Päättöarvioinnin kriteerit arvosanalle hyvä (8)
|
|
- Eeva Salo
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri elämäntilanteissa sekä luovat riittävän pohjan jatko-opinnoille. Matematiikan eksaktisuus ja tulosten johdonmukaisuus ohjaavat täsmälliseen ja loogiseen ajatteluun sekä asioiden selkeään esittämiseen suullisesti ja kirjallisesti. Oppilaan tulee saada kuva matematiikan merkityksestä päivittäisessä elämässä ja tiedonvälityksessä sekä toisaalta matematiikasta voimakkaasti kehittyvänä, uusiutuvana ja uutta luovana tieteenalana. TOIMINTA-AJATUS Matematiikka on hyvin kokonaisvaltaista. Sen sisältöjä on hankala pilkkoa tarkasti eri vuosiluokille. Aikaisemmin opittu on aina oleellinen osa uuden oppiaineksen sisältöä. Ylemmillä luokilla pienetkin puutteet (esim. kertotaulun puutteellinen hallinta) voivat estää uusien asioiden oppimista. Oppilaille tulisi järjestää mahdollisuus näiden puutteiden korjaamiseen. Sen pitäisi tapahtua kehittämällä opiskeluympäristöä materiaalisesti, ryhmäkokoa rajaamalla, antamalla tarvittava määrä tukiopetusta ja kehittämällä erityisopetusta. TYÖTAVOISTA Oppimistilanteet pyritään rakentamaan keskustelunomaisiksi, kokeileviksi ja konkreettiseen havaintoon perustuviksi, jolloin saavutetaan ulkomuistiin perustuvaa oppimista syvempiä tuloksia. Ongelmanratkaisu on keskeisellä sijalla tiedon hankkimisessa ja soveltamisessa. Opiskelussa on keskeistä oikeiden menetelmien löytäminen, niiden matemaattisesti oikein toteuttaminen sekä tulosten arviointi ja oikeassa muodossa esittäminen. Oppilasta tuetaan ymmärtämään matematiikan osaamisen merkitys ja pitkäjänteisen työskentelyn avulla vähitellen saatujen tietojen ja taitojen jäsentyminen käyttökelpoiseksi rakennelmaksi. Joustavalla ryhmityksellä ja valinnaisuudella pyritään oppijan aktiivisen ja itsenäisen opiskeluotteen tukemiseen kunkin oppijan edellytysten mukaisesti. Arviointi Arviointi perustuu luokilla opetushallituksen julkaisemiin päättöarvioinnin kriteereihin. Niitä sovelletaan lukuvuosittain, ottaen samalla huomioon oppilaan kehittyminen myös niiltä osin, jossa kurssiin sisältyy aikaisempien kurssien sisältöä. Tarkat kriteerit arvosanalle 8 on lueteltu aihepiireittäin kunnan opetussuunnitelmassa Päättöarvioinnin kriteerit arvosanalle hyvä (8) Ajattelun taidot ja menetelmät Oppilas huomaa eri tapauksien yhtäläisyydet ja säännönmukaisuudet osaa käyttää puheessaan loogisia elementtejä kuten ja, tai, jos niin, ei, on olemassa, ei ole olemassa osaa päätellä yksinkertaisten väitelauseiden totuusarvon osaa muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden osaa käyttää luokittelua matemaattisten ongelmien ratkaisuissa osaa esittää järjestelmällisesti mahdolliset ratkaisuvaihtoehdot taulukkoa, puu-, polku- tai muuta diagrammia käyttäen.
2 Luvut ja laskutoimitukset arvioida mahdollista tulosta sekä laatia suunnitelman laskun ratkaisemisesta ja hänellä on luotettava peruslaskutaito korottaa luvun potenssiin, jonka eksponenttina on luonnollinen luku ja pystyy jakamaan luvun alkutekijöihinsä. ratkaista tehtäviä, joissa tarvitaan neliöjuurta käyttää verrantoa, prosenttilaskua ja muita laskutoimituksia arkielämässä eteen tulevien ongelmien ratkaisemisessa. Algebra ratkaista ensimmäisen asteen yhtälön sieventää yksinkertaisia algebrallisia lausekkeita potenssien laskutoimitukset muodostaa yksinkertaisesta arkielämään liittyvästä ongelmasta yhtälön ja ratkaista sen algebrallisesti tai päättelemällä käyttää yhtälöparia yksinkertaisten ongelmien ratkaisemiseen arvioida tuloksen järkevyyttä sekä tarkastaa ratkaisunsa eri vaiheet. Funktiot Oppilas osaa määrittää pisteen koordinaatit koordinaatistosta osaa laatia taulukon lukupareista annetun säännön mukaan osaa etsiä lineaarisen funktion nollakohdan osaa jatkaa lukujonoa annetun säännön mukaan ja pystyy kertomaan sanallisesti yleisen säännön annetun lukujonon muodostumisesta tietää suoran yhtälön kulmakertoimen ja vakion merkityksen; hän osaa määrittää kahden suoran leikkauspisteen piirtämällä. Geometria tunnistaa eri geometriset muodot ja tuntee niiden ominaisuudet soveltaa oppimiansa piirin, pinta-alan ja tilavuuden laskutapoja käyttää harppia ja viivoitinta yksinkertaisten geometristen konstruktioiden tekemiseen löytää yhdenmuotoisia ja yhteneviä sekä symmetrisiä kuvioita ja pystyy soveltamaan tätä taitoa kolmioiden ja nelikulmioiden ominaisuuksien tutkimisessa soveltaa kahden kulman välisiä yhteyksiä yksinkertaisissa tilanteissa käyttää Pythagoraan lausetta ja trigonometriaa suorakulmaisen kolmion osien ratkaisemiseen suorittaa mittauksia ja niihin liittyviä laskelmia sekä muuntaa tavanomaisimpia mittayksiköitä. Todennäköisyys ja tilastot määrittää mahdollisten tapausten lukumäärän ja järjestää yksinkertaisen empiirisen tutkimuksen todennäköisyydestä; hän ymmärtää todennäköisyyden ja satunnaisuuden merkityksen arkielämän tilanteissa lukea erilaisia taulukoita ja diagrammeja ja määrittää annetusta aineistosta frekvenssit, keskiarvon, mediaanin ja tyyppiarvon. Oppimista arvioidaan monipuolisesti mm. summatiivisilla kokeilla ja opinnäytetöillä. tuntityöskentelyä ja kotitehtäviä seuraamalla. itsearvioinnilla. Arvioinnissa huomioidaan samalla oppilaiden asenne työskentelyyn ja harrastuneisuus. Oppilaalle annetaan palautetta numeroarvioinnilla ja sanallisesti.
3 TIETOTEKNIIKAN KÄYTTÖ 7. LUOKKA SISÄLLÖT Tietotekniikkaa voidaan käyttää vuorovaikutteisten ohjelmien avulla harjaannuttamaan oppilaiden taitoja matematiikan eri osa-alueilla ja tietokone voi toimia apuvälineenä määrättäessä erilaisia kuvaajia selventämään matemaattisten funktioiden käyttäytymistä. Kokonaisvaltaisesti tietotekniikkaa voidaan hyödyntää tilastojen käsittelyssä - nykyisin yhä tärkeämmäksi käyvä tietojenkäsittelyn osa-alue. Siinä tietoverkot mahdollistavat tilastoaineksen saannin ja tietokone käsittelee sen käyttökelpoiseen muotoon. 1. Kurssi Numeroista lukuja kokonaisluvut sekä niiden peruslaskutoimitukset, vastaluku ja itseisarvo monikerrat, jaollisuus, tekijöihin jakaminen ja alkuluvut summa ja erotus, lausekkeen sieventäminen, tulo ja osamäärä kertolaskun ja potenssin välinen yhteys, luvun eksponenttiesitys laskujärjestys, desimaaliluvut ja likiarvolaskut 2. kurssi Pisteistä kuvioita ja kappaleita geometrian peruskäsitteet, ympyrä, kulma leikkaavat suorat, koordinaatisto monikulmiot, kolmiot, nelikulmiot yksiköt ja pyöristäminen piirit ja pinta-alat, taso- ja avaruuskuvioita 3. kurssi Luvuista kirjaimiin: lukujonot kirjainlauseke ja sen arvo termien yhdistäminen ja kertominen ja jakaminen luvulla yhtälö ja sen ratkaisu yhtälön sovellukset 8. LUOKKA 7. Luokan aikana oppilas: selviää peruslaskutoimituksista itsenäisesti osaa tulkita lukuarvojen suuruuksia ja niiden muutoksia myös negatiivisten lähtöarvojen pohjalta. osaa ratkaista itsenäisesti yksinkertaisia yhtälöitä osaa muodostaa sanallisista perusteista yksinkertaisia matemaattisia lausekkeita osaa piirtää ja nimetä geometrian peruskuvioita osaa tehdä kuvioissa perusmittauksia ja tuntee mittayksiköt 4. kurssi Lukuja ja prosentteja rationaaliluvut murtolukujen peruslaskutoimitukset prosenttikäsite prosenttilaskua, kun perusarvo on tunnettu prosenttilaskun sovellutuksia, alennus, korotus, ja muutos- ja vertailuprosentti sekä verotus korkolaskuja
4 5. kurssi Kirjaimilla laskeminen samankantaisten potenssien tulo ja osamäärä, suurien ja pienien lukujen esitys polynomin käsite ja polynomin arvo polynomien yhteen ja vähennyslasku polynomin kertominen monomilla murtoluvut yhtälöissä suhde ja verranto, suora- ja käänteinen verrannollisuus suoran yhtälö 6. kurssi Kuvioiden ominaisuuksia yhtenevyys, symmetria pisteen ja suoran suhteen siirto ja kierto yhdenmuotoisuus ja mittakaava suorakulmainen kolmio ja Pythagoraan lause sovellutuksineen ympyrän kehä ja kaaren pituus ympyrän ja sektorin pinta-ala ympyrän kulmia 9. LUOKKA 8. Luokan aikana oppilas: osaa laskea itsenäisesti yksinkertaisia prosenttilaskuja ja niiden sovellutuksena korotuksia alennuksia ja vero-osuuksia osaa muodostaa ja laskea yksinkertaisia matemaattisia riippuvuuksia osaa tulkita verrannollisuutta yksinkertaisemmissa sovellutuksissa, kuten moninkertaistuminen tai osittuminen osaa ohjattuna laskea kursseissa esiintyviä ympyrän osia osaa ohjattuna laskea yksinkertaisia Pythagoraan lauseeseen liittyviä mittoja 7. kurssi Muuttujien välinen yhteys funktion käsite riippuvuus koordinaatistossa, suoran yhtälö ja sen ratkaisematon muoto erilasia riippuvuuksia kuvaajien piirtäminen ja tulkinta yhtälön ratkaisu yhtälöpari sen ratkaiseminen piirtämällä ja laskemalla yhtälöparin sovelluksia 8. kurssi Kuvioita ja kappaleita yhdenmuotoiset kolmiot trigonometriset funktiot kolmioiden osien ratkaiseminen trigonometrian avulla avaruuskappaleita lieriön vaippa, pinta-ala ja tilavuus kartion vaippa, pinta-ala ja tilavuus pallon pinta-ala ja tilavuus yhdistettyjä kappaleita 9. kurssi Kohti jatko-opintoja laskulait, lukujoukot ja välit polynomilausekkeiden sieventäminen polynomien tulo ja muistikaavat polynomin jakaminen tekijöihin tulon ja osamäärän potenssi, potenssin potenssi
5 yhtälöiden ja kaavioiden käyttöä, tekijäyhtälöt eriyttäviä tehtäviä eri aloilta: mm. terveys, harrastus, liikenne ja kauppa 10. Kurssi Tilastot ja todennäköisyys kuvien ja kaavioiden tulkintaa, kokonaisuuden jakaminen osiin tietojen kerääminen ja taulukointi, kaavioiden piirtäminen ja luokittelu tilastollisia tunnuslukuja erilaisten vaihtoehtojen lukumäärä todennäköisyyskäsite, klassinen todennäköisyys ongelmanratkaisua 9. Luokan aikana oppilas: osaa ohjattuna laskea kaavan perusteella kappaleiden ja pallon alat ja tilavuudet osaa ohjattuna muodostaa ja ratkaista yksinkertaisia yhtälöpareja osaa laskea potenssilaskuja numeerisilla arvoilla esim. annetuissa kaavoissa kykenee arvioimaan saamiensa tulosten järkevyyden osaa merkitä lukupareja koordinaatistoon osaa ohjattuna laatia yksinkertaisia kuvaajia ja osaa jonkin verran tulkita niitä AIHEKOKONAISUUDET Sovellutusten joukossa on aina malleja, jotka sisältävät aihekokonaisuuksien piiriin liittyviä aiheita. Itse aihekokonaisuuksista matemaattista aineistoa sisältäviä osia ovat mm. Ihmisenä kasvaminen: matematiikka tarjoaa mallin loogisesta ajattelusta ja määrätietoisesta itsensä ja yhteistoimintatapojen kehittämisestä. Viestintä ja mediataidot: viestintätekniikan pohjana on matemaattinen logiikka. Kuluttaja ja elämänhallinta: matematiikka tarjoaa työvälineet ja mallit oman talouden ja tulevaisuuden hallintaan Ihminen ja teknologia: liikenteen ja luonnontieteen tuloksia sovelletaan matematiikan avulla.
Matematiikka vuosiluokat 7 9
Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa
KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.
VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla
7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen
Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:
9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti
OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA
OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä
7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti.
7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet
MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta
Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan
Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei
Matematiikka. Aineen kuvaus
Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan
Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9
Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle
MATEMATIIKKA/Vuosiluokat 7-9
MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden
Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen
Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja
S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille
MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla
7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan
MAS- linjan matematiikan kurssit
Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan
3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku
5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään
6. luokka 7. luokka. 6. luokka 7. luokka
VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan
Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.
Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5
MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen
MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin
Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa
Matematiikka 7-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
Matematiikka VUOSILUOKKA 3. Ylöjärven opetussuunnitelma 2004
Ylöjärven opetussuunnitelma 2004 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen
5.6.3 Matematiikan lyhyt oppimäärä
5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa
Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas
Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Perusopetuksen opetussuunnitelman perusteet 2014 matematiikassa vuosiluokilla 7 9
Perusopetuksen opetussuunnitelman perusteet 2014 matematiikassa vuosiluokilla 7 9 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista
PERUSKOULUSTA PITKÄLLE
Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS
7 Matematiikka. 3. luokka
7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.
1 lk Tavoitteet. 2 lk Tavoitteet
MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
MATEMATIIKKA. Oppiaineen tehtävä
1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle
Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään
6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat
EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden
1 PROSENTTILASKENTAA 7
SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö
Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys
Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut
Tavoite T2 kannustaa oppilasta ottamaan vastuuta matematiikan oppimisesta sekä yksin että yhdessä toimien
Tavoite 5 6 7 8 9 10 T2 kannustaa ottamaan vastuuta oppimisesta sekä yksin että yhdessä toimien on läsnä oppitunnilla. ottaa vastuuta omasta oppimisestaan. ottaa vastuuta omasta oppimisestaan ja kykenee
Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun
Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen
1 PROSENTTILASKENTAA 7
SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö
PII JA OPETUSSUUNNITELMAN PERUSTEET
PII JA OPETUSSUUNNITELMAN PERUSTEET Yläkoulun matematiikan oppimateriaali Pii noudattaa uuden opetussuunnitelman perusteita. Sarja tarjoaa kaikille oppijoille oman taitotasonsa mukaisia haasteita ja myönteisiä
matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117
MATEMATIIKKA VUOSILUOKAT 7-9
MATEMATIIKKA VUOSILUOKAT 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matematiikan opetuksen tehtävänä on vahvistaa matemaattista yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden
MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä
MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen
Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään
101 7.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty )
MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty 16.12.2015) Merkitys, arvot ja asenteet T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä
Rauman normaalikoulun opetussuunnitelma 2016 Matematiikka vuosiluokat 1-9
2016 Matematiikka vuosiluokat 1-9 Rauman normaalikoulun opetussuunnitelma Matematiikka vuosiluokat 1-2 Rauman normaalikoulun matematiikan opetuksen pohjana ovat perusopetuksen opetussuunnitelman perusteiden
MATEMATIIKKA. Oppiaineen tehtävä
14.4.4 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
PITKÄ MATEMATIIKKA. Pakolliset kurssit
13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan
Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio
Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun
1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä
MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen
Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere
MATEMATIIKKA Helsingin normaalilyseo elina.mantere@helsinki.fi OPPIAINEEN TEHTÄVÄ Kehittää loogista, täsmällistä ja luovaa matemaattista ajattelua. Luoda pohja matemaattisten käsitteiden ja rakenteiden
Matematiikka. 1. luokka 2. luokka. yksinumeroinen - kaksinumeroinen - lukujonoja, hajottaminen ja kokoaminen kolminumeroinen konkreettisin välinein
40 Matematiikka 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien
MATEMATIIKKA. Oppiaineen tehtävä
MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua sekä vahvistaa matemaattista yleissivistystä. Opetuksessa
Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta
Espoon suomenkielisen perusopetuksen opetussuunnitelma Luvut 13 15 OPPIAINEIDEN OPETUSSUUNNITELMAT Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto,
Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet
9.2.4. Matematiikka Koulumme matematiikan opetus antaa oppilaalle välineitä ja taitoja ratkaista arkipäivän ongelmia matemaattisen ajattelun avulla. Opetus tarjoaa oppilaalle välineen oppia tunnistamaan
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
15. Suorakulmaisen kolmion geometria
15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen
MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa
Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS
Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja
Koontitehtäviä luvuista 1 9
11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:
Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.
MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan
1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9
Sisällysluettelo 1 Laskutoimituksia 3 Peruslaskutoimitukset luvuilla 3 Peruslaskutoimitukset polynomeilla 5 Prosentti 7 Prosenteilla vertaaminen 9 Kuvaaminen koordinaatistossa 11 2 Lausekkeesta yhtälöksi
Matematiikka 5. luokka
Matematiikka 5. luokka Hyvä osaaminen 6. luokan päättyessä on lihavoitu. Vuosiluokan hyvä osaaminen on alleviivattu. T2 Ohjata oppilasta havaitsemaan yhteyksiä oppimiensa asioiden välillä Harjoittelen
Matemaattisten menetelmien hallinnan tason testi.
Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa
Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta
Matematiikan pitkä oppimäärä
Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän
Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!
Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen
2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
Kemia. Perusteluonnoksen 15.4.2014 pohjalta. Hannes Vieth Helsingin normaalilyseo
Kemia Perusteluonnoksen 15.4.2014 pohjalta Hannes Vieth Helsingin normaalilyseo OPPIAINEEN TEHTÄVÄ Kemian opetus tukee oppilaan luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä. auttaa ymmärtämään
Peruslaskutoimitukset Mittayksiköiden muunnokset Geometria Talousmatematiikka
Työpaja Junki, Kauhava Työpajan puuosasto Matemaattis-luonnontieteellinen osaaminen pakolliset osaamistavoitteet, 4 osp (voimaan 1.8.2018) Peruslaskutoimitukset Mittayksiköiden muunnokset Geometria Talousmatematiikka
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Vetelin kunta Oppimisen seurantalomake 0-2 lk
Vetelin kunta Oppimisen seurantalomake 0-2 lk Koulu: Oppilas: ÄIDINKIELI Lukeminen 20. Luet kokonaisia kirjoja. 19. Osaat tehdä johtopäätöksiä lukemastasi. 18. Löydät lukemastasi tarvittavia tietoja. 17.
I Geometrian rakentaminen pisteestä lähtien
I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen
Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.
PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan.
MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi
MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla
9.11 a Fysiikka. Espoon kaupungin opetussuunnitelmalinjaukset. Nöykkiön koulu Opetussuunnitelma Fysiikka
9.11 a Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti
Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.
Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =
Esimerkkejä formatiivisesta arvioinnista yläkoulun matematiikan opiskelussa
Esimerkkejä formatiivisesta arvioinnista yläkoulun matematiikan opiskelussa Perusopetuksen opetussuunnitelman perusteet 2014, luku 6, Oppimisen arviointi: Oppilaan oppimista ja työskentelyä on arvioitava
Matematiikan opetuksen keskeiset tavoitteet
Matematiikan opetuksen keskeiset tavoitteet Tukimateriaalia eriyttämiseen: Mihin kannattaa keskittyä silloin, kun oppilaalla on vaikeuksia perusasioiden oppimisessa luokilla 1 2, 3 4 ja 5 6 sekä 7 9 Olemme
Matematiikan pitkä oppimäärä
Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän
Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.
MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9
Kaks`Kättä työpaja/ Kierrätysmyymälä. Matemaattis-luonnontieteellinen osaaminen pakolliset osaamistavoitteet, 4 osp (voimaan 1.8.
Kaks`Kättä työpaja/ Kierrätysmyymälä Matemaattis-luonnontieteellinen osaaminen pakolliset osaamistavoitteet, 4 osp (voimaan 1.8.2018) tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Yksilölliset opintopolut
Yksilölliset opintopolut Maija Koski, opettaja Työhön ja itsenäiseen elämään valmentava opetus ja ohjaus, Valmentava 2, autisminkirjon henkilöille, Pitäjänmäen toimipaikka Opetuksen ja ohjauksen suunnittelu
MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi
MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi Pedagoginen valiokunta 2003 Sisällysluettelo 1. Esipuhe... 3 2. Vanha ja uusi tuntijako ja niiden erot... 4 2.1. Perusopetuksen tuntijako... 4 2.1.1.
1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen
1 FYSIIKKA Fysiikan päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta fysiikan opiskeluun T2 ohjata
Kappaleiden tilavuus. Suorakulmainensärmiö.
Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Kaks`Kättä työpaja/ Taloushallinto. Matemaattis-luonnontieteellinen osaaminen pakolliset osaamistavoitteet, 4 osp (voimaan 1.8.
Kaks`Kättä työpaja/ Taloushallinto Matemaattis-luonnontieteellinen osaaminen pakolliset osaamistavoitteet, 4 osp (voimaan 1.8.2018) tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.
5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m
MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista
Opetusmateriaali. Fermat'n periaatteen esittely
Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja