Johdatus reaalifunktioihin P, 5op

Koko: px
Aloita esitys sivulta:

Download "Johdatus reaalifunktioihin P, 5op"

Transkriptio

1 Johdatus reaalifunktioihin P, 5op Osa 1 Pekka Salmi 18. syyskuuta 2015 Pekka Salmi FUNK 18. syyskuuta / 65

2 Yleistä Luennot: ma 1214, pe 1012 Luennoitsija: Pekka Salmi, M229 (kahden viikon päästä M327) Laskupäivä: ke 1216, to 1216 (2h/vko riittää), alkaa ensi viikolla (yhteinen JMP:n kanssa) Arvostelu: Loppukoe klo (uusinnat vain tarvittaessa) Harjoitustehtävistä 05 lisäpistettä (koe 30p). Ei vaikuta läpipääsyyn. Harjoitustehtävät, luentopäiväkirja, jne. tulevat Noppaan Kirjallisuutta: Luentomoniste?? Harjulehto, Klén, Koskenoja: Analyysiä reaaliluvuilla (sopii paremmin muille analyysin kursseille mutta hyödyllinen täälläkin) Wikipedia (etenkin englanniksi) Pekka Salmi FUNK 18. syyskuuta / 65

3 Yleisiä ohjeita Kysy luennoilla: muutkin miettivät samoja asioita. Kysy luentojen ulkopuolella. Laskuharjoitustehtävät eivät välttämättä ratkea suoraviivaisesti vaan niitä on tarkoituskin pähkäillä. Kurssin laajuus on 5 op = 133 h. Luentoja on 28 h, harjoituksia 14 h, koe 4 h, jolloin itsenäistä työtä on 87 h. Tarkista, että Weboodissa oleva -osoite on aktiivisessa käytössä (ja vaihda tarvittaessa). Johdatus reaalifunktioihin -kurssi korvaa kurssin Alkeisfunktiot, joten näitä kahta kurssia ei voi molempia sisällyttää tutkintoonsa. Pekka Salmi FUNK 18. syyskuuta / 65

4 Kurssin osaamistavoitteet ja sisältö Kurssin suorittamisen jälkeen osaat määritellä alkeisfunktiot täsmällisesti ja käyttää niiden ominaisuuksia tehdä yksinkertaisia matemaattisia päätelmiä ja arvioita käyttää dierentiaali- ja integraalilaskennan peruskäsitteitä ja laskutekniikoita. Kurssin sisältö: Reaaliluvut, järjestys, itseisarvo Funktiot Jatkuvuus ja raja-arvo Dierentiaalilaskentaa Integraalilaskentaa Pekka Salmi FUNK 18. syyskuuta / 65

5 Lukujoukot N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...} { } a Q = b a Z, b N R luonnolliset luvut kokonaisluvut rationaaliluvut reaaliluvut (lukusuora) e π Pekka Salmi FUNK 18. syyskuuta / 65

6 Joukko-opin merkinnät merkintä tarkoitus esimerkki a A a kuuluu joukkoon A 1 N b / A a ei kuulu joukkoon A 1 / N B A B sisältyy joukkoon A N R A B = {x x A tai x B} A B = {x x A ja x B} A \ B = {x x A ja x / B} yhdiste eli unioni leikkaus erotus (A pois B). Pekka Salmi FUNK 18. syyskuuta / 65

7 Reaalilukujen laskutoimitukset Reaalilukujen yhteenlasku + ja kertolasku toteuttavat seuraavat säännöt: (A1) x + (y + z) = (x + y) + z (yhteenlaskun liittännäislaki) (A2) x + 0 = 0 + x = x (nolla-alkio) (A3) x + ( x) = ( x) + x = 0 (vastaluvut) (A4) x + y = y + x (yhteenlaskun vaihdannaislaki) (A5) x (y z) = (x y) z (kertolaskun liittännäislaki) (A6) x 1 = 1 x = x (ykkösalkio) (A7) x x 1 = x 1 x = 1 kun x 0, (käänteisluvut) (A8) x y = y x (kertolaskun vaihdannaislaki) (A9) x (y + z) = x y + x z (osittelulaki) Pekka Salmi FUNK 18. syyskuuta / 65

8 Reaalilukujen järjestys Kaikilla a, b R täsmälleen yksi seuraavista vaihtoehdoista pätee 1 a = b 2 a < b (a on pienempi kuin b) 3 a > b (a on suurempi kuin b). Järjestyksen ominaisuuksia: 1 a < b ja b < c = a < c 2 a < b = a + c < b + c kaikilla c R 3 a < b ja c > 0 = ca < cb 4 a < b ja c < 0 = ca > cb e π Pekka Salmi FUNK 18. syyskuuta / 65

9 Lukusuoran välit Olkoon a, b R, a < b. [a, b] = {x R a x b} ]a, b[ = {x R a < x < b} ]a, b] = {x R a < x b} [a, b[ = {x R a x < b} suljettu väli avoin väli puoliavoin väli puoliavoin väli Myös + ja voivat esiintyä merkinnöissä. Esimerkiksi [a, + [ = {x R a x} ], a] = {x R x a}. Kirjallisuudessa esiintyy myös merkinnät (a, b) = ]a, b[, (a, b] = ]a, b], jne. Pekka Salmi FUNK 18. syyskuuta / 65

10 Esimerkki ] 1, 1[ [0, 2] = [0, 1[ Pekka Salmi FUNK 18. syyskuuta / 65

11 Itseisarvo Luvun x R itseisarvo on x = { x jos x 0 x jos x < 0. Geometrisesti tulkittuna x on luvun x etäisyys pisteestä 0: x = x y 0 x y = y x y Vastaavasti lukujen x, y R välinen etäisyys on x y. Pekka Salmi FUNK 18. syyskuuta / 65

12 Itseisarvon ominaisuuksia Lemma Olkoot x, y R. 1 x 0 2 x = 0 x = 0 3 Olkoon a 0. Tällöin x a a x a. Erityisesti x x x. 4 xy = x y. Erityisesti x = x. 5 x 2 = x 2. Pekka Salmi FUNK 18. syyskuuta / 65

13 Itseisarvoepäyhtälö Ratkaistaan epäyhtälö x Geometrinen tulkinta: x 2 on luvun x etäisyys luvusta 2. Täten epäyhtälö x 2 3 on voimassa täsmälleen silloin kun luvun x etäisyys luvusta 2 on enintään Pekka Salmi FUNK 18. syyskuuta / 65

14 Esimerkki Ratkaistaan epäyhtälö x 1 x + 1 < 1. Pekka Salmi FUNK 18. syyskuuta / 65

15 Kolmioepäyhtälö Lause (Kolmioepäyhtälö) Kaikilla x, y R pätee x + y x + y. Todistus Lemman nojalla x x x ja y y y. Summaamalla nämä epäyhtälöt saadaan ( x + y ) x + y x + y. Täten jälleen Lemman nojalla. x + y x + y Pekka Salmi FUNK 18. syyskuuta / 65

16 Käänteinen kolmioepäyhtälö eli ey:n vasen puoli Lause (Käänteinen kolmioepäyhtälö) Kaikilla x, y R pätee x y x + y. Todistus Kolmioepäyhtälön nojalla x = x + y y x + y + y mistä saadaan Vastaavasti joten x y x + y. ( x y ) = y x x + y, x y x + y. Lemman nojalla. Pekka Salmi FUNK 18. syyskuuta / 65

17 Arviointia Esimerkki Olkoon a, b R joista tiedetään että a 1 ja b 2. Osoitetaan että tällöin a 2 b 2 3 a b. Kolmioepäyhtälön nojalla a 2 b 2 = a + b a b ( a + b ) a b 3 a b. Pekka Salmi FUNK 18. syyskuuta / 65

18 Arviointia 2 Esimerkki Arvioi lukua a, kun tiedetään, että a ja b ovat sellaisia reaalilukuja, että 2 < b < 3 ja a b 1 2. Käänteisen kolmioepäyhtälön nojalla a b = a b a b 1 2. Täten b 1 2 a b Yhdistämällä tämä tietoon että 2 < b < 3 saadaan että Geometrinen ratkaisu: piirrä kuva. 3 2 < a < 7 2. Pekka Salmi FUNK 18. syyskuuta / 65

19 Funktion käsite ja kuvaaja Olkoot X ja Y ei-tyhjiä joukkoja. Funktio f : X Y on sääntö joka liittää jokaiseen alkioon x X täsmälleen yhden alkion f (x) Y. Joukkoa X kutsutaan funktion f määritysalueeksi ja joukkoa Y funktion f maalijoukoksi. Funktion f kuvajoukko (tai arvojoukko) on Funktion f graa eli kuvaaja f (X ) = {f (x) x X } Y. G f = {(x, f (x)) x X } X Y määrää funktion f yksikäsitteisesti. Pekka Salmi FUNK 18. syyskuuta / 65

20 Reaalifunktiot Reaalifunktion määritysalue ja kuvajoukko ovat reaalilukujen joukon osajoukkoja. Tällaisen funktion f : M R, missä M R, kuvaaja on muotoa G f = {(x, y) R 2 x M, y = f (x)} ja se voidaan esittää (x, y)-koordinaatistossa. Pekka Salmi FUNK 18. syyskuuta / 65

21 Esimerkki Olkoon f : R R, f (x) = x. Tällöin funktion f määritysalue on R, kuvajoukko on { x x R} = [0, + [ ja kuvaaja on joukko G f = {(x, x ) x R} = {(x, x) x < 0} {(x, x) x 0} Pekka Salmi FUNK 18. syyskuuta / 65

22 Esimerkki 2 Tutkitaan sääntöä f (x) = 1 x 2 1. Mikä on funktion f luonnollinen määritysalue ja kuvajoukko? Luonnollinen määritysalue on R \ { 1, 1}. Funktio f on parillinen (symmetrinen origon suhteen) eli f ( x) = f (x). Kun x, nimittäjä f (x) 0. Kun x 1+, niin f (x) +. Täten ]0, + [ sisältyy kuvajoukkoon. Toisaalta f (0) = 1 ja kun x 1, niin f (x) (f on vähenevä välillä [0, 1[). Kaiken kaikkiaan voidaan päätellä että funktion f kuvajoukko on ], 1] ]0, + [. Ks. Wolfram Alpha. Pekka Salmi FUNK 18. syyskuuta / 65

23 Polynomifunktiot Funktio P : R R, P(x) = a n x n + a n 1 x n a 1 x + a 0 missä a 0, a 1,..., a n R, a n 0, on polynomi, jonka aste on n. Lukuja a 0, a 1,..., a n kutsutaan polynomin kertoimiksi. Luku x 0 R on funktion f nollakohta jos f (x) = 0 (luvun x täytyy tietenkin kuulua funktion f määritysalueeseen). Pekka Salmi FUNK 18. syyskuuta / 65

24 Polynomin juuret Lause Jos x 0 on astetta n olevan polynomin P nollakohta, niin P on jaollinen termillä x x 0 eli P(x) = (x x 0 )Q(x) missä Q on astetta n 1 oleva polynomi. Pekka Salmi FUNK 18. syyskuuta / 65

25 Todistus Induktiolla voidaan osoittaa että x n y n = (x y)(x n 1 + x n 2 y + x n 3 y 2 + xy n 2 + y n 1 ) (1) (tai aukaise oikeapuoli teleskooppisummaksi). Nyt P(x) = P(x) P(x 0 ) = a n (x n x n 0 )+a n 1 (x n 1 x n 1 0 )+ +a 1 (x x 0 ). Yhtälön (1) nojalla voidaan ottaa (x x 0 ) yhteiseksi tekijäksi ja jäljelle jäävän tekijän Q(x) korkeimman asteen termi on a n x n 1. Pekka Salmi FUNK 18. syyskuuta / 65

26 Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään n kappaletta erisuurta nollakohtaa. Pekka Salmi FUNK 18. syyskuuta / 65

27 Rationaalifunktiot Rationaalifunktio on funktio joka on muotoa R(x) = P(x) Q(x) = a nx n + a n 1 x n a 1 x + a 0 b m x m + b m 1 x m b 1 x + b 0 missä P(x) ja Q(x) ovat polynomifunktioita. Rationaalifunktion R määritysalue on {x R Q(x) 0} eli koko R lukuunottamatta polynomin Q(x) nollakohtia. Pekka Salmi FUNK 18. syyskuuta / 65

28 Esimerkki Olkoon R(x) = x + 1 x 2 1. Tällöin R:n määritysalue on R \ { 1, 1}. Voidaan huomata että x + 1 x 2 1 = x + 1 (x 1)(x + 1) = 1 x 1. kun x / { 1, 1}. Täten R voitaisiin luonnollisesti laajentaa funktioksi R 2 : R \ { 1} R, R 2 (x) = 1 x 1. Kuitenkin R ja R 2 ovat eri funktioita (niillä on eri määritysalueet). Pekka Salmi FUNK 18. syyskuuta / 65

29 Laskutoimituksia funktioilla Funktioiden väliset laskutoimitukset määritellään pisteittäin. Olkoot f : M f R, g : M g R ja c R vakio. Tällöin (f + g)(x) = f (x) + g(x) (fg)(x) = f (x)g(x) ( ) f (x) = f (x) g g(x). (erityisesti (cf )(x) = cf (x)) Luonnollinen määritysalue uusille funktioille on M f M g, paitsi funktion f /g tapauksessa määrittelyalue on (M f M g ) \ {x M g g(x) = 0}. Pekka Salmi FUNK 18. syyskuuta / 65

30 Summafunktio f (x) = x f (x) + g(x) = x + sin x g(x) = sin x Pekka Salmi FUNK 18. syyskuuta / 65

31 Yhdistetty funktio Funktioiden f ja g yhdistetty funktio eli yhdiste on funktio (f g)(x) = ( f g(x) ). Yhdistetyn funktion määritysalue on M f g = {x M g g(x) M f }. g f x g(x) ( f g(x) ) f g Joskus funktiota g kutsutaan sisäfunktioksi ja funktiota f ulkofunktioksi. Pekka Salmi FUNK 18. syyskuuta / 65

32 Esimerkki Olkoon h(x) = x 2 1. Tässä voidaan ajatella että h on kuvausten g(x) = x 2 1 ja f (x) = x yhdiste, sillä f g(x) = f (g(x)) = f (x 2 1) = x 2 1. Pekka Salmi FUNK 18. syyskuuta / 65

33 Käänteisfunktio Funktio g : Y X on funktion f : X Y käänteisfunktio mikäli (g f )(x) = x kaikilla x X ja (f g)(y) = y kaikilla y Y. Käänteisfunktiota merkitään f 1. Lause Funktiolla f : X Y on olemassa käänteisfunktio täsmälleen silloin kun f on bijektio eli 1 f on injektio: x 1 x 2 = f (x 1 ) f (x 2 ) 2 f on surjektio: f (X ) = Y Todistuksen idea: Määritellään g : Y X asettamalla g ( f (x) ) = x (jotta tämä on järkevää on f :n oltava bijektio). Tällöin g = f 1. Pekka Salmi FUNK 18. syyskuuta / 65

34 Esimerkki Tutkitaan funktiota f (x) = x 2. Onko funktiolla f käänteisfunktiota? Kysymys on epätarkka. Jos määritysalue M f tällöin ole injektio (f (x) = f ( x)). = R niin ei ole koska f ei Jos määritysalue on esim. M f kuvajoukko on [0, [. = [0, [, niin f on injektio, jonka Käänteisfunktion g määrääminen: Merkitään y = f (x), jolloin x = g(y). Yhtälöstä y = x 2 saadaan x = y, joten g(y) = y. Käänteisfunktio on siis f 1 : [0, [ [0, [, f 1 (y) = y. Pekka Salmi FUNK 18. syyskuuta / 65

35 Monotoniset funktiot Olkoon I R väli ja f : I R. Funktio f on 1 kasvava jos f (x 1 ) f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 2 vähenevä jos f (x 1 ) f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 3 aidosti kasvava jos f (x 1 ) < f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 4 aidosti vähenevä jos f (x 1 ) > f (x 2 ) aina kun x 1, x 2 I ja x 1 < x 2 5 monotoninen jos se on kasvava tai vähenevä 6 aidosti monotoninen jos se on aidosti kasvava tai aidosti vähenevä. Pekka Salmi FUNK 18. syyskuuta / 65

36 Aidosti monotonisella funktiolla on käänteisfunktio Lause Olkoon I R väli ja f : I R aidosti monotoninen. Tällöin f on injektio ja erityisesti f : I f (I ) on bijektio. Funktion f käänteiskuvaus f 1 : f (I ) I on aidosti kasvava jos f on aidosti kasvava ja f 1 on aidosti vähenevä jos f on aidosti vähenevä. Pekka Salmi FUNK 18. syyskuuta / 65

37 Kokonaislukupotenssit Kokonaislukupotenssit määritellään asettamalla x 0 = 1 x n = x(x n 1 ) kun n 1 (rekursiivisesti) x n = 1 x n kun n 1. Kokonaislukupotensseille pätevät laskusäännöt x (n+m) = x n x m x nm = (x n ) m. Pekka Salmi FUNK 18. syyskuuta / 65

38 Juurifunktiot Olkoon n N. Tällöin funktio f : [0, [ [0, [, f (x) = x n on aidosti kasvava (tämän voi osoittaa esimerkiksi induktiolla n:n suhteen). Edellisen lauseen nojalla funktiolla f on käänteisfunktio, joka on myös aidosti kasvava. Merkitään f 1 (y) = n y = y 1 n (y [0, [). Luku n y on y:n n:s juuri. Pekka Salmi FUNK 18. syyskuuta / 65

39 Juurifunktion kuvaaja f (x) = x 2 g(x) = x Pekka Salmi FUNK 18. syyskuuta / 65

40 Rationaalilukupotenssit Rationaalilukupotenssit määritellään luvuille x > 0 asettamalla x m/n = (x m ) 1/n kun m Z ja n N. Kokonaislukupotenssien laskusäännöt laajenevat rationaalilukupotensseille: kun x > 0 ja p, q Q. x (p+q) = x p x q x pq = (x p ) q. Pekka Salmi FUNK 18. syyskuuta / 65

41 max & min Olkoon A R. Luku b A on joukon A maksimi jos a b kaikilla a A. Joukon A maksimia merkitään max A. Vastaavasta luku c A on joukon A minimi jos a c kaikilla a A. Joukon A minimiä merkitään min A. Esimerkki Mikä on joukon [0, 1[ maksimi? Pekka Salmi FUNK 18. syyskuuta / 65

42 sup & inf Reaalilukujoukon A R yläraja on mikä tahansa luku b R jolle pätee a b kaikilla a A. Jos A:lla on yläraja niin sanotaan että A on ylhäältä rajoitettu. Luku b R on joukon A supremum eli pienin yläraja jos 1 b on A:n yläraja 2 jos myös c on A:n yläraja, niin c b. Tällöin merkitään b = sup A. Vastaavasti määritellään käsitteet alaraja, alhaalta rajoitettu sekä inmum eli suurin alaraja. Jälkimmäistä merkitään inf A. Pekka Salmi FUNK 18. syyskuuta / 65

43 Esimerkkejä Esimerkki Joukon {1, 2, 3} supremum on 3 ja inmum 1. Yleisestikin, jos joukolla A R on maksimi max A, niin sup A = max A (ja vastaavasti inf A = min A, jos minimi on olemassa). Esimerkki Joukon [0, 1[ supremum on 1. Huomaa että joukolla [0, 1[ ei ole maksimia. Esimerkki Mikä on joukon N R supremum? Vastaus: Ei ole olemassa. Esimerkki Mikä on joukon {1/n n N} inmum? Vastaus: 0. Pekka Salmi FUNK 18. syyskuuta / 65

44 Reaalilukujen täydellisyys Täydellisyysaksioma Jokaisella ylhäältä rajoitetulla joukolla A R on olemassa supremum sup A R. Aksiomasta seuraa että jokaisella alhaalta rajoitetulla joukolla B R on olemassa inmum inf B R. Pekka Salmi FUNK 18. syyskuuta / 65

45 Reaalilukupotenssit Kun x 1, luvun x reaalilukupotenssi x r missä r R määritellään asettamalla x r = sup{x p p Q ja p r}. Kun 0 < x < 1 ja r R, asetetaan ( 1 x r = x ) r Edelleen samat laskusäännöt pitävät paikkansa. Pekka Salmi FUNK 18. syyskuuta / 65

46 Neperin luku ja eksponenttifunktio Neperin luku voidaan määritellä raja-arvona ( e = lim ) n. n n Luku e on irrationaaliluku, jonka likiarvo on Eksponenttifunktio määritellään kaavalla f (x) = e x, x R (tämä on hyvin määritelty koska reaalilukupotenssit ovat hyvin määriteltyjä). Eksponenttifunktio on vakiokerrointa vaille ainoa funktio joka toteuttaa dierentiaaliyhtälön f (x) = f (x). Pekka Salmi FUNK 18. syyskuuta / 65

47 Eksponenttifunktion ominaisuuksia Lause 1 e 0 = 1 2 e x+y = e x e y kaikilla x, y R 3 e xy = (e x ) y kaikilla x, y R 4 e x > 0 kaikilla x R 5 funktio f (x) = e x on aidosti kasvava. Pekka Salmi FUNK 18. syyskuuta / 65

48 Esimerkki Ratkaise epäyhtälö e x 2 +1 > e 2x. Pekka Salmi FUNK 18. syyskuuta / 65

49 Logaritmifunktio Koska f (x) = e x on aidosti kasvava funktio niin sillä on aidosti kasvava käänteisfunktio f 1 : ]0, [ R. Tämä funktio on (luonnollinen) logaritmi ja sitä merkitään f (x) = log x. (Joskus luonnollisesta logaritmista käytetään merkintää ln x.) Kaikilla x > 0 pätee ja kaikilla x R pätee e log x = x log(e x ) = x. Pekka Salmi FUNK 18. syyskuuta / 65

50 Logaritmifunktion ominaisuuksia Lause 1 log 1 = 0 2 log(xy) = log(x) + log(y) kaikilla x, y > 0 3 log(x y ) = y log x kaikilla x > 0, y R 4 funktio log x on aidosti kasvava. Nämä säännöt saadaan johdettua eksponenttifunktion laskusäännöistä. Pekka Salmi FUNK 18. syyskuuta / 65

51 Eksponentti- ja logaritmifunktioiden kuvaajat e x log x Pekka Salmi FUNK 18. syyskuuta / 65

52 Sinin ja kosinin geometrinen määritelmä Olkoon α suorakulmaisen kolmion terävä kulma, k 1 kulmaa α vastakkaisen kateetin pituus ja k 2 viereisen kateetin pituus. Olkoon vielä h hypotenuusan pituus. h k 1 α k 2 Kulman α sini on ja kosini sin α = k 1 h cos α = k 2 h. Pekka Salmi FUNK 18. syyskuuta / 65

53 Yksikköympyrä Yksikköympyrän keskipiste on (0, 0) ja säde 1. Kehän pituus on 2π. (0, 1) (x, y) z ( 1, 0) sin z z (0, 0) cos z (x, 0) (1, 0) (0, 1) Pisteestä (1, 0) kuljetaan ympyrän kehää pitkin vastapäivään z pituinen matka pisteeseen (x, y). Asetetaan kaikilla z R sin z = y ja cos z = x. Pekka Salmi FUNK 18. syyskuuta / 65

54 Huomioita sinin ja kosinin määritelmästä Sinin ja kosinin määritelmä yksikköympyrän avulla yhtyy aiempaan kun 0 < z < π/2 (radiaania). Tämän voi nähdä piirtämällä kolmio jonka kärkipisteet ovat (0, 0), (x, 0) ja (x, y). Tulkitaan määritelmää siten, että negatiivisillä luvuilla z < 0 käännetään kiertosuunta myötäpäivään ja kuljetaan z pituinen matka. Pekka Salmi FUNK 18. syyskuuta / 65

55 Sinin ja kosinin kuvaajat 1 sin x cos x π π 2 π Sini on pariton funktio: sin( x) = sin x. Kosini on parillinen funktio: cos( x) = cos x. sin(x + π/2) = cos(x). Pekka Salmi FUNK 18. syyskuuta / 65

56 Esimerkkejä Esimerkki Osoita että sin(π z) = sin z. Esimerkki Osoita että ( π ) cos 2 z = sin z. Esimerkki Oletetaan tunnetuksi että sin(x + y) = sin x cos y + cos x sin y. Osoita että sin(2x) = 2 sin x cos x. Esimerkki Osoita että ( x + y sin x + sin y = 2 sin 2 ) cos ( x y 2 ). Pekka Salmi FUNK 18. syyskuuta / 65

57 Tangentti ja kotangentti Tangenttifunktio määritellään asettamalla tan z = sin z, kun cos z 0, eli z π/2 + nπ, n Z. cos z Vastaavasti kotangentti määritellään asettamalla cot z = cos z, kun sin z 0, eli z nπ, n Z. sin z Geometrinen tulkinta: h k 1 α k 2 tan α = sin α cos α = k 1 k 2 ja cot α = 1 tan α = cos α sin α = k 2 k 1. Pekka Salmi FUNK 18. syyskuuta / 65

58 Tangentti ja kotangentti yksikköympyrällä cot z z tan z ( 1, 0) (0, 0) 1 z Pekka Salmi FUNK 18. syyskuuta / 65

59 Tangentin ja kotangentin kuvaajat tan x π 2 0 π 2 π cot x Pekka Salmi FUNK 18. syyskuuta / 65

60 Sinin käänteisfunktio Sinifunktio ei ole injektio vaan esimerkiksi sin(π x) = sin x kaikilla x R. Rajoitettuna välille [ π/2, π/2] saadaan aidosti kasvava funktio sin: [ π/2, π/2] R ja sin([ π/2, π/2]) = [ 1, 1]. Tällä rajoituksella sinille saadaan käänteisfunktio arkussini arcsin: [ 1, 1] [ π/2, π/2], joka on myös aidosti kasvava. Joskus tätä kutsutaan arkussinin päähaaraksi ja merkitään arcsin, koska yhtälailla sinifunktio olisi voitu rajoittaa vaikka välille [π/2, 3π/2]. Pekka Salmi FUNK 18. syyskuuta / 65

61 Arkussinin kuvaaja (0, 1) π 2 arcsin x x arcsin x (0, 0) (1, 0) π 2 (0, 1) Pekka Salmi FUNK 18. syyskuuta / 65

62 Esimerkki Esimerkki Laske arcsin(sin 2π). Pekka Salmi FUNK 18. syyskuuta / 65

63 Muiden trigonometristen funktioiden käänteisfunktiot Kosini on aidosti vähenevä välillä [0, π] ja tälle välille saadaan käänteisfunktio arkuskosini arccos: [ 1, 1] [0, π]. Tangentti on aidosti kasvava välillä ] π/2, π/2[ ja tälle välille saadaan käänteisfunktio arkustangentti arctan: R ] π/2, π/2[. Kotangentti on aidosti vähenevä välillä ]0, π[ ja tälle välille saadaan käänteisfunktio arkuskotangentti arccot: R ]0, π[. Pekka Salmi FUNK 18. syyskuuta / 65

64 Arkustangentin kuvaaja π 2 x arctan x arctan x (1, 0) π 2 Pekka Salmi FUNK 18. syyskuuta / 65

65 Napakoordinaatit θ r x (x, y) y x = r cos θ y = r sin θ r = x 2 + y 2 arctan ( ) y π x kun x > 0, y 0 kun x = 0, y > 0 2 arctan ( ) y x + π kun x < 0 θ = π kun x = 0, y < 0 2 arctan ( ) y x + 2π kun x > 0, y < 0 ei määritelty kun x = 0, y = 0 Pekka Salmi FUNK 18. syyskuuta / 65

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

Funktiot ja raja-arvo P, 5op

Funktiot ja raja-arvo P, 5op Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Pekka Salmi 17. lokakuuta 2016 Pekka Salmi FUNK 17. lokakuuta 2016 1 / 205 Yleistä Luennot: ma 1214, pe 1012 Luennoitsija: Pekka Salmi, MA327 Laskupäivä: ke 1014,

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Funktiot ja raja-arvo. Pekka Salmi

Funktiot ja raja-arvo. Pekka Salmi Funktiot ja raja-arvo Pekka Salmi Versio 0.3 13. lokakuuta 2017 Johdanto Tämä moniste on keskeneräinen... 1 1 Reaaliluvut 1.1 Lukujoukot Lukujoukoista käytettään seuraavia merkintöjä: N = {0, 1, 2, 3,...}

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Sini- ja kosinifunktio

Sini- ja kosinifunktio Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion

Lisätiedot

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011 Toisen viikon luennot Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011 Perustuu paljolti lukion oppikirjoihin ja Trench in verkkokirjaan,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Positiivitermisten sarjojen suppeneminen

Positiivitermisten sarjojen suppeneminen Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Fysiikan matematiikka P

Fysiikan matematiikka P Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Johdatus reaalifunktioihin

Johdatus reaalifunktioihin Johdatus reaalifunktioihin 11. syyskuuta 2014 10:28 1. Reaaliluvut ja epäyhtälöt 1.1 Lukualueet = { 1, 2, 3 } luonnolliste n lukujen joukko Suljettu yhteen ja kertolaskujen suhteen: Jos m,n en (eli m en

Lisätiedot

6 Eksponentti- ja logaritmifunktio

6 Eksponentti- ja logaritmifunktio ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita 802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset

Lisätiedot

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5? Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 4. Kurssikerta Petrus Mikkola 4.10.2016 Tämän kerran asiat Funktion raja-arvo Raja-arvon määritelmä Toispuolinen raja-arvo Laskutekniikoita Rationaalifunktion esityksen

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto Analyysi A Raja-arvo ja jatkuvuus Pertti Koivisto Kevät 207 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi A. Monisteen tavoitteena on tukea

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

Analyysi I. Visa Latvala. 26. lokakuuta 2004

Analyysi I. Visa Latvala. 26. lokakuuta 2004 Analyysi I Visa Latvala 26. lokakuuta 2004 34 Sisältö 3 Reaauuttujan funktiot 35 3.1 Peruskäsitteitä................................. 35 3.2 Raja-arvon määritelmä............................. 43 3.3 Raja-arvon

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

1 Supremum ja infimum

1 Supremum ja infimum Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Raja-arvot ja jatkuvuus

Raja-arvot ja jatkuvuus Raja-arvot ja jatkuvuus 30. lokakuuta 2014 10:11 Suoraa jatkoa kurssille Johdatus reaalifunktioihin (MATP311) (JRF). Oheislukemista: Kilpeläinen: Analyysi 1, luvut 3-6, Spivak: Calculus, luvut 5-8, 22,

Lisätiedot

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku. Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 1. ALUKSI Joukko-oppia Lyhenteitä ja merkintöjä. A = B A:sta seuraa B. Implikaatio. A B A ja B yhtäpitävät. Ekvivalenssi.

Lisätiedot

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018 Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {

Lisätiedot

ANALYYSI 1. Tero Kilpeläinen

ANALYYSI 1. Tero Kilpeläinen ANALYYSI 1 Tero Kilpeläinen Luentomuistiinpanoja vuosilta 000-00 31. lokakuuta 014 Sisältö 1. Johdanto 1. Tuttua ja turvallista 6.1. Merkintöjä................................. 6.. Reaalilukujen perusominaisuudet....................

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }. Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot