 sivu 1 (7) Rasterikarttojen ja liiteaineistojen päivitysohje SpatialWeb5 Karttapaikka SpatialWeb5 Karttapaikka 22.3.2006 sivu 2 (7) Sisältö: 1. KARTTAPAIKKASIVUJEN HAKEMISTORAKENNE...

Lisätiedot

Digitaalinen audio & video I

Digitaalinen audio & video I Digitaalinen audio & video I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva + JPEG 1 Johdanto Multimediassa hyödynnetään todellista ääntä, kuvaa ja videota

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari

Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin eteneminen Projekti on edennyt syksyn aikana melko vaikeasti. Aikataulujen

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

11. kierros. 1. Lähipäivä

11. kierros. 1. Lähipäivä 11. kierros 1. Lähipäivä Viikon aihe AD/DA-muuntimet Signaalin digitalisointi Kvantisointivirhe Kvantisointikohina Kytkinkapasitanssipiirit Mitoitus Kontaktiopetusta: 6 tuntia Kotitehtäviä: 4 tuntia Tavoitteet:

Lisätiedot

Puheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM

Puheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM Puheenkoodaus Olivatpa kerran iloiset serkukset PCM, DPCM ja ADPCM PCM eli pulssikoodimodulaatio Koodaa jokaisen signaalinäytteen binääriseksi (eli vain ykkösiä ja nollia sisältäväksi) luvuksi kvantisointitasolle,

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio

Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio Tekniikka ja liikenne 4.4.2011 1 (5) Tietoliikennetekniikan laboratorio Työ 1 PCM-työ Työn tarkoitus Työssä tutustutaan pulssikoodimodulaation tekniseen toteutustapaan. Samalla nähdään, miten A/Dmuunnin

Lisätiedot

SGN-4200 Digitaalinen Audio Harjoitustyö-info

SGN-4200 Digitaalinen Audio Harjoitustyö-info 1 SGN-4200 Digitaalinen Audio Harjoitustyö-info 04.04.2012 Joonas Nikunen Harjoitystyö - 2 Suorittaminen ja Käytännöt Kurssin pakollinen harjoitustyö: Harjoitellaan audiosignaalinkäsittelyyn tarkoitetun

Lisätiedot

Mitä on signaalien digitaalinen käsittely

Mitä on signaalien digitaalinen käsittely Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen

Lisätiedot

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi

Lisätiedot

Uuden Peda.netin käyttöönotto

Uuden Peda.netin käyttöönotto Sisällysluettelo Uuden Peda.netin käyttöönotto...2 Sisään- ja uloskirjautuminen...2 OmaTila...3 Peda.netin yleisrakenne...4 Työvälineet - Sivut...5 Sivun lisääminen omaan profiiliin:...5 Sivun poistaminen

Lisätiedot

Mittausraportti OH3NJC Hertsien Herruus taajuusmittauskilpailu

Mittausraportti OH3NJC Hertsien Herruus taajuusmittauskilpailu Mittausraportti OH3NJC Hertsien Herruus taajuusmittauskilpailu 27.9.2008 Mitattu taajuus: 3665.137330 khz Mittausaika: Kilpailuluokka: alkaen 13:44 SA, kesto 6120 / 5669 s (menetelmästä riippuen) Kalibroijat

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

E-RESULTS LITE -OHJEET

E-RESULTS LITE -OHJEET E-RESULTS LITE -OHJEET 1 ALKUVALMISTELUT Huolehdi ennen rastiesi pitoa, että Tulospalvelutietokoneen akku on ladattu täyteen Seuran EMIT-kortit ovat tallessa ja selkeästi erillään lähtöleimasimesta. Lähtö-

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Spektrianalysaattori. Spektrianalysaattori

Spektrianalysaattori. Spektrianalysaattori Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

Organization of (Simultaneous) Spectral Components

Organization of (Simultaneous) Spectral Components Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille

Lisätiedot

1 Äänisignaalin tallentaminen ja analysointi... 2 Q Q Q Q Häiriönpoisto... 5 Q Q Q2.3...

1 Äänisignaalin tallentaminen ja analysointi... 2 Q Q Q Q Häiriönpoisto... 5 Q Q Q2.3... 1 Äänisignaalin tallentaminen ja analysointi... 2 Q1.1... 2 Q1.2... 2 Q1.3... 3 Q1.4... 4 2 Häiriönpoisto... 5 Q2.1... 5 Q2.2... 8 Q2.3... 9 3 FIR- ja IIR-suotimien vertailu... 10 Q3.1... 10 Q3.2... 11

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja tietokonetekniikan laitos. Harjoitustyö 4: Cache, osa 2

TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja tietokonetekniikan laitos. Harjoitustyö 4: Cache, osa 2 TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja tietokonetekniikan laitos TKT-3200 Tietokonetekniikka I Harjoitustyö 4: Cache, osa 2.. 2010 Ryhmä Nimi Op.num. 1 Valmistautuminen Cache-työn toisessa osassa

Lisätiedot

Digitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio

Digitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio Digitaalinen audio & video, osa I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva +JPEG Petri Vuorimaa 1 Johdanto Multimediassa hyödynnetään todellista ääntä,

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

1 Muutokset piirilevylle

1 Muutokset piirilevylle 1 Muutokset piirilevylle Seuraavat muutokset täytyvät olla piirilevylle tehtynä, jotta tätä käyttöohjetta voidaan käyttää. Jumppereiden JP5, JP6, JP7, sekä JP8 ja C201 väliltä puuttuvat signaalivedot on

Lisätiedot

Harjoitustyö 1. Signaaliprosessorit Sivu 1 / 11 Vähämartti Pasi & Pihlainen Tommi. Kaistanestosuodin, estä 2 khz. Amplitudi. 2 khz.

Harjoitustyö 1. Signaaliprosessorit Sivu 1 / 11 Vähämartti Pasi & Pihlainen Tommi. Kaistanestosuodin, estä 2 khz. Amplitudi. 2 khz. Signaaliprosessorit Sivu 1 / 11 Harjoitustyö 1 Kaistanestosuodin, estä 2 khz Amplitudi f 2 khz MATLAB koodi: clear; close all; w=[0 1900 1950 2050 2100 4000]/4000; m=[1 1 0 0 1 1]; h=remez(800,w,m); [H,w]=freqz(h,1);

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a ELEC-C3 Säätötekniikka 9. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu Vinkit a 3. Vaiheenjättökompensaattorin siirtofunktio: ( ) s W LAG s, a. s Vahvistus

Lisätiedot

T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9

T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 1 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 Digitaalinen signaalinkäsittely ja suodatus Versio 5.01 (29.9.2003) T-61.246 Harjoitustyö

Lisätiedot

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys

Lisätiedot

Aktiivinen jakosuodin Linkwitz-korjauksella

Aktiivinen jakosuodin Linkwitz-korjauksella Aktiivinen jakosuodin Linkwitz-korjauksella 1. Esittely 3 2. Lohkokaavio 4 3. Virtalähde 5 4. Versiohistoria: 5 5. Dokumentin julkaisupaikat: 5 Liitteet: Korostus.xls esimerkki Piirikaavio Komponenttien

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten

Lisätiedot

1. Mittausjohdon valmistaminen 10 p

1. Mittausjohdon valmistaminen 10 p 1 1. Mittausjohdon valmistaminen 10 p Valmista kuvan mukainen BNC-hauenleuka x2 -liitosjohto. Johtimien on oltava yhtä pitkät sekä mittojen mukaiset. 60 100 mm 1 000 mm Puukko ja BNC-puristustyökalu ovat

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

Tiistai klo 10-12 Jari Eerola 20.1.2015

Tiistai klo 10-12 Jari Eerola 20.1.2015 Tiistai klo 10-12 Jari Eerola 20.1.2015 } 20.1. Kuvaajatyypit ja ohjelmat Analyysiohjelmista Praat ja Sonic Visualiser Audacity } 27.1. Nuotinnusohjelmista Nuotinnusohjelmista Musescore } Tietokoneavusteinen

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

HARRASTERADIOASTRONOMIAA. URSALO Janne Peltonen

HARRASTERADIOASTRONOMIAA. URSALO Janne Peltonen HARRASTERADIOASTRONOMIAA URSALO 6.11.2014 Janne Peltonen TAIVAAN RADIOLÄHTEET Taivaankappaleet Aurinko Kuu Jupiter Galaksin keskusta Sagittarius_A, musta aukko keskellä Supernovajäänteet Cassiopeia_A Taurus_A/Rapusumu

Lisätiedot

Pörisevä tietokone. morsetusta äänikortilla ja mikrofonilla

Pörisevä tietokone. morsetusta äänikortilla ja mikrofonilla Pörisevä tietokone morsetusta äänikortilla ja mikrofonilla 1 Tiivistelmä Idea toteuttaa seuraavat vaatimukset: 1. kommunikointi toisen opiskelijan kanssa (morsetus) 2. toisen opiskelijan häirintä (keskittymistä

Lisätiedot

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P Säädön kotitehtävä vk3 t. 1 a) { Y =G K P E H E=R K N N G M Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. G R s = Y R = GK P s 1 = KK 1 GK P K N G P M s 2 3s 2

Lisätiedot

Ylläpitoalue - Etusivu

Ylläpitoalue - Etusivu Crasmanager 5.2 Ylläpitoalue - Etusivu Sivut osiossa sisällön selaus ja perussivujen ylläpito. Tietokannat osiossa tietokantojen ylläpito. Tiedostot osiossa kuvien ja liitetiedostojen hallinta. Työkalut

Lisätiedot

Ohjeissa pyydetään toisinaan katsomaan koodia esimerkkiprojekteista (esim. Liikkuva_Tausta1). Saat esimerkkiprojektit opettajalta.

Ohjeissa pyydetään toisinaan katsomaan koodia esimerkkiprojekteista (esim. Liikkuva_Tausta1). Saat esimerkkiprojektit opettajalta. Ohjeissa pyydetään toisinaan katsomaan koodia esimerkkiprojekteista (esim. Liikkuva_Tausta1). Saat esimerkkiprojektit opettajalta. Vastauksia kysymyksiin Miten hahmon saa hyppäämään? Yksinkertaisen hypyn

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin

Lisätiedot

Luento 9. tietoverkkotekniikan laitos

Luento 9. tietoverkkotekniikan laitos Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

Tieteellinen laskenta 2 Törmäykset

Tieteellinen laskenta 2 Törmäykset Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55

Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55 Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot