RATKAISUT: Kertaustehtäviä
|
|
- Jutta Mäki
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien yiö a) aean puolen yiö on 1 =1 oiean puolen a yiö on 1 1 = 1, luuarolla ei ole yiöä Yhtälö oi pitää paiana, illä yhtälön olepien puolien yiö on aa. g b) aean puolen gh yiö on 1g 1 1= 1 oiean puolen 1 yiö on g 1 g 1 1 =, luuarolla 1/ ei ole yiöä Yhtälö ei oi pitää paiana, illä yhtälön eri puolilla on eri yiö. Huo. Se, että yhtälön oleilla puolilla on aa yiö, ei ielä taaa, että yhtälö on oiein. LUKU 3 5. = 100 ja t = 9,79, =? Keinopeu on ääritelän uaan =. t Kun ijoitetaan annetut luuarot, einopeudei aadaan 100 = = 10, ,79 Juouata 100 on itattu ainain enttietrin taruudella, joten epätarepi lähtöaro on juouaia. Lopputulo pyöritetään iten olen eriteän nueron taruuteen. 10, ,. Piirroet: Pican Oy/Pea ja Tuoa Könönen
2 Phyica 1 uuditettu paino OPETTAJAN OPAS (9) Kertautehtäiä 6. Kirjoitetaan aii arot yenpoteniuotoon iten, että erroin on ähintään yi, utta pienepi uin yenen: 0,035 n = 0, = 3, , = 7, , 4,6 p = =, ,, Nyt aroja on helppo errata, ja huoataan, että uurin aro on 3, Luu 4 7. Piirretään uaaja, joa aaa-aelilla on iiaien päähän riputettu uora graoina ja pytyaelilla on enyä illietreinä. Kuaajata oidaan luea, että a) iiainta taiuttaii 8,0 c noin 175 graan uora b) iiain taipuii 0 graan uoralla noin 95 eli 9,5 c. 8. Leyn aa =,3 g ja tihey ρ = 15 g/ 3. Tiheyden ääritelän uaan ρ = V ρ = V V ρv = : ρ V =,3 g = ρ 15 g = 0, , , jota oidaan rataita yytty tilauu: LUKU 5 9. = 100 ja t = 0,9,, =? Keinopeu aadaan, un ijoitetaan annetut luuarot einopeuden yhtälöön = t. 100 = = 111, ,9 100 = = 111,11 = 3, 6 111,11 = 399, ,9 h h h Piirroet: Pican Oy/Pea ja Tuoa Könönen
3 Phyica 1 uuditettu paino OPETTAJAN OPAS 3(9) Kertautehtäiä LUKU I pyyy paiallaan, II pyyy paiallaan, III on liiunut 10 0 = 10 ja IV on liiunut 5 = 3. a) III on liiunut eniten. b) I ja II oat liiuneet ähiten. 31. Mata aadaan laealla pintaalat A, B ja C. A = 0,0 3,0 = 60, B = 10,0 3,0 = 30, ja C = 15,0,0 = 30. A + B + C = = Nopeu = 18 /h ja aia t = 1 in = 1/60 h. Koa junan liie on taaita, ata = t = 18 h 1 h = 3, LUKU Kuaajan uaan appaleen nopeu uuttuu aiaälillä 3,0 -- 8,0 arota 4,8 / aroon 6,0 /. Siten eiiihtyyy on 6,0 4,8 a = = = = 0,4. 1 t t t1 8,0 3,0 34. a) Auton nopeu uuttuu aiaälillä 0 3,0 arota 67 /h aroon 93 /h. Sijoitetaan luuarot eiiihtyyyden yhtälöön 1 a = = t t t = h h = h 3,0 0 3,0 6 6,778 3,6 = = = 0, ,0 3,0 Piirroet: Pican Oy/Pea ja Tuoa Könönen
4 Phyica 1 uuditettu paino OPETTAJAN OPAS 4(9) Kertautehtäiä b) Jaetaan laettu iihtyyy aan putoaiiihtyyyden luuarolla 9,81, jolloin aadaan 0,96/9,81 =,133,1. LUKU a) Maa ja Kuu oat etäuoroaiutuea. b) Putoaa pallo ja Maa oat etäuoroaiutuea. c) Kirja pöydällä ja pöytä oat oetuuoroaiutuea. d) Jala ja tie oat oetuuoroaiutuea. LUKU a) Voiat oat aanuuntaiet, joten oonaioian uuruu on oiien ittaluujen ua ja uunta oiien yhteinen uunta F =,3 N + 1,1 N = 3,4 N F = 3,4 N ja =,0 g Kappaleen iihtyyy aadaan dynaiian perulaita F = a. F = a : F a = 3,4 N a = = 1,7,0 g b) Voiat oat ataaiuuntaiet, joten oonaioian uuruu on oiien ittaluujen erotu ja uunta uurean oian uuntaan. F = 15 N 1 N = 3 N F = 3 N ja = 1,5 g Kappaleen iihtyyy aadaan dynaiian perulaita F = a. F = a : F a = 3 N a = = 1,5 g Piirroet: Pican Oy/Pea ja Tuoa Könönen
5 Phyica 1 uuditettu paino OPETTAJAN OPAS 5(9) Kertautehtäiä 37. a) Kahiuppi on oetuuoroaiutuea pöydän ana ja etäuoroaiutuea Maan ana. Näitä yntyy oiat F pöytä uppiin ja F Maa uppiin. b) Tia on etäuoroaiutuea Maan ana ja tätä yntyy oia F Maa tiaan. 38. = 145 g, a = 4, /, F =? Dynaiian perulain uaan F = a, iten F = a = 145 g 4, = 609N 610 N 39. a) b) c) LUKU a) Kaii tunnetut uoroaiutuet oidaan elittää peruuoroaiututen aulla. b) 1. graitaatiouoroaiutu. ähöagneettinen uoroaiutu 3. aha uoroaiutu Piirroet: Pican Oy/Pea ja Tuoa Könönen
6 Phyica 1 uuditettu paino OPETTAJAN OPAS 6(9) Kertautehtäiä Luu a) Kun aua ladataan, ähöenergia uuntuu aun eialliei energiai ja läpöenergiai. Sähöenergiaa älittää ähöirta. Sähöenergia on peräiin eierii irtaaan eden liie-energiata. b) Kun aua puretaan, aun eiallinen energia uuntuu äänienergiai, aloenergiai, läpöenergiai ja ahdollieti liie-energiai (ärinähälyty). Virtaaan eden liie-energiaa ähöirta Aun eiallinen energia 4. a) Sulaaleyn aa = 0,5 g ja etäiyy aata h = 0,90. Leyn potentiaalienergia lattiaan errattuna on E p = gh = 0,5 g 9,81 0,90 =,073 g, J. b) Oletetaan, että energiaa ei uunnu putoaien aiana läpöenergiai. Tällöin leyn potentiaalienergia uuntuu oonaiuudeaan leyn liie-energiai, oa energia äilyy. Leyn potentiaalienergia putoainen Leyn liieenergia Sulaaleyn liie-energia on iten, J. Luu1 43. Pudotuoreu h =,5 ja irtaaa 15 3 /. Veden tihey on 1000 g/ 3. Minuutin aiana oea irtaaan eden tilauu V = = Veden aa Piirroet: Pican Oy/Pea ja Tuoa Könönen
7 Phyica 1 uuditettu paino OPETTAJAN OPAS 7(9) Kertautehtäiä = ρv = g = g. Potentiaalienergiaa apautuu iten inuutia E p = gh = g 9,81,5 g 7 =, MJ. 44. a) Väite on oiein. Potentiaalienergian laueeeta nähdään, että energia on uoraan errannollinen notooreuteen. E p = gh E p = g h = gh = E p. b) Väite on äärin. Kun putoaan appaleen nopeu on puolet loppunopeudeta, niin appaleen liie-energia E = 1 = Tätä nähdään, että liie-energia on tällä hetellä neljäoa eaanieta oonaienergiata. Tällöin potentiaalienergian ouu on ole neljäoaa aluperäietä potentiaalienergiata. 45. a) Koreu h = 3, ja pallon aa = 0,16 g. Pallon potentiaalienergia E p = gh = 0,16 g 9,81 3, = 5,07 J 5,0 J. b) Oletetaan, että energiaa ei uunnu putoaien aiana läpöenergiai. Tällöin pallon potentiaalienergia uuntuu oonaiuudeaan pallon liie-energiai, oa energia äilyy. 1 = gh = gh = gh = 9,81 3, = 7,936 7,9. Piirroet: Pican Oy/Pea ja Tuoa Könönen
8 Phyica 1 uuditettu paino OPETTAJAN OPAS 8(9) Kertautehtäiä LUKU a) Protonien luuäärä on ytien järjetyluu Z = 79. Aluaine, jona järjetyluu on 79, on ulta Au. b) Ytien aaluu on protonien ja neutronien luuäärän ua A = Z + N = = 197. Ytien tunnu on Au 47. a) Oiein. Nuleoni on yleiniity protonille ja neutronille, jota oat atoiytien raenneoia. b) Väärin: Iotoopit oat aan aluaineen eri eiintyiuotoja, jota poieaat toiitaan atoiytien neutroniäärän erilaiuuden uoi. c) Oiein: Ionioia äteily irrottaa aineen atoeita eletroneja. Alfaäteily irrottaa eletroneja, joten e on ionioiaa äteilyä. d) Väärin: UV-äteily ja itä pitepiaaltoinen ähöagneettinen äteily oat ionioiatonta äteilyä. Ionioiaton äteily ei pyty irrottaaan aineen atoeita eletroneja, oa äteilyn energia on liian pieni. LUKU a) 9 U 90Th+ He. Tytärydin on thoriu b) 9Cu 1e + 30 Zn +υ. Kupariydin on beetaiinu-atiiinen ja en hajoaituotteena yntyy eletroni ja antineutriino. Syntyä tytärydin on ini-66-iotooppi. 49. a) Jodinäytteen atiiiuu on alui 160 Bq. Puoliintuiajan ääritelätä euraa, että atiiiuu pienenee aroon 80 Bq ajaa 5 in, aroon 40 Bq ajaa 50 in, jne. Tällä peruteella oidaan aia-aeli aalata uan uaieti. 1 1 b) Kuaajata todetaan, että atiiiuu A= A0 = 160 Bq = 16 Bq, un t = 8 in Piirroet: Pican Oy/Pea ja Tuoa Könönen
9 Phyica 1 uuditettu paino OPETTAJAN OPAS 9(9) Kertautehtäiä Luu Tähti yntyy tähtiuua, un etyä iältää pölypili alaa utitua painooiaaallon aiutueta. Pilen utituea läpötila nouee ja lopulta fuuioreatio äynnityy. Jo tähti on riittään raa, iitä yntyy eden loppuea punainen jättiläinen. Lopulta punainen jättiläinen räjähtää upernoana. Riippuen tähden aata, jäljelle jää joo neutronitähti tai uta-auo. Supernoaräjähdyetä lähtee liieelle painooia-aalto, joa aa aiaan uuia tähtien yntyiiä. Myö tähden ulo-oat lentäät ypäröiään aaruuteen. Ne iältäät yö raaita aluaineita, joita oi yntyä uuille tähdille planeettauntia. 51. Laetaan allin ittaaaa. = pituu allia pituu luonnoa = 1 = 6, , Mittaaaa: 1 : Siriuen etäiyy allia aadaan ertoalla ittaaaalla Siriuen itattu etäiyy Auringota. 1 Siriuen etäiyy allia = 6, , = 1, Vatau: Siriuen etäiyy Auringota on allia iloetriä. Piirroet: Pican Oy/Pea ja Tuoa Könönen
RATKAISUT: 7. Gravitaatiovoima ja heittoliike
Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä
RATKAISUT: 3. Voimakuvio ja liikeyhtälö
Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy
RATKAISUT: 8. Momentti ja tasapaino
Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn
Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä
Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän
LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA
LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että
LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA
PERUSSARJA Vataa hulellieti ja iititi iiteen tehtäään! Kirjita tetaten epaperiin a niei, tiitteei, ähöptiite, pettajai nii eä ului nii. Kilpailuaiaa n 00 inuuttia. Seä tehtää- että epaperit palautetaan
4.3 Liikemäärän säilyminen
Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.
MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 7..005 MATEMATIIKAN KOE. ateen ammatillien oulutuen aiien alojen yteinen matematiia ilpailu Nimi: Oppilaito:. Koulutuala:... Luoa:.. Sarjat: MERKITSE OMA SARJA. Teniia ja liienne:... Matailu-,raitemu-
RATKAISUT: 5. Liikemäärä ja impulssi
Phyica 9 1. paino 1(9) 5. Liikeäärä ja ipuli : 5. Liikeäärä ja ipuli 5.1 a) Kappaleen liikeäärä on p, joa on kappaleen aa ja kappaleen nopeu. b) Ipuliperiaate: Syteein liikeäärän uuto Δ p aikaälillä Δt
BL20A0700 Sähköverkkotekniikan peruskurssi
BLA7 ähöveroteniian perusurssi Viavirrat BLA7 ähöveroteniian perusurssi Viojen aiheuttajat lastollinen ylijännite Laitteiden toiintahäiriö tai virhetoiinta nhiillinen erehdys Yliuoritus BLA7 ähöveroteniian
RATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06)
Fyiia evät 006 JAMK/IT -Intituutti Luentoonite: Meaniia Pai Repo & Pea Vai (päivitetty..06) 0. Johdanto... 0.. Fyiian ääitelä... 0.. Mittau ja yiöt.... -ulotteita ineatiiaa... 3.. Keivauhti... 3.. Keinopeu...
MAOL-Pisteitysohjeet Fysiikka kevät 2004
MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
RATKAISUT: 13. Harmoninen värähtely
Phyica 9 1 paino 1(7) 13 Haroninen värähtely : 13 Haroninen värähtely 131 a) Voia, jona uuruu on uoraan verrannollinen poieaaan taapainoaeata ja jona uunta on ohti taapainoaeaa b) Suure, joa ilaiee aiayiöä
Äänen nopeus pitkässä tangossa
IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu
S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.
nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen
Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS
(4) Luku 57. a) Mekaaniea poikittaiea aaltoliikkeeä aineen rakenneoat värähtelevät eteneiuuntaan vataan kohtiuoraa uunnaa. Eierkkejä ovat uun uaa jouen poikittainen aaltoliike tai veden pinnan aaltoilu.
VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen
/ ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai
Eksponentti- ja logaritmiyhtälö
Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,
LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA
LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.
NESTEIDEN ja ja KAASUJEN MEKANIIKKA
NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka
Liikkeet. Haarto & Karhunen. www.turkuamk.fi
Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa
1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona.
Fotoni 4 Kertau - 1 Kertautehtäviä Luku 1 1. Oheinen kuvio eittää kolen pyöräilijän A, B ja C paikkaa ajan funktiona. a) Kuka on kulkenut piiän atkan aikavälinä 0...7? b) Milloin B aavuttaa C:n? c) Kenellä
RATKAISUT: 21. Induktio
Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön
Intensiteettitaso ja Doplerin ilmiö
Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0
MAOL-Pisteitysohjeet Fysiikka syksy 2010
MAOL-Pisteitysohjeet Fysiikka syksy 00 Tyypillisten irheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuirhe -/3 p - laskuirhe, epäielekäs tulos, ähintään - - astauksessa yksi erkitseä
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
PD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
HARMONINEN VÄRÄHTELIJÄ
Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt HARMONINEN VÄRÄHELIJÄ yön taoitteet ässä työssä tutustut asolliseen, äärätyin aiaälein toistuaan edestaaiseen ärähdysliieeseen. Värähdysliie
RATKAISUT: 4. Mekaaninen energia
hyica 9 1 pain 1(7) 4 Meaaninen energia : 4 Meaaninen energia 41 a) tentiaalienergia n energian laji, jta appaleella n aeana anita tentiaalienergia vi lla eierii gravitaativurvaiutuen tai juen ptentiaalienergiaa
POSITIIVISEN LINSSIN POLTTOVÄLI
S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
2 1017/2013. Liitteet 1 2 MUUTOS LASKUPERUSTEISIIN TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE
07/03 Liitteet MUUOS LASKUPERUSEISIIN YÖNEKIJÄN ELÄKELAIN MUKAISA OIMINAA HARJOIAVILLE ELÄKESÄÄIÖILLE 07/03 3 Liite VAKUUUSEKNISE SUUREE Näiä laueruteia eiintyät auututeniet uureet laetaan yel:n muaien
Esimerkkilaskelma. Jäykistävä CLT-seinä
Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN
VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi
02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin
7. Pyörivät sähkökoneet
Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien
Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi
Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)
RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä
Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää
Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.
5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41
Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.
Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.
S Piirianalyysi 2 1. Välikoe
S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita
Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5
y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä
APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET
APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-
SISÄLLYS. annetun sosiaali- ja terveysministeriön asetuksen muuttamisesta. N:o 254. Sosiaali- ja terveysministeriön asetus
OMEN ÄÄDÖKOKOELMA 2001 Julaistu Helsingissä 23 päiänä maalisuuta 2001 N:o 254 256 IÄLLY N:o iu 254 osiaali- ja tereysministeriön asetus työnteijäin eläelain muaista toimintaa harjoittaan eläesäätiön eläeastuun
Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:
Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei
53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ
53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
MAOL-Pisteitysohjeet Fysiikka kevät 2010
MAOL-Piteityohjeet Fyiikka kevät 010 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet
Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 202 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös
RATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
LAPPEENRANNAN TEKNILLINEN YLIOPISTO
LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,
763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013
7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()
MP069 alueen sähköteknisten reunaehtojen laskeminen.
M069 alueen ähkötekniten reunaehtojen lakeinen. Kekiteho tälle alueelle aatiin kun otettiin Tornion irkkiötä ataaa oakotitalo alue ja niiden talojen kulututen peruteella äärättiin kullekin tontille kulutupite
Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli
hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen
KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s
Phyica 4 Opettajan OPAS (8) LUKU 46 v k = /, x = 3,0 k, t =? x x Kekinopeuden uuruu on vk = Ratkaitaan aika t = t v 3,0 k t = = 50 = 50 in = 4,667 in 4, in 60 k 47 v k = 50 k/h, x =,5 k, v k = 80 k/h,
1 Magneetin ympärillä on magneettikenttä Perustehtävät
Phyica 7 Opettajan OPAS (6) Magneetin ympärillä on magneettikenttä Magneetin ympärillä on magneettikenttä Perutehtävät. a) Aineet voidaan luokitella magneettiiin ja ei-magneettiiin aineiiin. Oa ei-magneettiita
MAOL-Pisteitysohjeet Fysiikka kevät 2002
MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0
RATKAISUT: Kertaustehtävät
Phyica 4 OPETTAJAN OPAS (7) Kertautehtävät : Kertautehtävät Luku Piirretään tangentti hetkeä, vataavaan kohtaan Kuvan ukaan tangentin kulakerroin on 4,5 4 oikea vaihtoehto Vatau: B eli B on Taainen liike,
Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa.
Kuva : Etäisestä yrskystä tulee 00 etrisiä sekä 20 etrisiä aaltoja kohti rantaa. Myrskyn etäisyys Kuvan ukaisesti yrskystä tulee ensin pitkiä sataetrisiä aaltoja, joiden nopeus on v 00. 0 tuntia yöhein
F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20
F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin
Liikemäärä ja törmäykset
Liikeäärä a töräykset Haarto & Karhunen www.turkuak.fi Suureita Kaaleen liikeäärä: Vektorisuure Voidaan ilaista koonenttiuodossa,, x x y y z z Voian antaa iulssi: I Aiheuttaa liikeäärän uutoksen Vektorisuure
Uimahallien ja kylpylöiden sisäilmastoa ja ilmanvaihtoa koskevat terveydelliset ohjeet (Oppaita 3:2008)
Lasuesierejä 1 (16) 0.09.009 Viite Uiaallien ja ylpylöiden sisäilastoa ja ilanvaitoa osevat terveydelliset ojeet (Oppaita :008) KYLPYLÖIDEN ILMANVAIHDON LASKUESIMERKKEJÄ Liitteet Kylpyajan aiduntaerroin
DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen
D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa
Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
BH60A0900 Ympäristömittaukset
BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie
i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k
1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje
Laskennallisen kombinatoriikan perusongelmia
Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti
Viikkotehtävät IV, ratkaisut
Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää
S-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
Valtion eläkemaksun laskuperusteet
VALTIOKONTTORI PÄÄTÖS Dnro 62/30/2005 Valtion eläkemakn lakperteet Valtiokonttori on 2262005 hyäkynyt nämä lakperteet nodatettaaki lakettaea Valtion eläkerahatolaia tarkoitettja työnantajan eläkemakja
TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg
TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.
RATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista
Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.
Asunto Oy Lahden Lehtorinne LAUNE ENNAKKOMARKKINOINTI
LAUNE ENNAKKOMARKKINOINTI 3 Leppoiaa ja huolonta elämää Launeen maiemia Lahdea ol eeieä aemaa Lahti ijaitee ainutlaatuiella paialla Salpauelän harjujen ja Veijärven yhtymädaa. Järvenrantaaupungia aii
Physica 7 Opettajan OPAS 1(29)
Phyica 7 Opttajan OPAS 1(9) 1. luku 06. Magnttivuontihyttä kuvaava vktori on magnttiknttää kuvaavan knttäviivan tangntin uuntainn. Vktorin pituu on uurin auvamagntin napojn lähiyydä ja pinn täiyydn kavaa.
Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
PAKONOPEUDET eli KOSMISET NOPEUDET
PAKONOPEUDET eli KOSMISET NOPEUDET Kappaleen kokonaienegiata Ekok Ek + Ep iippuu ikä on kappaleen atakäyän uoto gaitaatiokentää. Voidaan eottaa kole atakäyää: 1) Ekok < 0 ellipi ) Ekok 0 paaabeli 3) Ekok
MAOL-Pisteitysohjeet Fysiikka kevät 2011
MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä
Kesä tulee, onko autosi valmis tien päälle?
Ksä tul, ono autosi valis tin pääll? Varaa Ford M rihuolto, saat KAUPA N PÄÄLLE Ford-frisb golf puttrin* Ford Mrihuolto pitää autosi unnossa. Alupräisosiin ja aattitaitoon voit luottaa. Lu lisää sivulta
3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI
JÄÄMEREN RAUTATIE ROVANIEMI-KIRKKONIEMI WWW.ARCTICCORRIDOR.FI KILPAILUKYKYÄ INVESTOIJILLE JA YRITYKSILLE Jäämeren rautatie parantaa yrityten ja invetoijien toimintamahdolliuukia arktiella alueella. Uuia
Satoi vettä. Eelillä oli tylsää. Hänen paras ystävänsä Miisa ei ollut kotona, joten Eelillä ei ollut leikkikaveria.
SELKO 1 Satoi että. Eelillä oli tylsää. Hänen paras ystäänsä Miisa ei ollut kotona, joten Eelillä ei ollut leikkikaeria. Lähdetään kirjastoon! ehdotti äiti. Mikä se on? Eeli ihmetteli. Kirjasto on kia
Pakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
Ura- / kouluttautumisprosessi Avoin ammattiopistotarjonta: Henkilökohtainen ohjaus ja tukiprosessi. T y ö e l ä m ä l ä h t ö i s y y s
Avn aap Ojaa (5 pv): Jauunna uuun auua, pua, pnjn ppuunaaaa, pppuuuun aaa Hnann jau ja up Ua- / uuauup Avn aapajna: unnn a Anauua unnn a YO-ana Kuuua unn n a Ojaa (vnn 10 pv): Onunn aaan, aan ja uuuaduun
1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)
. Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.
b 4i j k ovat yhdensuuntaiset.
MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä
Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)
Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,
Mekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0
7.lk matematiikka 1 Janne Koponen verio 2.0 Tämä monite on tehty 7.lk. geometrian opetukeen ja olen käyttänyt itä ite Hatanpään koulua. Jo joku opettaja haluaa tätä kuitenkin käyttää omaa opetukeaan, on
Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet
Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 205 PERUSTEIDEN SOVELTAMINEN 2 IKÄÄN JA PALKKAAN LIITTYVÄT SUUREET 2 2. IKÄLASKU 2 2.2 VAKUUTUSMAKSUN PERUSTEENA OLEVA PALKKA JA SEN ARVIOIMINEN
SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN
aalto-yliopito tenillinen oreaoulu Eletroniian, tietoliienteen ja automaation tiedeunta Rauno Hirvonen SÄHKÖASEMAN ENSIÖPUOLEN SUUNNIELUSSA KÄYEÄ- VIEN LASKENAMENEELMIEN KEHIÄMINEN Diplomityö, joa on jätetty
MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET
5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän
SOVINTO RIITA-ASIOIDEN RATKAISUKEINONA
Turun ylioito Yhteiuntatieteellinen tiedeunta Taloutieteen laito SOVINTO RIITA-ASIOIDEN RATKAISUKEINONA Soinnon edellytyten mallintamieta taloutieteen menetelmin Pro gradu -tutielma Tououu 009 Tarja Kangamaa
NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06
NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken
Kosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
Työ ja energia. Haarto & Karhunen.
Työ ja energia Haarto & Karhunen Voiman teemä työ Voiman F teemä työ W määritellään voiman F ja uljetun matan s pistetulona. Siis uljetun matan s ja matan suuntaisen voiman omponentin tulona. W = F s =
Säteily ja suojautuminen Joel Nikkola
Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa