Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja."

Transkriptio

1 PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan. Kaikki hinnoittelu-, kate- ja tunnuslukulaskelmat ovat tavalla tai toisella prosenttilaskentaa. Prosenttiluvuilla ilmaistaan myös erilaisia vertailulukuja ja suhteellisia kannattavuuksia; esimerkiksi henkilöstökulut ovat 28 % liikevaihdosta. Se kertoo paljon enemmän kuin ilmoitus, että henkilöstökulut ovat euroa vuodessa, josta on vaikea päätellä, ovatko kustannukset liian korkeat vai kohtuulliset liikevaihtoon nähden. Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja. Esimerkki: Muunna desimaaliluvuiksi ja murtoluvuiksi seuraavat prosenttiluvut 14 % = 0,14 = 14/ 21 % =0,21 = 21/ 42 % = 0,42 = 42/ Esimerkki: Muunna desimaaliluvuiksi ja prosenttiluvuiksi seuraavat murtoluvut ¾ = 0,75 = 75% 5/ =0,05 = 5% 3/5 = 0,6 = 60% Prosentti tarkoittaa yhtä sadasosaa eli 1 % = 0,01 = 1/ Perusarvo a ( ) Prosenttiluku p (25%) Prosenttiarvo (25 ) a eli perusarvo on se luku, josta prosenttiarvo määritetään. Se vastaa kysymyksiin: Mistä luvusta? Paljostako? Mistä määrästä? Perusarvo on % Kun määritetään prosenttia/prosenttilukua (p), vastataan kysymykseen: Kuinka monta prosenttia? Prosenttiluku voidaan ilmaista kun tunnetaan perusarvo ja prosenttiarvo. Prosenttiarvo () on se luku, jota verrataan perusarvoon. Se vastaa kysymyksiin: Kuinka monta? Paljonko?

2 Esimerkki 1 (kysytään prosenttiarvoa): Työpaikan 170 työntekijästä 20 % on naisia. Kuinka monta naista työpaikalla on? On kolme tapaa selvittää, paljonko prosenttiluku on määränä: 1) Käyttää oheista kolmiota: Peitä prosenttiarvo eli, jäljelle jää (desimaailukuna) 170 * 0,20 = 34 2) Prosenttiluku * perusarvo 20 * 170 = 34 3) Verrantoa käyttäen, jolloin määrä ratkaistaan ristiinkertomalla: * x = 170 * 20 => x = 170 * 20 = 34 Esimerkki 2 (kysytään prosenttilukua): Montako prosenttia 25 euroa on 125 eurosta? On kaksi tapaa selvittää vastaus kysymykseen kuinka monta prosenttia? 1) Muodostetaan lukujen suhde jakamalla ja joko luetaan tuloksesta sadasosat tai kerrotaan tulos prosentilla (kolmiossa peitä prosenttiluku eli p, jäljelle jää /a) 25 = 0,2 => 20 % 125 tai 25 * = 20 % 125 2) Verrantoa käyttäen, jolloin määrä ratkaistaan ristiinkertomalla: 125 * x = 25 * => x = 25 * = 20 % 125

3 Esimerkki 3 (kysytään perusarvoa): Mistä hinnasta 22 % on 34 euroa? On taas monta tapaa selvittää vastaus kysymykseen Mistä luvusta? Paljostako? Mistä määrästä? 1) Päättelemällä 22 % on 34 euroa, jolloin 1 % on 34 ja % on 34 * = 154,55 euroa ) Suoraan kaavalla (kolmiossa peitä perusarvo eli a, jäljelle jää /p) Perusarvo = prosenttiarvo prosenttiluku desimaalina 34 = 154,55 euroa 0,22 3) Verrantoa käyttäen, jolloin ratkaisu saadaan ristiin kertomalla: 22 * x = 34 * => x = 34 * = 154,55 euroa 22 4) Yhtälön avulla: 22 % x:stä on 34 euroa eli 0,22X = 34 => x = 34 = 154,55 euroa 0,22 Edellä on esitetty monia tapoja selvittää prosenttiarvo, prosenttiluku ja perusarvo. Kannattaa käyttää sitä tapaa laskea, jonka on jo omaksunut tai joka on itselle helpoimmin omaksuttavissa.

4 Prosenttiosuus Esimerkiksi myynnin rakenteen vaihteluita tai eri tuotteiden määriä seurattaessa ja suunniteltaessa lasketaan usein niiden prosenttiosuuksia kokonaismyynnistä/kokonaismäärästä. Kun tiedetään rahamääräinen myynninjakauma ja niiden yhteissummana kokonaismyynti, on helppo laskea prosentuaalinen jakauma. Vastaavasti kun tiedetään prosentuaalinen jakauma, voidaan selvittää rahamääräinen jakauma kokonaismyynnistä. Esimerkki: Ravintolan arvonlisäveroton kokonaismyynti on kuukaudessa euroa. Selvitä rahamääräinen jakauma kun tiedät, että prosentuaalinen jakauma on seuraava: alko 17,5 % ( * 0,175 = 8 400) olut 23,3 % ( * 0,233 = ) ruoka 51,1 % ( * 0,511 = ) virvoke 6,8 % ( * 0,068 = 3 264) savuke 1,3 % ( *0,013 = 624) Prosentti / prosenttiyksikkö Usein sekoitetaan käsitteet prosentti ja prosenttiyksikkö. Niiden välinen ero selviää parhaiten esimerkin avulla. Esimerkki: Jos maksetut palkat ovat euroa ja henkilösivukulut niistä 25 %, niin henkilösivukulut ovat rahamääräisesti euroa. Laske muutokset seuraavissa tapauksissa: a. henkilösivukulut nousevat 2 prosenttia. henkilösivukulujen osuus nousee 2 prosenttiyksikköä. a * 1,02 = tai * 0,02 = euroa. Lasketaan uusi henkilösivukulujen osuus eli 25 % + 2 prosenttiyksikköä = 27 %. Uudet henkilösivukulut: * 0,27 = euroa

5 Lisätty ja vähennetty arvo Kun tunnetaan prosenttiluku ja perusarvo, kuuluu lisätyn ja vähennetyn arvon laskeminen vielä prosenttilaskun perusasioihin. Ehkä yksinkertaisin tapa sen laskemiseen on käyttää prosenttikerrointa. Esimerkiksi: Työntekijän kuukausipalkka on 1800 euroa ja palkankorotus on 3,2 %. Mikä on uusi palkka? alkuperäinen palkka % = 1 korotus 3,2 % = 0,032 uusipalkka 103,2 % 1,032 Jos korotusta ei haluta/tarvitse laskea erikseen, saadaan korotettu palkka suoraan 1,032 * 1800 euroa = 1857,60 euroa Samalla tavalla voidaan laskea ns. vähennetty arvo. Esimerkiksi ajatellaan, että tuote maksaa 220, josta saa 5 %:n alennuksen. Mikä on tuotteen hinta alennuksen jälkeen? alkuperäinen hinta % = 1 alennus - 5 % = - 0,05 alennettu hinta 95 % 0,95 Jos alennusta ei haluta/tarvitse laskea erikseen, saadaan alennettu hinta suoraan 0,95 * 220 = 209 euroa Peräkkäiset prosenttimuutokset Peräkkäisissä prosenttimuutoksissa muutos toistuu monta kertaa ja muutokset voivat olla joko lisäystä tai vähennystä. Esimerkiksi: Lomamatkan hinta oli aluksi 680 euroa. Sen hinta nousi ensin 12 %, sitten se laski 7,5 % ja lopuksi vielä nousi 25 %. Mikä oli matkan hinta muutosten jälkeen? Jos vain lopullinen hinta kaikkien muutosten jälkeen halutaan selvittää, saadaan muutosten jälkeinen hinta yhdistämällä lisäys- ja vähennyskertoimet 680 * 1,12 * 0,925 * 1,25 = 880,60 euroa

6 Lähtöarvoina vain prosentteja Joissain tapauksissa saattaa olla lähtöarvoina vain prosenttilukuja tai prosenttiyksiköitä. Tällöin prosenttilukujen perusarvoille annetaan keksityt arvot, kuten 1, 10, tai matemaattisesti esimerkiksi x. Esimerkki 1: Keväällä erään matkailupalvelutuotteen hintaa korotetaan 30 % ja syksyllä alennetaan 28 %. kuinka monta prosenttia syksyn hinta on alkuperäistä hintaa korkeampi tai alhaisempi? 1) Olkoon hinta aluksi (alkuperäinen hinta): * 1,3 * 0,72 = 93,60 (syksyn hinta) Kuinka monta prosenttia syksyn hinta on alhaisempi kuin alkuperäinen hinta? 93,60 * 6,4% 2) Olkoon hinta aluksi x (alkuperäinen hinta): x * 1,3 * 0,72 = 0, 936x (syksyn hinta) 0,936x x * 6,4% x Esimerkki 2: (useita muuttuvia arvoja) Kahvilassa kahvikupin hintaa alennettiin 20 %, jonka seurauksena myyntimäärä kasvoi 30 %. Miten muuttui myynnin arvo (yksikköhinta * määrä)? 1) Annetaan taas perusarvoille keksityt alkuarvot (yksikköhinta ja määrä alussa). Hyvä tapa hahmottaa kokonaisuus on koota lukujen arvoja taulukkoon: yksikköhinta määrä myynnin arvo alussa 1 euro kpl euroa - 20% +30% lopussa 0,80 euroa 130 kpl 104 euroa Myynnin arvo kasvaa eurosta 104 euroon, jolloin muutos on prosentteina: 104 * 4% 2) Sama voidaan laskea myös antamalla alkuarvoiksi matemaattisesti esimerkiksi x ja y: yksikköhinta määrä myynnin arvo alussa x y xy - 20% +30% lopussa 0,80x 1,30y 1,04xy Myynnin arvo kasvaa xy:stä 1,04xy:hyn, jolloin muutos on prosentteina:

7 1,04xy xy xy * 4%

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin HAAGA-HELIA MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin Katri Währn Kevät 2012 1 FUNKTIOLASKIMEN KÄYTTÖ Funktiolaskimeen on sisäänrakennettuna laskujärjestelmä eli se osaa laskea kerto-

Lisätiedot

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

(1) Desimaaliluvut ja lukujen pyöristäminen

(1) Desimaaliluvut ja lukujen pyöristäminen (1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden

Lisätiedot

Prosenttilasku-kotitehtäviä 1. Ratkaisuja

Prosenttilasku-kotitehtäviä 1. Ratkaisuja Prosenttilasku-kotitehtäviä 1. Ratkaisuja 1. Italialainen design-laukku maksaa euroa ja vastaava piraattituote 60 euroa. Kuinka monta prosenttia a) design-laukku on piraattilaukkua kalliimpi b) piraattilaukku

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja.

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. 113 11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. Esim. Kun sulatetaan 63 g kuparia ja 37 g sinkkiä, saadaan 100 g messinkiä. 63 100 = 114

Lisätiedot

Kuutio % Kappaleet kertaus

Kuutio % Kappaleet kertaus Kuutio % Kappaleet 1-6 + kertaus % 1 1. Prosentti 1 % = 1 100 = 0,01 Prosentti on sadasosa. 2 % = = 20 % = = Alleviivattu muoto on 200 % = = nimeltään prosenttikerroin Esimerkki 1. Kuinka monta prosenttia

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Jos vaikka kolmosta ei tiedettäisi, sen saisi ratkaisua jakolaskulla

i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Jos vaikka kolmosta ei tiedettäisi, sen saisi ratkaisua jakolaskulla 1 PROSENTTILASKUN PERUSTAPAUKSET 1. Prosenttilaskun perusyhtälö i a = b, jossa i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Kun kaksi kolmesta tunnetaan, voidaan kolmas aina ratkaista

Lisätiedot

6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU

6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU 6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU Murtoluku Sekaluku Osoittaja Nimittäjä Kokonaisosa Murto-osa Murtoluvun muuttaminen Jos murtoluvun osoittaja on suurempi

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Prosentti- ja korkolaskut 1

Prosentti- ja korkolaskut 1 Prosentti- ja korkolaskut 1 Prosentti on sadasosa jostakin, kuten sentti eurosta ja senttimetri metristä. Yksi ruutu on 1 prosentti koko neliöstä, eli 1% Kuinka monta prosenttia on vihreitä ruutuja neliöstä?

Lisätiedot

Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11

Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11 Osa 1: Prosentti Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11 Tehtävä 1: Vastaukset (max. 10 p) Muunna prosenttikertoimeksi. a) 20 %

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26. Alustava aikataulu: ma 9.1 ke 11.1 ma 16.1 ke 18.1 ma 23.1 ke 25.1 ma 30.1 ke 1.2 ma 6.2 ke 8.2

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT: 1 HUOLTOMATEMATIIKKA 1, SISÄLTÖ 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

8 8 x = x. x x = 350 g

8 8 x = x. x x = 350 g PERUSPROSENTTILASKUT Esimerkki. Kuinka paljon koko pitsa painaa? Mistä määrästä 8 % on 28 grammaa? 100 % 8 %? g 28 g % g 8 28 100 x 8 8 x = 100 28 100 28 x 100 28 8 x x = 350 g TEHTÄVIÄ 1. Laske. a) 5

Lisätiedot

matematiikkaa maahanmuuttajille Eeva Rinne

matematiikkaa maahanmuuttajille Eeva Rinne matematiikkaa maahanmuuttajille Eeva Rinne 1 Turun kristillisen opiston oppimateriaaleja -sarja Tekijä: Eeva Rinne Julkaisija: Turun kristillisen opiston säätiö, Lustokatu 7, 20380 Turku. www.tk-opisto.fi

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran / m kertaa vuodessa / jatkuvasti Diskonttaus

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Prosenttikäsite-pelin ohje

Prosenttikäsite-pelin ohje 1(5) Prosenttikäsite-pelin ohje Yksi neljäsosa kakkua Tässä pelissä opitaan yhdistämään * murtoluvun kuva ja sanallinen kuvaus sekä murtolukumerkintä * murto- ja desimaali- sekä %-luvun merkinnät. 0,25

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

AVOIN MATEMATIIKKA Osio 1: Prosentteja

AVOIN MATEMATIIKKA Osio 1: Prosentteja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA Osio 1: Prosentteja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 9. Prosenttikertoimia ja prosenttiosuuksia Prosentteja on käytetty 1600-luvun

Lisätiedot

Matematiikan didaktiikka, osa II Estimointi

Matematiikan didaktiikka, osa II Estimointi Matematiikan didaktiikka, osa II Estimointi Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Arviointi Arvionti voidaan jakaa kahteen osaan; laskutoimitusten lopputulosten arviointiin ja arviontiin

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

MERIMIESELÄKELAIN (1290/2006) 202 :n MUKAISET VAKUUTUSTEKNISEN VASTUUVELAN LASKUPERUSTEET JA PERUSTEET 153 :n MUKAISTA VASTUUNJAKOA VARTEN

MERIMIESELÄKELAIN (1290/2006) 202 :n MUKAISET VAKUUTUSTEKNISEN VASTUUVELAN LASKUPERUSTEET JA PERUSTEET 153 :n MUKAISTA VASTUUNJAKOA VARTEN /4 MEIMIESELÄKELAIN (90/006) 0 :n MUKAISE AKUUUSEKNISEN ASUUELAN LASKUEUSEE JA EUSEE 53 :n MUKAISA ASUUNJAKOA AEN Kokooma 0..05 iimeisin kokoomaan sisällytetty perustemuutos on ahistettu 9..04 sosiaali-

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset

Lisätiedot

Vastaukset. 1. a) 5 b) 4 c) 3 d) a) x + 3 = 8 b) x - 2 = -6 c) 1 - x = 4 d) 10 - x = a) 4 b) 3 c) 15 d) a) 2x. c) 5 3.

Vastaukset. 1. a) 5 b) 4 c) 3 d) a) x + 3 = 8 b) x - 2 = -6 c) 1 - x = 4 d) 10 - x = a) 4 b) 3 c) 15 d) a) 2x. c) 5 3. Vastaukset. a) 5 b) 4 c) d) -. a) x + = 8 b) x - = -6 c) - x = 4 d) 0 - x =. a) 4 b) c) 5 d) 8 4. a) x 8 b) 5x 5 x c) 5 x d) 6 5. a) kyllä b) ei c) kyllä d) ei 6. a) x x x b) x x x 0 0 0 x c) x x x x 00

Lisätiedot

Matematiikan didaktiikka, osa II Prosentin opettaminen

Matematiikan didaktiikka, osa II Prosentin opettaminen Matematiikan didaktiikka, osa II Prosentin opettaminen Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Prosentti Prosentti on arkielämän matematiikkaa. Kuitenkin prosenttilaskut ovat oppilaiden mielestä

Lisätiedot

KORJAUSMATIIKKA 3, MATERIAALI

KORJAUSMATIIKKA 3, MATERIAALI 1 SISÄLTÖ KORJAUSMATIIKKA, MATERIAALI 1) Potenssi ) Juuri ) Polynomit 4) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa (tehtävissä esitellään myös. asteen yhtälön ratkaisu)

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

AUTO- JA KORJAAMOALAN TYÖEHTOJEN PALKARAKENNE 2000

AUTO- JA KORJAAMOALAN TYÖEHTOJEN PALKARAKENNE 2000 1 (7) AUTO- JA KORJAAMOALAN TYÖEHTOJEN PALKARAKENNE 2000 LASKENTAOHJE 2011 2013 1 PALKANKOROTUKSET Palkkojen korotukset ja tarkistukset Palkkojen korottaminen 1.10.2011 Henkilökohtaisia aika-, kuukausi

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Vanhempainpäivärahan määrän laskurin ohje

Vanhempainpäivärahan määrän laskurin ohje Vanhempainpäivärahan määrän laskurin ohje Vanhempainpäivärahan yleisistä perusteista saat tarkempaa tietoa Lapsiperheet-sivuilta sekä Kelan toimistoista. Päivärahan määrä lasketaan pääsääntöisesti henkilön

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Tikkurila. Osavuosikatsaus tammi-maaliskuulta 2012. Toimitusjohtaja Erkki Järvinen ja CFO Jukka Havia

Tikkurila. Osavuosikatsaus tammi-maaliskuulta 2012. Toimitusjohtaja Erkki Järvinen ja CFO Jukka Havia Tikkurila Osavuosikatsaus tammi-maaliskuulta 212 Toimitusjohtaja Erkki Järvinen ja CFO Jukka Havia Huomautus Kaikki tässä katsauksessa esitetyt yritystä tai sen liiketoimintaa koskevat lausumat perustuvat

Lisätiedot

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa Harjoituksia 9 Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa 1. Kirjoita yhtälö ja ratkaise x. a) lukujen x ja 6 summa on yhtä suuri kuin lukujen x ja 4 tulo. b) Kun luku x kerrotaan kolmella

Lisätiedot

TEA»:;llis usalojen ammattiliitto

TEA»:;llis usalojen ammattiliitto TEAM Teollisuusalojen ammattiliitto ry Saa te 2 (2) Edunvalvontaosasto/Petri Ahokas/ssi 11.11.2015 Palkantarkistusten toteuttaminen Uusien urakoiden laskenta-aikaa varataan helmikuun 2016 loppuun asti.

Lisätiedot

1 Prosenttilaskenta ja verotus 3. 2 Hinnat ja rahan arvo 21. Indeksit 21 Euro ja muut valuutat 36 Kertaustehtäviä 43. 3 Lainat ja talletukset 48

1 Prosenttilaskenta ja verotus 3. 2 Hinnat ja rahan arvo 21. Indeksit 21 Euro ja muut valuutat 36 Kertaustehtäviä 43. 3 Lainat ja talletukset 48 Sisällysluettelo 1 Prosenttilaskenta ja verotus 3 Prosenttilaskenta 3 Verotus 12 Kertaustehtäviä 19 2 Hinnat ja rahan arvo 21 Indeksit 21 Euro ja muut valuutat 36 Kertaustehtäviä 43 3 Lainat ja talletukset

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu Pilkeyrityksen liiketoimintaosaamisen kehittäminen Timo Värre Jyväskylän ammattikorkeakoulu 1 Talouden hallinnan keskeiset osat Tulevaisuus Pitääkö kasvaa? KASVU KANNATTAVUUS Kannattaako liiketoiminta?

Lisätiedot

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. 3 1 3 ja 1. Laske lukujen 4 summa b. erotus c. tulo d. osamäärä e. käänteislukujen

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Sairauspäivärahan määrän laskennan ohje

Sairauspäivärahan määrän laskennan ohje Sairauspäivärahan määrän laskennan ohje Sairauspäivärahan yleisistä perusteista saat tarkempaa tietoa Kun sairastat -sivuilta sekä Kelan toimistoista. Päivärahan määrä lasketaan pääsääntöisesti henkilön

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan

Lisätiedot

Desimaaliluvut, mitä ne oikeastaan ovat?

Desimaaliluvut, mitä ne oikeastaan ovat? Desimaaliluvut, mitä ne oikeastaan ovat? Matti Lehtinen Desimaaliluvut ovat niin jokapäiväisiä ja niillä laskemiseen niin totuttu, ettei yleensä tule miettineeksi, mitä ne oikeastaan ovat. Joskus kauan

Lisätiedot

HELSINGIN KAUPUNKI ESITYSLISTA Suj/1 1 JOUKKOLIIKENNELAUTAKUNTA 18.3.2008

HELSINGIN KAUPUNKI ESITYSLISTA Suj/1 1 JOUKKOLIIKENNELAUTAKUNTA 18.3.2008 HELSINGIN KAUPUNKI ESITYSLISTA Suj/1 1 1 JOUKKOLIIKENTEEN TARIFFIPOLITIIKKA HELSINGISSÄ HKL Tausta Helsingin kaupunki tukee joukkoliikennettä vuosittain yli 100 miljoonalla eurolla, jolla katetaan hieman

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Palkkaratkaisu syksy 2012. Info syksy 2012 1

Palkkaratkaisu syksy 2012. Info syksy 2012 1 Palkkaratkaisu syksy 2012 Info syksy 2012 1 Palkkaratkaisusta neuvotellaan paikallisesti Neuvottelut aidosti työpaikkatasolla tiedetään menestystekijät, vaatimukset, muutospaineet palkkaratkaisu mitoitetaan

Lisätiedot

2. Luvut. 3 pullollista, joten Timo tarvitsee 25 pulloa litrasta saadaan 17 24, 186. a) 4

2. Luvut. 3 pullollista, joten Timo tarvitsee 25 pulloa litrasta saadaan 17 24, 186. a) 4 LISÄTEHTÄVÄT. Luvut. Kokonaisluvun n tekijät löydetään jakamalla n yksi kerrallaan kaikilla kokonaisluvuilla ykkösestä suurimpaan mahdolliseen kokonaislukuun, joka on korkeintaan n. Jos jakolasku menee

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

TEHTÄVIEN RATKAISUT. Luku

TEHTÄVIEN RATKAISUT. Luku TEHTÄVIEN RATKAISUT Luku 3.1 137. 138. a) Yhtiövastikkeesta on rahoitusvastiketta 40 % ja hoitovastiketta 60 %. Ilmaistaan 60 % desimaalilukuna. 60 % = 0,60 Lasketaan hoitovastikkeen määrä euroina. 0,60

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Henkilökohtaisia aika-, kuukausi ja suorituspalkkoja korotetaan 1,6 % suuruisella yleiskorotuksella.

Henkilökohtaisia aika-, kuukausi ja suorituspalkkoja korotetaan 1,6 % suuruisella yleiskorotuksella. AUTOALAN KESKUSLIITTO RY 11.11.2011 METALLITYÖVÄEN LIITTO RY AUTO- JA KORJAAMOALAN TYÖEHTOJEN PALKARAKENNE 2000 LASKENTAOHJE 2011 2013 PALKANKOROTUKSET Palkkojen korotukset ja tarkistukset Palkkojen korottaminen

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

Ma9 Lausekkeita ja yhtälöitä II

Ma9 Lausekkeita ja yhtälöitä II Ma9 Lausekkeita ja yhtälöitä II H Potenssit, juuret ja prosentit. Onko potenssin arvo positiivinen vai negatiivinen, jos potenssin kantaluku on negatiivinen ja eksponentti on parillinen pariton?. Kirjoita

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

Prosenttilaskentaa osa 2

Prosenttilaskentaa osa 2 Prosenttilaskentaa osa 2 % 1 9. Perusarvon laskeminen Perusarvo = alkuperäinen arvo Esimerkki 1. Mikä on a) luku, josta 72 % on 216 b) aika, josta 40 % on 38 min c) matka, josta 5 % on 400 m Esimerkki

Lisätiedot

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla 1. Tehtävänanto Pohdi kuinka opettaisit yläasteen oppilaille murtolukujen peruslaskutoimitukset { +, -, *, / } Cuisenairen lukusauvoja apuna

Lisätiedot

Tikkurila. Osavuosikatsaus tammi-syyskuulta 2012. Toimitusjohtaja Erkki Järvinen ja CFO Jukka Havia

Tikkurila. Osavuosikatsaus tammi-syyskuulta 2012. Toimitusjohtaja Erkki Järvinen ja CFO Jukka Havia Tikkurila Osavuosikatsaus tammi-syyskuulta 2012 Toimitusjohtaja Erkki Järvinen ja CFO Jukka Havia Huomautus Kaikki tässä esityksessä esitetyt yritystä tai sen liiketoimintaa koskevat lausumat perustuvat

Lisätiedot

Erilaisten osuuksien kuvaamiseen ja vertaamiseen käytetään prosenttia eli sadasosaa

Erilaisten osuuksien kuvaamiseen ja vertaamiseen käytetään prosenttia eli sadasosaa PROSENTTILASKENTAA 1. Prosentti Erilaisten osuuksien kuvaamiseen ja vertaamiseen käytetään prosenttia eli sadasosaa Prosentin merkitsemiseen käytetään yleensä prosenttimerkkiä %. 1. Prosenttiluku muutetaan

Lisätiedot

AMMATILLINEN OPETTAJAKORKEAKOULU

AMMATILLINEN OPETTAJAKORKEAKOULU Tampereen ammattikorkeakoulu AMMATILLINEN OPETTAJAKORKEAKOULU Opettajankoulutuksen kehittämishanke Matematiikan osaaminen peruskoulun jälkeen Tarja Puurunen 007 PUURUNEN TARJA: Matematiikan osaaminen peruskoulun

Lisätiedot

Ravintoloiden ruokapalveluiden alv-alennus ja hintakehitys vuonna 2010

Ravintoloiden ruokapalveluiden alv-alennus ja hintakehitys vuonna 2010 Ravintoloiden ruokapalveluiden alv-alennus ja hintakehitys vuonna 2010 20.4.2011 ARI PELTONIEMI Tutkimuksen taustaa VEROMUUTOS Ravintoloiden ruokapalveluiden alv 22 prosentista 13 prosenttiin 1.7.2010.

Lisätiedot

Javan perusteet. Ohjelman tehtävät: tietojen syöttö, lukeminen prosessointi, halutun informaation tulostaminen tulostus tiedon varastointi

Javan perusteet. Ohjelman tehtävät: tietojen syöttö, lukeminen prosessointi, halutun informaation tulostaminen tulostus tiedon varastointi 1 Javan perusteet Ohjelmointi IPO-malli Java lähdekoodista suoritettavaksi ohjelmaksi Vakio Muuttuja Miten Javalla näytetään tietoa käyttäjälle, miten Javalla luetaan käyttäjän antama syöte Miten Javalla

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen

Lisätiedot

3. PROSENTTI JA GEOMETRINEN LUKUJONO

3. PROSENTTI JA GEOMETRINEN LUKUJONO . PROSENTTI JA GEOMETRINEN LUKUJONO. Prosenttikerroin LUO PERUSTA 0. a) 56 % = 0,56 b) 0, % = 0,00 c),9 % = 0,09 d) 0 % =, Vastaus: a) 0,56 b) 0,00 c) 0,09 d), 0. A: 00 % + 5 % = 05 % =,05 = 05. Vaihtoehdot

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

Valtion eläkemaksun laskuperusteet 2010

Valtion eläkemaksun laskuperusteet 2010 VALTIOKONTTORI PÄÄTÖS Dnro 3/30/2010 Valtion eläkemaksun laskuperusteet 2010 Valtiokonttori on 15.1.2010 hyväksynyt nämä laskuperusteet noudatettavaksi laskettaessa valtion eläkelaissa tarkoitettuja työnantajan

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

Opetus- ja kulttuuriministeriö LAUSUNTO Yleissivistävän koulutuksen ja varhais- 22.4.2016 kasvatuksen osasto. Sosiaali- ja terveysvaliokunta 26.4.

Opetus- ja kulttuuriministeriö LAUSUNTO Yleissivistävän koulutuksen ja varhais- 22.4.2016 kasvatuksen osasto. Sosiaali- ja terveysvaliokunta 26.4. Opetus- ja kulttuuriministeriö LAUSUNTO Yleissivistävän koulutuksen ja varhais- 22.4.2016 kasvatuksen osasto Sosiaali- ja terveysvaliokunta 26.4.2016 Hallituksen esitys eduskunnalle laeiksi varhaiskasvatuksen

Lisätiedot

PALKANSAAJAN VEROTUS JA OSTOVOIMA 2000-2015

PALKANSAAJAN VEROTUS JA OSTOVOIMA 2000-2015 PALKANSAAJAN VEROTUS JA OSTOVOIMA 2000-2015 1 27.11.2013 1) Palkka 2) Verotus 3) Hinnat PALKANSAAJAN OSTOVOIMAAN VAIKUTTAVAT TEKIJÄT keskituloinen palkansaaja, palkka v. 2013: 39.745 /v (3180 /kk) vuosittainen

Lisätiedot

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista %

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista % Veroilmoituksesta laskettavat tunnusluvut Heikki Ollikainen, ProAgria Oulu Nopea tuloksen analysointi on mahdollista tehdä laskelmalla veroilmoituksesta muutamia yksinkertaisia tunnuslukuja, joiden perusteella

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 MFKA-Kustannus Oy Rautatieläisenkatu 6, 0020 HELSINKI, puh. (09) 102 378 http://www.mfka.fi Peruskoulun

Lisätiedot

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9 Sisällysluettelo 1 Laskutoimituksia 3 Peruslaskutoimitukset luvuilla 3 Peruslaskutoimitukset polynomeilla 5 Prosentti 7 Prosenteilla vertaaminen 9 Kuvaaminen koordinaatistossa 11 2 Lausekkeesta yhtälöksi

Lisätiedot

KVTES-neuvottelutulos 24.10.2013. Valtuusto 25.10.2013 Jukka Maarianvaara

KVTES-neuvottelutulos 24.10.2013. Valtuusto 25.10.2013 Jukka Maarianvaara KVTES-neuvottelutulos 24.10.2013 Valtuusto 25.10.2013 Jukka Maarianvaara Sopimuksen sisältö Voimassaoloaika tupon mukaan: 22+13 kk Ensimmäinen jakso 1.3.2014 31.12.2015 Toinen jakso 1.1.2016 31.1.2017

Lisätiedot

Esityksessä ehdotetaan muutettavaksi maatalousyrittäjien

Esityksessä ehdotetaan muutettavaksi maatalousyrittäjien 1993 vp - HE 148 Hallituksen esitys Eduskunnalle laiksi maatalousyrittäjien tapaturmavakuutuslain 15 :n muuttamisesta ESITYKSEN PÄÄASIALLINEN SISÄLTÖ Esityksessä ehdotetaan muutettavaksi maatalousyrittäjien

Lisätiedot

Kuopion kaupunki Pöytäkirja 7/2013 1 (1) Kuopion kaupunkiseudun joukkoliikennelautakunta 44 28.11.2013. 44 Asianro 3719/08.01.

Kuopion kaupunki Pöytäkirja 7/2013 1 (1) Kuopion kaupunkiseudun joukkoliikennelautakunta 44 28.11.2013. 44 Asianro 3719/08.01. Kuopion kaupunki Pöytäkirja 7/2013 1 (1) 44 Asianro 3719/08.01.00/2012 Kuopion ja Siilinjärven maaseutuliikenteen lippujen hinnoittelu 1 Hinnoittelun periaatteet Suunnittelupäällikkö Mervi Heiskanen Kaupunkiympäristön

Lisätiedot

Kuntasopimus 2014-2017

Kuntasopimus 2014-2017 Kuntasopimus 2014-2017 29.10.2013 Sopimuksen sisältö Voimassaoloaika tupon mukaan: 22+13 kk Ensimmäinen jakso 1.3.2014 31.12.2015 Toinen jakso 1.1.2016 31.1.2017 2014 korotus 20 euroa 1.7.2014 Peruspalkkoihin

Lisätiedot