Phyica 9 1 paino 1(7) 13 Haroninen värähtely : 13 Haroninen värähtely 131 a) Voia, jona uuruu on uoraan verrannollinen poieaaan taapainoaeata ja jona uunta on ohti taapainoaeaa b) Suure, joa ilaiee aiayiöä tapahtuvien värähdyten luuäärän c) Suure, joa ilaiee värähtelijän uurian poieaan taapainoaeata d) Lyhin värähtelyä toituva liieen oa e) Värähtelyä äännöllieti toituva tila f) Vapaati värähtelevän värähtelijän taajuu ) Iliö, joa värähtelijälle yötetään eneriaa en oinaitaajuudella 13 Punnuen aa on = 100 ja punnuen aiheuttaa venyä Δ x = 0,064 Joui-punnu-yteein jaonaia on T = π, joten en värähtelytaajuu on 1 1 f = T = π Kun punnu on levoa jouen päää, iihen vaiuttaa ai voiaa: painovoia alapäin ja jouen ohditaa voia Δx ylöpäin, joa Δx on jouen venyä Koa punnu on levoa voiat ovat yhtä uuret Δ x = Jouen jouivaio on iten 0,100 9,81 = = = 15, 381 Δx 0,064 Joui värähtelee ii taajuudella f 15,381 = 1 1 1,9704 Hz,0 Hz π = π 0,100 = Vatau: Punnu alaa värähdellä taajuudella,0 Hz 133 Heilurin heilahduaia eli jaonaia on T = 1, 0 Mateaattien heilurin heilahduaia on l T = π, jota rataiealla heilurin pituudelle aadaan lauee T l = Kun tähän ijoitetaan 9,81 ( 1,0 ) tunnetut arvot, aadaan l = = 0, 485 4,9 c Vatau: Seuntiheilurin lanan pituu on 4,9 c Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
Phyica 9 1 paino (7) 13 Haroninen värähtely 134 Kun punnu riippuu jouea, iihen vaiuttaa ai voiaa: painovoia G alapäin ja jouen ohditaa voia F ylöpäin Voiien uuruudet ovat G = ja F = y, joa y on jouen venyä Koa punnu on levoa, voiat ovat yhtä uuret ja ewtonin II lain F = a uaan voiien vetoriua on nolla F = 0 Kun poitiivinen uunta valitaan alapäin, punnuen liieyhtälö alaariuodoa on y = 0 eli y = Jouen venyä riippuu iten punnueen riputetun punnuen aata niin, että y = Tää on uotoa y = ax olevan uoran yhtälö Yhtälötä nähdään, että uoran fyiaalinen ulaerroin on a = Sijoitetaan ittautuloet y-oordinaatitoon, ja ovitetaan piteiiin uora: Valitaan ulaertoien arvon äärittäiei tarvittavii piteii orio ja pite (300, 50 ) Kulaertoien arvoi aadaan Δy 0,050 = = = 0,1667 Δ 0,300 Jouivaio on iten 9,81 = = = 58,848 59 0,1667 Vatau: Tutitun jouen jouivaio on 59 135 Jouen ja punnuen uodotaan yteein värähtelyn jaonaia on T = π 4 π Korottaalla yhtälö puolittain toieen aadaan T = = Värähtelyn jaonajan neliö on ii verrannollinen punnuen aaan Yhtälö on uotoa y = ax olevan uoran yhtälö Yhtälötä nähdään, että uoran fyiaalinen ulaerroin on a = Laetaan ittautuloten peruteella jaonaiojen neliöt, ijoitetaan arvot T -oordinaatitoon, ja ovitetaan piteiiin uora () 100 00 300 400 500 600 T ( ) 0,18 0,34 0,48 0,67 0,81 0,94 Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
Phyica 9 1 paino 3(7) 13 Haroninen värähtely Edellä olevata yhtälötä nähdään, että uoran fyiaalinen ulaerroin on = Valitaan ulaertoien arvon äärittäiei tarvittavii piteii orio ja pite (65, 1,0 ) Kulaertoien arvoi aadaan ΔT 1, 0 = = = 1, 600 Δ 0,65 Jouen jouivaio on iten = = = 4,6740 5 1, 600 Vatau: Jouen jouivaio on 5 136 Kuulan aa on = 0, 4, ouaohdan oreu h = 18, nopeu ouihetellä Δ x = 0, 45 v = 3, ja jänteen uurin poieaa taapainoaeata Kuulaan ohdituva ilanvatu on lennon aiana erityetön, joten tehtävää voidaan äyttää eaanien enerian äilyilaia Uloien voian teeä työ uuttaa jouen ja punnuen uodotaan yteein eaanita eneriaa, W =Δ E e Kun painovoiaan liittyvän potentiaalienerian nollataoi valitaan lähtötao, alua eaaninen eneria on pelää jouen potentiaalieneria Kuulan ouea aaliin eaaninen eneria on painovoiaan liittyvää potentiaalieneriaa ja uulan liie-eneriaa, joten Ep,jouiv = Ep,painov + E eli 1 1 Δ x = h+ v Jouta viritettäeä voia avaa uoraan verrannolliena venyään, joten jännettä taapainoaeata venytettäeä tehdään työ Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
Phyica 9 1 paino 4(7) 13 Haroninen värähtely F FΔx W = Δ x =, joa F on voia, joa ohditetaan joueen, un e on viritetty ääriilleen Siten F Δ x 1 = h + v Tätä yhtälötä voidaan rataita yytty voia 0, 4 9,81 18 3 + ( h+ v ) F = = = Δx 0, 45 Vatau: Jouta on viritettävä 1,3 :n voialla 3 1,853 10 1,3 137 Kun värähtely on vaientunut, punnu on taapainoa F = 0, joten iihen vaiuttavat voiat, jouen ohditaa voia F = y ja painovoia G =, ovat yhtä uuret y = Tää y on tehtävää yytty pituu, illä en verran punnu venyttää jouta taapainotilanteea Se voidaan rataita, un jouen jouivaio tunnetaan: y = Jouen ja punnuen uodotaan yteein jaonaia on T = π, jota aadaan jouivaion laueeei = T Jaonajan arvo voidaan äärittää uvaajata Kuvaajata nähdään, että,5 3, 0 värähdyeen on ulunut aia 3,0, joten yhden jaon aia on T = = 1,,5 Kun taapainoyhtälöön ijoitetaan jouivaion lauee aadaan ( ) 9,81 1, T y = = = = 0,3578 0,36 T Vatau: Joui lyhenee 36 c, un punnu otetaan poi 138 Kuorittaattoan jouen pituu on l 0 = 0,30, jouen jouivaio on = 10,0, punnuen aa = 0,050 ja jouen ja pytyuoran välinen ula θ = 30 Punnueen vaiuttavat vatuvoiat voidaan jättää huoioiatta, joten punnuen liie ääräytyy jouen punnueen ohditaan voian F ja painovoian G peruteella Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
Phyica 9 1 paino 5(7) 13 Haroninen värähtely Punnuen liieyhtälö on ewtonin II lain F = a uaan F + G = a Punnuella ei ole iihtyvyyttä pytyuunnaa ja vaaauunnaa iihtyvyy on noraaliiihtyvyyttä, oa punnu on vaaataoa ypyräliieeä Liieyhtälö on uvaan erityllä oordinaatiton valinnalla oponenttiuodoa iten x: Fx = an Fx = Fcoθ, joa jouivoian oponentit ovat y: Fy = 0 Fy = Finθ a) Meritään jouen venyää tunnuella Δ l Jouivoia on haroninen, F = Δ l, joten punnuen pytyuuntainen liieyhtälö F coθ = aa uodon Δ lcoθ = Tätä voidaan rataita yytty jouen venyä 0,050 9,81 Δ l = = = 0,05664 57 coθ 10,0 co30 b) Punnu on taaiea ypyräliieeä Liieyhtälön vaaauunnaa on F inθ = an oraaliiihtyvyy ulanopeuden avulla ilaituna on punnuen ypyräradan äde on Fin r l θ = ω = ω inθ Tätä aadaan ulanopeudelle lauee r = linθ, joten a v r ω r r n = = = ω r, ja ω = F l Koa ierrotaajuu on 1 ω n = =, jaonaia on T π ( +Δ ) ( +Δ ) ( +Δ ) π π l l0 l l0 l l0 l T = = = π = π = π = π ω F F F l coθ ( 0,30 + 0,05664) co30 = π = 1,1149 1,1 9,81 Vatau: a) Jouen venyä on 57 b) Punnuen ierroaia on 1,1 coθ 139 Poijun oonaiaa on = 4 A = 0,050 ja ellueen poiipinta-ala Koa väliaineen vatu on erityetön, poijuun vaiuttavat voiat ovat paino G ja note Taratellaan voiia eä poijun taapainoaeaa, joa F = 0, että iitä poieutetua aeaa Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
Phyica 9 1 paino 6(7) 13 Haroninen värähtely Taapainotilanteea + G = 0, joten note ja paino ovat yhtä uuret 1 = G eli ρv = ρah =, joa A on poijun poiipinta-ala Kun poiju on poieutettu taapainoaeataan, oonaivoia on ( ) ΣF = G = ρ A h+ y Taapainoyhtälön uaan = ρ Ah, joten oonaivoia on ( ) ΣF = ρah+ y ρah= ρay Koa oonaivoia on haroninen, aadaan yhtälö ρ Ay = y Kuvan tapauea poijua on poieutettu taapainoaeata alapäin ja oonaivoian uunta on ylöpäin Ylöpäin poieutettaea oonaivoian uunta on alapäin Koonaivoian uunta on ii aina ohti taapainoaeaa, ja verrannollinen poieaaan Voia on iten haroninen Värähtelijän jouivaio on = ρ A, joten värähtelyn jaonaia on 4 T = π = π = π ρ A 1000 0, 050 9,81 3 = 1,8386 1,8 Vatau: Poijun värähtelyn jaonaia on 1,8 1310 Jännittäättöän uiöyden pituu on l 0 = 3, öyden jouivaio hyppääjän aa = 75 = 107 ja Kun uiöyi ei ole löyällä, hyppääjään ohdituu painovoian G liäi uiöyden ohditaa jouivoia F, joa on liiain haroninen Aliaa aeaa uiöyden voian ja hyppääjän iihtyvyyden uunta on ylöpäin, ja ne aavat uurian arvona Kun poitiivinen uunta valitaan ylöpäin, ewtonin II lain F = a perutella hyppääjän liieyhtälö on F G = a Kuiöyden voia on ääriaeaa F = y, ja painovoia G = Hyppääjän liieyhtälö y on iten y = a, ja yytty iihtyvyy on a = Kun painovoian potentiaalienerian nollataoi valitaan hyppääjän alin aea, hyppääjän ja öyden (ja Maan) uodotaalla yteeillä on lavalta irrotea vain painovoian potentiaalieneriaa ja aliaa aeaa, joa hyppääjä on hetellieti levoa, vain jouivoian potentiaalieneriaa Hyppääjään vaiuttavat vatuvoiat ovat erityettöiä, joten voidaan äyttää eaanien enerian äilyilaia Ealu = Eloppu Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
Phyica 9 1 paino 7(7) 13 Haroninen värähtely 1 ( ) y = l0 + y y = l0 + y = 0 y y l0 Rataitaan toien ateen yhtälö 8l0 ± + l y = = ± + 75 9,81 75 9,81 75 9,81 3 = ± + 107 107 107 8,953 =, 15,19998 joita alepi rataiu hylätään epäieleäänä Kiihtyvyy aliaa aeaa on iten 107 8, 953 y a = = 9,81 = 31, 4953 31 75 Vatau: Hyppääjän iihtyvyy on 31, un hän on lähipänä aanpintaa 0 Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät