Karttojen värittäminen

Koko: px
Aloita esitys sivulta:

Download "Karttojen värittäminen"

Transkriptio

1 Karttojen värittäminen Neliväriongelman värityskombinaatioiden lukumäärän etsiminen graafien avulla Eero Räty & Samuli Thomasson Valkeakosken Tietotien lukio / Päivölän Kansanopisto Tieteenala: Matematiikka

2 Tiivistelmä Tutkimuksessa selvitimme kartan ominaisuuksien vaikutuksia kartan alueiden väritysten määrään, kun käytössä on neljä väriä ja vierekkäiset alueet väritetään eri väreillä. Valitsimme värien lukumääräksi neljän, koska neliväriongelman mukaan jokainen tasokartta on väritettävissä neljällä värillä. Tavoitteenamme oli määrittää laskukaava väritysten määrän ja kartan ominaisuuksien välille. Laskukaava on hyödyllinen esimerkiksi laskennan vaativuutta analysoidessa: kaava antaa arvion tietyllä värimäärällä väritettävissä olevien erilaisten väritysten eli kombinaatioiden lukumäärästä, jolloin saadaan selville suotuisten tapausten osuus kaikista kombinaatioista. Arvion avulla algoritmeja voitaisiin optimoida juuri kyseiseen tilanteeseen. Käsittelimme ongelmaa muuttamalla kartat tasograafeiksi. Valitsimme tutkittaviksi ominaisuuksiksi karttaa kuvaavasta graafista solmujen eli alueiden määrän, kaarien eli naapuruussuhteiden määrän, klikkiluvun ja klikkiluvun kokoisten klikkien lukumäärän. Klikillä tarkoitetaan sellaista alueiden joukkoa, jossa kaikki alueet ovat toistensa naapureita ja klikkiluvulla tarkoitetaan suurinta alueiden joukkoa, jossa kaikki ovat toisensa naapureita. Valitsimme solmujen ja kaarten määrän, sillä ne ovat graafin ominaisuuksista tärkeimmät. Klikkiluku on alaraja tarvittavien värien määrälle. Valitsimme klikkiluvun kokoisten klikkien määrän, koska kyseisillä klikeillä värityskombinaatioita on erittäin vähän, ja ne rajoittavat kaikkien kombinaatioiden määrää. Loimme graafeille kaikki mahdolliset värityskombinaatiot etsivän algoritmin, kun yhden solmun väri on etukäteen määritelty. Testiaineistona käytimme neliväriongelman todistamiseen käytettyjä graafeja [1], joita oli yhteensä 633. Klikkiluvun vaikutusta tutkittaessa generoimme omia karttoja. Tutkimustulokseksi saimme riippuvuudet kaikkien ominaisuuksien ja värityskombinaatioiden määrän välille: y = , 0 1, x z 17,705562, jossa y on värityskombinaatioiden määrä, x on solmujen määrä ja z on kaarten ja solmujen määrän suhde. Tämän mallin selitysasteeksi saatiin 99,98%, mikä on tarpeeksi suuri laskennan vaativuuden analysoimista varten. Mallin mukaan värityskombinaatioiden määrä kasvaa eksponentiaalisesti solmujen määrän kasvaessa ja se on kääntäen verrannollinen kaarten ja solmujen osamäärän 17,7 potenssin kanssa. Klikkiluvun kasvaessa kombinaatioiden määrä väheni, ja klikkiluvun suuruisten klikkien määrän kasvaessa kombinaatioiden määrä väheni eksponentiaalisesti.

3 Sisältö 1 Johdanto 1 2 Johdatus graafiteoriaan Kartan värittämiseen tarvittavien värien määrä Kaksiväriongelma Viisiväriongelman todistus Kolmiulotteisten kappaleiden värittäminen Karttojen värittäminen Väritysten määrä Värityksiä etsivä ohjelma Ohjelman toteutus Ajaminen Tulokset Todistuskartat Analysointi Mallin laadinta tuloksista Solmujen määrän vaikutus Kaarten vaikutuksen huomioiminen Klikkiluvun vaikutus Johtopäätökset 15 7 Kirjallisuutta 15 8 Liitteet Liite 1: Kaarten vaikutuksen huomioiminen mallissa

4 1. Johdanto Neliväriongelma on yksi matematiikan erikoisimmista ongelmista siksi, että se on todistettu tarkistetusti vain käymällä erikoistapauksia läpi tietokoneella. Neliväriongelma esitettiin ensimmäisen kerran 1800-luvun puolivälissä, kun englantilainen opiskelija Francis Guthrie havaitsi, että Englannin kreivikuntien kartta oli väritettävissä neljällä värillä siten, että vierekkäiset maakunnat oli väritetty eri väreillä. Francisin veli Frederick kysyi perusteluja tälle karttojen väritysominaisuudelle opettajaltaan Augustus De Morganilta, joka ei pystynyt antamaan perusteluja. Tämän johdosta ongelma julkaistiin vuonna 1854 The Atheaneum-lehdessä [2]. Neliväriongelma osoittautui kuitenkin haastavaksi: se pysyi ratkaisemattomana ongelmana yli sata vuotta. Sen sijaan karttojen värittäminen enintään viidellä värillä onnistuttiin todistamaan jo vuonna Heawoodin lauseena tunnettu viiden värin ongelma on kuitenkin huomattavasti helpommin todistettavissa kuin neliväriongelma [3]. Neliväriongelman onnistuivat lopulta todistamaan Kenneth Appel ja Wolfgang Haken vuonna Todistus poikkesi normaaleista matemaattisista todistuksista, sillä se perustui yksittäistapausten läpikäymiseen tietokoneella. Todistus herätti matemaatikkojen keskuudessa epäilyä, eivätkä monet matemaatikot hyväksyneet todistusta, sillä se käytti liikaa apuvälineitä. Neliväriongelma oli merkittävä käännekohta matematiikan historiassa, sillä neliväriongelman todistaminen osoitti, että tietokoneet voivat auttaa matematiikassa, esimerkiksi numeeristen perusteiden luomisessa [4]. Neliväriongelmalle esitettiin 1990-luvulla uusia todistuksia, mutta ainoastaan Ibrahim Cahit on onnistunut esittämään todistuksen, jossa ei käytetä tietokonetta apuna. Tätä todistusta ei ole kuitenkaan tarkistettu [5]. Karttojen väritykseen liittyy vahvasti myös graafin värittäminen, sillä kartat voidaan aina esittää graafien avulla: kartan valtiot voidaan asettaa solmuiksi ja kaaret solmujen välille kuvaamaan naapuruussuhteita. Siksi neliväriongelmaan liittyy myös vahvasti NP-täydellinen ongelma graafien väritysten mahdollisuudesta polynomiaalisessa ajassa k:lla värillä, eli ongelman ratkaiseminen polynomiaalisessa ajassa ratkaisisi koko P = N P -ongelman [6]. P = N P -ongelma toteaa, että jos jokin on tarkistettavissa polynomiaalisessa ajassa, niin se on myös mahdollista ratkaista polynomiaalisessa ajassa. Karttojen värityksessä tämä tarkoittaisi, että jonkin värityksen oikeellisuuden tarkistaminen olisi yhtä vaativaa kuin yhden värityksen löytäminen. Tutkimuksen päätarkoituksena on kartan värityskombinaatioiden lukumäärän selvittäminen, eli kuinka monella tavalla kartta voidaan värittää, kun käytössä olevien värien määrä on annettu ja kartasta tiedetään tiettyjä ominaisuuksia, kuten alueiden määrä ja naapuruussuhteiden määrä. Värityskombinaatioiden määriä tutkimme kehittämällä karttaa kuvaaville graafeille väritysalgoritmin. Tutkimuksemme tavoitteena on saada relaatio värityskombinaatioiden sekä kartan ominaisuuksia kuvaavien parametrien välille. Relaation avulla voisi arvioida värityskombinaatioiden lukumäärää, mitä voisi soveltaa esimerkiksi kombinaatioihin perustuvien algoritmien laskennan vaativuutta analysoitaessa. Värityskombinaatioiden määrän lisäksi sivuamme myös kartan värittämiseen tarvittavien värien määrää koskevia lauseita. 1

5 2. Johdatus graafiteoriaan Määritelmä 1. Suuntaamaton graafi on graafi G = (V,E), missä V on epätyhjä solmujen joukko ja E on kaarirelaatio, joka on symmetrinen ja irrefleksiivinen. Graafi koostuu siis solmuista ja niitä yhdistävistä kaarista. Kaaret ovat kaksisuuntaisia, eli ne yhdistävät kummatkin solmut toisiinsa. Mikään solmu ei ole yhdistetty itseensä kaarella (Kuva 2.1a). Määritelmä 2. Tasograafi on graafi, joka voidaan piirtää tasoon siten, että yhdetkään kaaret eivät leikkaa toisiaan. Määritelmä 3. Graafin G = (V, E) joukkoa K V kutsutaan klikiksi, jos kaikilla toisistaan eroavilla x, y K pätee (x, y) E. Klikki on siis solmujen joukko, jossa kaikkien joukon solmujen välillä on kaari (Kuva 2.1d). Määritelmä 4. Graafin G = (V, E) väritys x väreillä C on kuvaus x : G C siten, että jos (a, b) E, niin x(a) x(b), missä x(a) tarkoittaa solmun a väriä. Tämä tarkoittaa sitä, että jos kahden solmun välillä on kaari, on nämä solmut väritetty eri väreillä (Kuvat 2.1b ja 2.1c). Määritelmä 5. Graafin G = (V, E) klikkiluvulla tarkoitetaan suurimassa klikissä olevien solmujen lukumäärää. Klikkilukua merkitään w(g). Määritelmä 6. Kromaattinen luku. Olkoon G = (V, E) graafi. Olkoon G väritettävissä k värillä, mutta ei k 1 värillä. Tällöin k on graafin G kromaattinen luku, eli graafi G on k-kromaattinen. Tällöin merkitään c(g) = k [7]. Määritelmä 7. Solmun asteluku. Solmun v asteluvulla tarkoitetaan niiden solmujen määrää, jotka ovat yhdistetty kaarella solmuun v. Solmun astelukua merkitään deg(v) (Kuva 2.1e). (a) Esimerkki graafista. (b) Esimerkki värityksestä. (c) Esimerkki solmujen värittämisestä, joka ei ole määritelmän mukainen väritys. (d) Kuvan graafissa punaisella merkatut solmut muodostavat klikin. (e) Tässä deg(v) = 5. Kuva 2.1: Graafeihin liittyviä määritelmiä. 2

6 2.1 Kartan värittämiseen tarvittavien värien määrä Neliväriongelman mukaan kaikki tasokartat ovat väritettävissä enintään neljällä eri välillä siten, että vierekkäiset alueet on väritetty eri väreillä. Neliväriongelman todistus on haastava ja pitkä. Se löytyy esimerkiksi Appelin, Hakenin ja Kochin teoksesta Every planar map is four colorable [8] Kaksiväriongelma Yksinkertaisin tasokarttojen väritysongelmista on kaksiväriongelma, eli kartan värittäminen kahdella eri värillä. Luonnollisesti tämä ei ole voimassa kaikilla tasokartoilla, mutta on helposti määritettävissä, mitkä kartat ovat kaksiväritettävissä. Lause 1. Kartta voidaan värittää kahdella värillä, mikäli jokaisessa tasossa olevien käyrien leikkauspisteestä lähtee parillinen määrä käyriä eli käyrät voidaan valita siten, että niiden päätepisteet ovat tasoalueen reunoilla. Todistus. Todistetaan väite induktiolla tasoa jakavien käyrien määrän n suhteen. Kun n = 1, väite pätee selvästi, sillä käyrä jakaa tasoalueen kahteen osaan, jotka voidaan värittää eri väreillä (Kuva 2.2a). Tehdään induktio-oletus: väite pätee, kun n = k (Kuva 2.2b). (a) Tapaus n = 1. (b) Induktio-oletuksen mukainen kartta. (c) Mielivaltaisen käyrän lisääminen. (d) Mielivaltaisen käyrän yläpuolen värittäminen. (e) Mielivaltaisen käyrän alapuolen värittäminen. (f) Tasokartta, jota rajaa k + 1 käyrää. Kuva 2.2: Kaksiväriongelman todistus visuaalisesti. Lisätään kuvioon mielivaltainen käyrä, jonka lähtöpiste ja päätepiste ovat kumpikin tasoalueen reunoilla. Väritetään käyrän yläpuolella oleva osa samalla tavalla kuin induktio-oletuksen tapauksessa. Tämän jälkeen väritetään kaikki lisättyä käyrää koskettavat alapuolelle jääneet osat vastakkaisilla väreillä kuin aikaisemmin, jolloin käyrän erottamilla alueilla on eri värit (Kuva 2.2e). Koska alueet väritettiin päinvastaisilla väreillä induktio-oletukseen nähden, voidaan nyt loput värittää vaihtamalla alueiden värit keskenään. Induktio-oletuksen nojalla tällöin syntyy kahdella värillä väritetty kartta, sillä kartan loppuosa voidaan värittää kahdella värillä, ja tämän värityksen myötä vierekkäiset alueet tulevat erivärisiksi. Väite pätee induktioperiaatteen nojalla. Jos käyrille asetettu ehto ei päde, voidaan helposti konstruoida vastaesimerkki, joka on väritettävissä kolmella värillä (Kuva 2.3). 3

7 Kuva 2.3: Kaksiväriongelman vastaesimerkki: kartta, johon tarvitaan kolme väriä Viisiväriongelman todistus Viisiväriongelman todistuksen kannalta tärkeitä ovat muutamat aputulokset. Lause 2. Kaikille tasokartoille pätee w(g) 4. Todistus. Tutkitaan karttaa, jolle w(g) = 3 ja G = 3. Todistetaan, että tähän ei voida lisätä kahta aluetta siten, että w(g) = 5 ja G = 5. Tämä todistaa myös sen, ettei se ole mahdollista kun G > 5. Otetaan kaksi aluetta, jotka ovat yhteydessä toisiinsa, ja liitetään kolmas alue siten, että se on yhteydessä kahteen alkuperäiseen. Liittämiseen on kaksi mahdollisuutta, jotka eivät eroa merkittävästi toisistaan (Tapaukset 1 ja 2). Tapaus 1 Alueiden keskelle jää alue. Piirretään kolme janaa, jotka yhdistävät alueiden 1, 2 ja 3 leikkauspisteet sekä mielivaltaisen pisteen, joka on keskelle jäävällä alueella (Kuva 2.4). Jos alueelle sijoitetaan nyt neljäs alue, jolla on yhteistä rajaa kaikkien kolmen muun alueen kanssa, on sen leikattava vähintään kaksi kolmesta janasta (Kuva 2.5). Koska neljännen alueen sivut sivuavat myös kaikkien muiden alueiden sivuja, ja se leikkaa kaksi janaa, jakaa neljäs alue keskelle jäävän alueen kolmeen osaan, joista jokaiselle löytyy joukon 1, 2, 3 alkio, jonka indeksiseen alueeseen kyseisellä alueella ei ole yhteyttä. Tämä tarkoittaa sitä, että nyt jokaisella alueella on enää 3 rajaavaa aluetta, mistä seuraa se, että ei voida sijoittaa viidettä aluetta, joka sivuaa kaikkia neljää aikaisempaa aluetta. Sisälle ei voida asettaa kahta aluetta siten, että w(g) = 5, joten tapaus 1 on käsitelty. Kuva 2.4: Tapauksen 1 mukainen tilanne. Kuva 2.5: Neljännen alueen lisäys. Tapaus 2 Neljäs ja viides alue sijoitetaan kolmen alkuperäisen alueen ulkopuolelle. Piirretään kolme puolisuoraa, joiden päätepisteet ovat alueiden 1, 2 ja 3 leikkauspisteet, ja ne kulkevat poispäin alueen keskipisteestä eivätkä leikkaa alueita (Kuva 2.6). Nyt jos sijoitetaan neljäs alue, joka sivuaa kaikkia muita kolmea aluetta, täytyy sen leikata vähintään kahta suoraa. Mutta jälleen suorat ja neljännen alueen leikkauspisteet jakavat alueen kolmeen osaan, joita kaikkia reunustaa vain 3 kolme aluetta. Siis viidennen alueen sijoittaminen siten että w(g) = 5 on jälleen mahdotonta. 4

8 Kuva 2.6: Tapauksen 2 mukainen tilanne. Lause 3. Eulerin kaava karttoja kuvaaville graafeille eli tasograafeille: n m + r = 2, missä m on kaarten määrä, n solmujen määrä ja r kaarten tasosta rajaamien alueiden määrä (mukaan lukien ulkopuolisen äärettömän alueen) [9, sivu 18]. Todistus voidaan tehdä induktiolla. Todistus löytyy esimerkiksi Saatyn ja Kainenin teoksesta The Four-Color Problem: Assaults and Conquest [9]. Lause 4. Tasograafille G pätee m 3n 6, missä m on kaarten määrä ja n on solmujen määrä. Todistus. Koska G on tasograafi, ja graafin kaaret eivät leikkaa toisiaan, rajaa jokaista graafin aluetta vähintään 3 kaarta (myös ulkopuolelle jäävää ääretöntä tasoaluetta, kun m on vähintään 3). Lisäksi jokainen kaari voi rajata enintään kahta eri aluetta, sillä kaaret eivät leikkaa toisiaan. Tästä saadaan 3r 2m. Soveltamalla tätä Eulerin kaavaan saadaan n m + r n m + 2m 3 n m + r n m 3 (2.1) 2 n m 3 m 3n 6 Lause 5. Jokaisesta tasograafista G löytyy sellainen solmu, jonka asteluku on 5. Todistus. Olkoon A solmujen astelukujen aritmeettinen keskiarvo eli A = 1 n deg(v). Tästä saadaan, että An = m, sillä kun lasketaan kaikkien astelukujen summa saadaan kaksi kertaa kaarten määrä, sillä 2 jokainen kaari lasketaan tällöin kahdesti (kummastakin solmusta, johon se on kiinnittynyt). Lauseen 4 nojalla An 12 3n 6 A 6 A < 6, (2.2) 2 n sillä n on positiivinen. Koska solmujen astelukujen keskiarvo on pienempää kuin 6, ja jokainen asteluku on kokonaisluku, täytyy olla jokin solmu, jonka asteluku on enintään 5. Todistetaan viisiväriongelma induktiolla solmujen määrän suhteen. Viidellä värillä värittäminen on selvästi mahdollista solmujen määrän pienillä arvoilla, joten perusaskel on todistettu. Tehdään induktio-oletus: tasograafi, jossa on n solmua on väritettävissä viidellä värillä. Valitaan nyt mielivaltainen tasograafi G, jossa on n + 1 solmua, ja todistetaan sen olevan väritettävissä viidellä värillä. Lauseen 5 nojalla graafista löytyy sellainen solmu v, jonka asteluku on 5. Tutkitaan graafia, josta on 5

9 poistettu tämä solmu v. Tämä sisältää n solmua, joten induktio-oletuksen nojalla se on väritettävissä viidellä värillä. Jos deg(v) < 5, on G väritettävissä viidellä värillä, sillä v:n väriksi voidaan valita sellainen väri, jolla yksikään sen naapuri ei ole väritetty. Oletetaan siis, että deg(v) = 5 ja kaikki solmut, jotka on yhdistetty kaarella solmuun v ovat väritetty eri väreillä. Jos kaikki solmuun v kaarella yhdistetyt solmut olisi yhdistetty toisiinsa kaarella, syntyisi kuuden kokoinen klikki, joka johtaa ristiriitaan lauseen 2 kanssa. Merkitään solmuun v kaarella yhdistettyjä solmuja v 1, v 2, v 3, v 4 ja v 5. Oletetaan nyt, että solmujen v 1 ja v 2 välillä ei ole kaarta. Todistuksen loppuosa perustuu siihen, että solmut v 1 ja v 2 voidaan värittää samalla värillä ja tämän vuoksi v voidaan värittää viidennellä värillä, jota ei käytetä minkään solmuista v 1, v 2, v 3, v 4 tai v 5 värittämiseen, mikä todistaa väitteen. Tarkemmat yksityiskohdat löytyvät muun muassa teoksesta The Four-Color Problem: Assaults and Conquest [9, sivu 32] Kolmiulotteisten kappaleiden värittäminen Määritelmä 8. Graafin G laji eli genus ( engl. genus) on pienin sellainen kokonaisluku n, että graafilla G on S n -upotus eli pinta, jossa on n reikää [10]. Vuonna 1890 Percy Heawood osoitti, että jokainen g (g > 0) reikää sisältävä pinta (pinnalla olevaa karttaa kuvaavan graafin genus on g) voidaan värittää siten, että värejä tarvitaan enintään g h =, (2.3) 2 missä x tarkoittaa suurinta kokonaislukua, joka on pienempää tai yhtä suurta kuin x [3]. Tapauksessa g = 0 väite on neliväriongelma, ja lause pätee silloinkin. Tätä Heawood ei kuitenkaan onnistunut vielä todistamaan. Vuonna 1968 Ringels ja Young osoittivat, että voidaan konstruoida kartta, jonka värittämiseksi tarvitaan täsmälleen h väriä. Tästä on esimerkkinä torus, jonka genus on 1. Toruksen värittämiseen tarvittavien värien määrä on = = = = 7. (2.4) 2 Torus, jonka värittämiseksi tarvitaan 7 väriä on myös helppo konstruoida (Kuvat 2.7 ja 2.8). Kuva 2.7: Kun tämä taso taitetaan torukseksi, saadaan torus, jonka värittämiseksi tarvitaan 7 väriä, sillä jokaisen värinen alue koskettaa kaikilla muilla väreillä väritettyjä alueita. Kuva 2.8: Torus [11]. 6

10 3. Karttojen värittäminen 3.1 Väritysten määrä Tarvittavien värien määrän lisäksi on mielekästä tutkia myös erilaisten väritysten määrää. Erilaisten väritysten määrän saamiseksi tarvitaan luonnollisesti tieto käytettävien värien määrästä. Tutkimuksessamme tutkimme tasokarttojen värittämistä, kun käytössä oli neljä väriä. Neljä oli mielekkäin valinta, sillä jokainen tasokartta on väritettävissä neljällä värillä, joten aina syntyy vähintään yksi kombinaatio. Kuva 3.1: Esimerkki värien kierrosta. Kiertoa käyttämällä on usein mahdollista saada 24-kertainen määrä kombinaatioita. Väritysten tulkitsemiseksi erilaisiksi on erilaisia lähestymistapoja. Yksinkertaisin tapa on tulkita kaksi kombinaatiota erilaisiksi, mikäli jokin alueista on väritetty eri värillä kummassakin kombinaatiossa. Tämän lisäksi myös väritysten kierrot voidaan jättää huomioimatta. Värityksen kierrolla tarkoitetaan sitä, että kahdessa kartassa kahdella värillä väritettyjen alueiden värit on vaihdettu keskenään (Kuva 3.1). Kiertojen synty voidaan estää ottamalla suurin klikki ja kiinnittämällä sieltä solmujen värit valmiiksi, mikä eliminoi osan kiertämällä syntyneistä kombinaatioista. Tämä toimii, mikäli graafin klikkiluku on 3 tai 4. Tällöin värien kierrättäminen on mahdotonta, sillä olisi ainoastaan yksi tai nolla väriä, jota pitäisi kierrättää. Jälkimmäinen lähestymistapa vähentää laskennan määrää, sillä jälkimmäistä käytettäessä saadaan useimmiten 1 ensimmäisellä lähestymistavalla saaduista määristä. Tämä luku seuraa siitä, että 4 4! väriä on kierrätettävissä jokaisessa kiertoa huomiomattomassa kombinaatiossa 4! eri tavalla. Jos graafin kromaattinen luku tai klikkiluku on 2, voi määrä jäädä pienemmäksi, sillä kiinnityksen takia kaikkia värejä ei välttämättä esiinny graafissa. Lähestymistapojen välinen ero ei kuitenkaan ollut merkittävä, joten algoritmissa tyydyimme vain kiinnittämään yhden solmun värin, jolloin saadaan 1 4 tapauksista eliminoitua. 3.2 Värityksiä etsivä ohjelma Selvittääksemme karttojen ominaisuuksia kirjoitimme ohjelman, joka selvittää näitä ominaisuuksia. Ohjelman toteutuskielenä oli Haskell. Käyttämämme kääntäjä oli Glasgow Haskell Compiler (GHC), versio Asetimme ohjelmalle seuraavat tavoitteet: Karttojen ja niiden alueiden esittäminen graafeina. Haluttuja ominaisuuksia sisältävien karttojen graafien generointi. Graafien ominaisuuksien määritys, väritys ja värityskombinaatioiden määrittäminen. Ohjelman lähdekoodi on saatavilla verkosta [12]. 7

11 3.2.1 Ohjelman toteutus Kartan esittäminen graafina Kartan alueita esitetään suuntaamattoman graafin solmuina (engl. vertex), ja alueiden naapuruussuhteita kuvataan graafin kaarina (engl. edges). Solmu koostuu sen indeksistä, väristä ja listasta sen naapurisolmuista, joihin solmusta lähtee kaari. Naapurisolmut on esitetty solmussa graafin indekseinä. Graafi on joukko solmuja, jotka on indeksoitu 0...n. Graafin tietorakenteena on nopeasti indeksoitava IntMap [Tiedosto Graphs.hs]. Satunnaisten karttojen luominen Halusimme käyttää väritysominaisuuksien tutkimiseen myös satunnaisia karttoja, joilla on haluttuja ominaisuuksia kuten solmujen lukumäärä, kaarien lukumäärä, korkeimman klikin klikkiluku ja korkeimman klikkiluvun mukaisten klikkien lukumäärä. Ohjelma generoi satunnaisgraafeja kahden parametrin perusteella: graafin solmuluku ja kaariluku. Ohjelman käyttämä algoritmi luo ensin vs solmua. Seuraavaksi se valitsee kaikista mahdollisista kaarista luotujen solmujen välillä satunnaisessa järjestyksessä es kaarta kuitenkin niin, että lopullisessa graafissa jokainen solmu liittyy kaarella vähintään yhteen solmuun. Satunnainen graafi on generoitu, kun satunnaisesti valitut kaaret on lisätty siihen. Tässä lähestymistavassa oli kuitenkin se ongelma, että luodut graafit eivät välttämättä olleet tasograafeja. Jos graafin generointi aloitettaisiin yhdellä solmulla, johon iteroiden lisättäisiin solmuja ja kaaria, olisi helpompi taata, että lopputulos on tasograafi. Päätimme kuitenkin, että tällainen iteroiva algoritmi ei ole meille toteuttamisen arvoinen, koska generoimamme graafit olivat ominaisuuksiltaan riittävän lähellä tasograafeja. Väritysalgoritmi Jotta graafin kaikkien värityskombinaatioiden määrä voitiin määrittää, päätimme simuloida väritystä sen sijaan, että olisimme yrittäneet etsiä matemaattista tapaa kombinaatioiden selvittämiseen. Olimme kiinnostuneita vain neljän värin kombinaatioista, koska neliväriongelman nojalla useamman värin kombinaatiot eivät ole mielenkiintoisia tasograafeille. Ensimmäisenä valitaan yksi solmu, joka väritetään ensimmäisellä värillä. Seuraavaksi väritetään jokin väritetyn solmun naapurisolmuista mahdollisimman monella eri värillä. Jokaisesta mahdollisesta naapurisolmun värityksestä lähtee uusi haara, jossa väritetään lisää naapurisolmuja. Haara päättyy, kun kaikki solmut on väritetty tai löydetään solmu, jota ei voida enää värittää millään värillä. Lopuksi jokaisesta haarasta löydetyt kombinaatioiden määrät summataan yhteen. Algoritmin toimintaa on havainnollistettu vuokaaviolla Kuvassa

12 Kuva 3.2: Vuokaavio käyttämästämme algoritmista graafin värityskombinaatioiden löytämiseen. Väritysalgoritmia olisi voitu optimoida värittämällä solmuja niihin liittyvien klikkien klikkilukujen mukaan laskevassa järjestyksessä. Emme kuitenkaan nähneet tarvetta tälle optimoinnille, koska toteuttamamme algoritmi osoittautui riittävän tehokkaaksi tarkoituksiimme, eli etsimään yli 600 graafin nelivärikombinaatiot riittävän lyhyessä ajassa normaalin PC-koneen laskentateholla. Graafin muiden ominaisuuksien määrittäminen Klikkien määrittäminen tapahtuu tarkastelemalla jokaista solmua erikseen: Klikin muodostavat ne solmut, jotka ovat tarkasteltavan solmun naapureita ja naapureita keskenään, joten yksinkertaisesti vertailemme kaikkia mahdollisia solmun naapurijoukkoja keskenään. Tämä on erittäin tehoton toteutus, mutta käyttötarkoituksiimme riittävä. Suurin klikkiluku on kaikkien klikkien klikkilukujen maksimiarvo. Klikkiluvun kokoisten klikkien lukumäärä saadaan laskemalla suurimman klikkiluvun esiintymiset kaikkien klikkien joukossa. Syötteet ja tulosteet Ohjelma ottaa kaiken syötteensä argumentteina, jotka on listattu ohjelman ohjetekstissä. Ohjeteksti generoidaan kääntöprosessissa. Ohjelman tulosteen rivit ovat pilkuin eroteltuja arvoja. Ensimmäinen rivi kertoo, mitä ominaisuuksia on laskettu ja missä järjestyksessä ne on esitetty seuraavilla riveillä. Seuraavilla riveillä on esitetty yhden graafin ominaisuudet. Kaikki ominaisuudet ovat kokonaislukuja. Ominaisuuksien selitykset: index Ilmaisee, monesko graafi oli ohjelmalle. vertices Solmujen määrä graafissa. edges Kaarien määrä graafissa. 4cc Mahdollisten nelivärikombinaatioiden määrä. LargestCD Suurimman klikin klikkiluku. LargestCC Suurimman klikin klikkilukua vastaavien klikkien määrä Ajaminen Käänsimme ja asensimme kirjoittamamme ohjelman: ghc -o viksu4c Main.hs. Tämän jälkeen ajoimme ohjelman:./viksu4c from unavoidable.conf +RTS -N4 > viksu4c.output. 9

13 Käytimme tutkittavina graafeina valmiita neliväriongelman todistamiseen käytetyn graafikonfiguraation graafeja. Robin Thomaksen graafikonfiguraatiossa [1] on 633 aligraafia. Konfiguraatio on saatavilla yhtenä tiedostona verkossa [13]. Piirsimme tuloksista kuvaajia gnuplot- ja MS Excel-ohjelmilla. 4. Tulokset 4.1 Todistuskartat Analysoimme Thomaksen kartat ohjelmamme avulla. Kombinaatioiden määrä kasvaa solmujen ja siis myös klikkien määrän kasvaessa (Kuva 4.1). Samoin käy myös solmujen ja kaarien määrien kasvaessa (Kuva 4.2). Thomaksen konfiguraation graafit ovat varsin samanlaisia ominaisuuksiltaan: Tiettyä solmujen määrää vastaavat kaarien määrät graafissa vaihtelevat vain hieman (Taulukko 4.1). Klikkiluvun vaikutuksen analysointia varten generoimme omia karttoja, joissa solmujen ja kaarien määrät pysyivät vakioina Kombinaatiot Kombinaatiot Klikit, joiden klikkiluku on 3 Kuva 4.1: Korkeinta klikkilukua (3) vastaavien klikkien lukumäärän korrelaatio värityskombinaatioiden määrään. Huomautus: solmujen määrä kasvaa klikkiluvun mukana. Solmuja Määrä % Kaaria % % % % Kaaria Määrä % % % % % Taulukko 4.1: Kaarien ja solmujen lukumäärien jakaumia ja tiheyksiä todistuskarttojen graafeissa. 10

14 Kombinaatiot Kaaret Solmut Kuva 4.2: Kombinaatioiden määrän riippuvuus solmujen ja kaarien lukumääristä. 5. Analysointi 5.1 Mallin laadinta tuloksista Tutkimuksessa halusimme selvittää graafin eri ominaisuuksien vaikutuksia värityskombinaatioiden määrään. Tarkasteltaviksi ominaisuuksiksi valitsimme kaarten määrän, solmujen määrän, klikkiluvun sekä klikkiluvun kokoisten klikkien määrän. Solmujen määrän ja kaarten määrän valitsimme sen takia, että ne määräävät graafin koon, jolla uskoimme olevan vaikutusta kombinaatioiden määrään. Valitsimme klikkiluvun myös tarkasteltavaksi parametriksi, sillä klikkiluku antaa kromaattiselle luvulle alarajan, joten klikkiluku liittyy myös värityskombinaatioiden määrään. Kromaattisen luvun alaraja on perusteltavissa sillä, että jokainen klikin solmu on yhdistetty toisiinsa kaarella, joten jokainen täytyy värittää eri väreillä. Klikkilukua vastaavien klikkien määrä kiinnosti myös, sillä klikeissä värityskombinaatioiden määrät ovat rajallisia. 5.2 Solmujen määrän vaikutus Sijoitimme testikartoista saadut mittaustulokset solmujen määrä lg(kombinaatioiden määrä) koordinaatistoon (Kuva 5.1). Pisteet sijoittuivat likimain suoralle. Sovitimme kuvaajaan suoran automaattisella suoransovitusohjelmalla (MS Excel). 11

15 lg(kombinaatioiden määrä) y = 0,2173x + 0, Solmujen määrä Kuva 5.1: Solmujen määrän vaikutus kombinaatioiden määrään. Huomaa logaritminen asteikko. Suoransovituksen parametreista saadaan lg(y) = 0, 2173x + 0, lg(y) = 10 0,2173x+0,0609 y = 10 0,2173x 10 0,0609 y = 1, , 6493 x, (5.1) missä y on kombinaatioiden määrä ja x on solmujen määrä. Arvioidaan mallin hyvyyttä selitysasteen avulla: σ 2 = SoS n = R 2 = ( y mitattu ymitattu n n (ymitattu y laskettu ) 2 1 n SoS ) , 9 n σ 2 0, 8958 = 89, 58%, missä σ on varianssi, y mitattu on mitattujen kombinaatioiden määrät, y laskettu on mallin avulla laskettujen kombinaatioiden määrät, n on mittausten määrä, SoS on neliösumma (engl. Sum of squares) ja R 2 on selitysaste. Virhettä tuloksiin tuo se, että solmujen määrän ja kaarien määrän suhde graafissa ei ollut aivan vakio. Lisäksi epätarkkuutta lisää se, ettei solmujen ja kaarien määrä määritä yksikäsitteistä graafia, vaan samojen parametrien avulla voidaan konstruoida useampi graafi. Tämän takia samaa solmujen määrää vastaa useampi kombinaatioiden määrä, eli kuvaus onkin vain suuntaa antava. (5.2) 12

16 5.3 Kaarten vaikutuksen huomioiminen Tutkittaessa solmujen vaikutusta saatiin mallin selitysasteeksi likimain 90%. Lähdimme parantamaan mallia ottamalla huomioon myös kaarten määrän vaikutuksen. Koska testidatassamme solmujen sekä kaarten määrät vaihtelivat, otimme uudeksi muuttujaksi kaarten ja solmujen määrän suhteen, sillä siinä solmujen lukumäärän vaikutus eliminoituu. Lähdimme tutkimaan neljää eri mallia ja etsimään niistä parasta. Mallit olivat y = a b x c z y = a x b c z y = a b x z c y = a x b z c, (5.3a) (5.3b) (5.3c) (5.3d) missä y on kombinaatioiden määrä, x on solmujen määrä, z on kaarien määrän ja solmujen määrän suhde ja a, b sekä c ovat vakioita. Optimaalisimpien vakioiden määrittäminen löytyy liitteestä [Liite 1]. Malleista parhaaksi osoittautui malli 5.3c, eli y = a b x z c. Optimaalisimmilla a, b ja c kaava muuttuu muotoon: y = , 0 1, x z 17, (5.4) Tämän mallin selitysaste oli 99,98%, eli malli selittää tulokset erittäin hyvin. Selitysaste mitattiin mallille y = a b x z c. Vakiot a, b ja c määrättiin mallista lg(y) = lg(a) + x lg(b) + c lg(z), joten tarkkaan ottaen vakioita ei ole optimoitu kaavalle y = a b x z c. 5.4 Klikkiluvun vaikutus Klikki ilmaisee sellaisten alueiden joukon, jossa kaikki alueet ovat toistensa naapureita. Klikkiluku ilmaisee suurimman tällaisen aluejoukon koon. Klikkiluvun vaikutus väritysten määrään olisi hyödyllinen ja sovellettava tieto. Yksi sovellusalue on ongelmat, joissa täytyy käydä läpi useita tapauksia. Näissä odotettavissa olevien tapausten määrä olisi erittäin mielekäs tieto algoritmien laskennallisen vaativuuden arvioimiseksi. Klikkiluvun vaikutuksen analysointi ei ollut kovinkaan mielekästä, sillä klikkiluku voi olla 2, 3 tai 4, joten tarpeeksi suurta määrää analysoitavaa dataa ei voi saada. Yleisimmin klikkiluku on 3 tai 4. Tutkimme 292 karttaa, joissa oli kaikissa 20 solmua ja 30 kaarta. Näistä kartoista saatujen tietojen perusteella laskimme kummallekin klikkiluvulle värityskombinaatioiden keskiarvon, varianssin, sekä suurimman ja pienimmän arvon. Tuloksista havaitaan (Taulukko 5.1), että niillä kartoilla, joiden klikkiluku on 3, on enemmän värityskombinaatioita. Tämä on perusteltavissa sillä, että neljän klikki on väritettävissä yksikäsitteisesti jos kiertoja ei lasketa, ja tämä laskee kartan väritysten määrää. Klikkiluvun vaikutuksen tutkiminen on myös mielekästä tarvittavien värien määrän kannalta: värejä tarvitaan vähintään klikkiluvun verran. Tutkimme suurimman klikkiluvun kokoisten Klikkiluku 3 4 Karttojen lukumäärä Keskiarvo Varianssi 1, , Suurin arvo Pienin arvo Taulukko 5.1: Klikkiluvun vaikutus. klikkien määrän vaikutusta väritysten määrään, kun solmujen määrä ja kaarien määrä on vakio. Valitsimme solmujen määräksi 15, kaarten määräksi 30 ja klikkiluvuksi 3. Loimme 1800 testikarttaa, joissa 13

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

Tasograafit ja väritykset

Tasograafit ja väritykset Solmu /06 Tasograafit ja väritykset Esa V. Vesalainen Matematiikan ja systeemianalyysin laitos, Aalto-yliopisto Graafi on matemaattinen olio, joka koostuu kahdesta eri asiasta: ) äärellisestä joukosta

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Tasograafit ja väritykset

Tasograafit ja väritykset Tasograafit ja väritykset Esa V. Vesalainen Matematiikan ja systeemianalyysin laitos, Aalto-Yliopisto Graafi on matemaattinen olio, joka koostuu kahdesta eri asiasta: ) äärellisestä joukosta kärkiä; sekä

Lisätiedot

Verkkojen värittäminen

Verkkojen värittäminen Verkkojen värittäminen Pro gradu -tutkielma Tiina Aaltonen 165231 Itä-Suomen yliopisto Fysiikan ja matematiikan laitos 10. tammikuuta 2012 Sisältö 1 Johdanto 1 2 Verkkojen peruskäsitteitä 4 2.1 Solmu,

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Sudokun matematiikkaa

Sudokun matematiikkaa Sudokun matematiikkaa Pro Gradu -tutkielma Marjo Silventoinen 175843 Itä-Suomen yliopisto 30. elokuuta 2012 Sisältö 1 Johdanto 1 2 Tausta 3 2.1 Latinalainen neliö......................... 3 2.2 Graateoriaa...........................

Lisätiedot

T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003

T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003 T-79.144 Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 28 31.10.2003 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT VERKOT ELI GRAAFIT Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) HISTORIAA Verkko- eli graafiteorian historia on saanut

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä.

Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä. POHDIN projekti TIEVERKKO Tieverkon etäisyyksien minimointi ja esimerkiksi maakaapeleiden kokonaismäärän minimointi sekä ylipäätään äärellisen pistejoukon yhdistäminen reitityksillä toisiinsa niin, että

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

8.5. Järjestyssuhteet 1 / 19

8.5. Järjestyssuhteet 1 / 19 8.5. Järjestyssuhteet 1 / 19 Määritelmä Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä).

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

2.3. Lausekkeen arvo tasoalueessa

2.3. Lausekkeen arvo tasoalueessa Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

7.4. Eulerin graafit 1 / 22

7.4. Eulerin graafit 1 / 22 7.4. Eulerin graafit 1 / 22 Viivojen läpikäynti Graafin pisteiden/viivojen läpikäyminen esiintyy usein sovelluksissa: Etsintäalgoritmit, reititykset Läpikäyminen tehdään nopeimmin, kun yhtäkään viivaa/pistettä

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Tämän työn tarkoituksena oli saada käsitys siitä,

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 12 3 pistettä 1. Annalla on neliöistä koostuva ruutupaperiarkki. Hän leikkaa paperista ruutujen viivoja pitkin mahdollisimman monta oikeanpuoleisessa kuvassa näkyvää kuviota. Kuinka monta ruutua

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Ramseyn lauseen ensimmäinen sovellus

Ramseyn lauseen ensimmäinen sovellus Ramseyn lauseen ensimmäinen sovellus Jarkko Peltomäki 30. huhtikuuta 2012 Tässä esseessä esitetään Frank Ramseyn vuonna 1929 esittämä tulos logiikassa, jonka todistamiseksi hän osoitti myöhemmin tärkeäksi

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään Ohjelmointi Ohjelmoinnissa koneelle annetaan tarkkoja käskyjä siitä, mitä koneen tulisi tehdä. Ohjelmointikieliä on olemassa useita satoja. Ohjelmoinnissa on oleellista asioiden hyvä suunnittelu etukäteen.

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Kolmen peräkkäisen kokonaisluvun summa on 42. Luvuista keskimmäinen on a) 13 b) 14 c) 15 d) 16. Ratkaisu. Jos luvut

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot