S Piirianalyysi 2 1. Välikoe
|
|
- Heli Salminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 S-55.0 Piirianalyyi. Välioe.3.0 ae ehävä eri paperille uin ehävä 3 5. Muia irjoiaa joaieen paperiin elväi nimi, opielijanumero, urin nimi ja oodi. Tehävä laeaan oreaoulun oepaperille. Muia papereia ei araea.. E Kyin avaaan, un = 0. E on aajännielähde. a) ae elan vira i(0) jauvuuilaa ennen yimen avaamia. b) Hahmoele elan vira ajan funiona. c) Hahmoele elan jännie ajan funiona.. f() 3 Muodoa funion f() aplace-muunno F(), un { e, un 0 < f() = e ( 5)/4, un J Taaviraläheen yöämä piiri on jauvuuilaa ennen yimen avaamia. ae jännie yimen avaamien jäleen. J = 0,3A =,5µF = 50mH = 00 Ω = 300 Ω. 4. e() Kuvan piiri on jauvuuilaa ennen heeä = 0, jolloin yin avaaan. ae vira yimen avaamien jäleen. e() = 0in(ω 45 )V ω = 000 rad/ = Ω = 0mH = mf. 5. ae uvan jauvuuilaa olevaa piiriä vauen vira i () ajan funiona eä vauea lämmöi muuuva eho P. e () e () e () = 0in(ω)V j 3 () e () = 5in(ω + 30 )A j 3 () = in(ω + 60 )A ω = 300 rad/ = 5 Ω = 40mH = 0mF. Tuinoäänö anaa mahdolliuuden järjeää liäharjoiua niille opielijoille, joa ova aanee olmei hyläyn arvoanan välioeia ai eniä. Tämä aroiaa iä, eä aauaan olme nollaa, opielijan on palaueava laeuna 0 aienin määräämää liäehävää ennen euraavaan eniin ai välioeeeen oalliumia. Välioee ja välioeen uuina ai uuinailaiuudea ehy eni laeaan yhdei yriyei. Yiäinen välioe laeaan puoliaai uoriuerrai. änäolo oeilaiuudea laeaan yriyei, amoin eniin ilmoiauuminen.
2 aplace-muunnoauluo Määrielmä. f() F() = {f()} = f() aplace-muunnoen ominaiuuia. A f () + A f () A F () + A F () d d f() d n d n f() F() f(0) n F() 5. f(τ)dτ 0 F() 6. ( ) n f() d n d n F() 7. f( a)ε( a) e a F() 8. f( + a) e a (F() 0 f()e d F() = {f()} n n i f (i ) (0) i= a 0 e f()d) 9. e a f() F( + a) 0. f(a) ( ) a F a. jaollinen funio f() = f( + T) F () e T, F () = yhden jaon muunno.. f () f () = 0 f (τ)f ( τ)dτ F ()F () 3. f(0 + ) = lim F() 4. f( ) = lim 0 F(), jo loppuarvo on olemaa f() Muunnopareja 5. δ() F() = {f()} 6. aε() a n n! n+ 9. e a + a 0. e a e b b a ( + a)( + b) ω. in(ω) + ω. co(ω) + ω a 3. inh(a) a 4. coh(a) a 5. e a ω in(ω) ( + a) + ω 6. e a co(ω) + a ( + a) + ω e a n n! ω in(ω) 9. [ε() ε( π/ω)] in(ω) ( + a) n+ ( + ω ) ( + e π/ω) ω + ω
3 0. E Kyin avaaan, un = 0. E on aajännielähde. a) ae elan vira i(0) jauvuuilaa ennen yimen avaamia. b) Hahmoele elan vira ajan funiona. c) Hahmoele elan jännie ajan funiona. a) i(0) = I 0 = E b) Kelan vira on jauva. Ennen yimen avaamia vira on aluarvon uuruinen ja läheyy eponeniaaliei nollaa yimen avaamien jäleen. E/ c) Kelan jännie voi muuua äilliei. Ennen yimen avaamia jännie on nolla, jännie hyppää yhäiä un yin avaaan ja laee en jäleen eponeniaaliei nollaan.
4 0. f() Muodoa funion f() aplace-muunno F(), un { e, un 0 < f() = e ( 5)/4, un Kirjoieaan paloiain määriellylle funiolle lauee aelfunioiden avulla: f() = e [ε() ε( )] + e ( 5)/4 ε( ). Muooillaan laueea niin, eä eponenifunioihin ja aelfunioihin aadaan ama viive: f() = e ε() e e ε( ) + e e ( )/4 ε( ). Funion aplace-muunnoeen arviaan eponenifunion muunnoa (aava 9) ja viiväyäänöä (aava 7): F() = e e + e e + = ( + e 4 + ). 4
5 0.3 J Taaviraläheen yöämä piiri on jauvuuilaa ennen yimen avaamia. ae jännie yimen avaamien jäleen. J = 0,3A =,5µF = 50mH = 00 Ω = 300 Ω. I 0 I 0 = J U 0 + J = 0,A U 0 = + J = 36V U() U 0 I 0 I() I() = = I 0 + U 0 = + + 0, I 0 + U =, , , U() = I() I 0 = 0, ,006 = Funiolla on reaalie nollaohda eli oamuroehielmäi aadaan: [ ] U() = Kääneimuunno: = 4 (e 000 e 4000 )V, un 0
6 0.4 e() Kuvan piiri on jauvuuilaa ennen heeä = 0, jolloin yin avaaan. ae vira yimen avaamien jäleen. e() = 0in(ω 45 )V ω = 000 rad/ = Ω = 0mH = mf. aaiaan aluarvo ooiinlaennalla. Kelan vira aadaan uoraan Ohmin laia I 0 = E jω = ja ondenaaorin jännie jännieenjaoaavaa U 0 = jω + E = jω 0 / 45 j0 E + jω = = / 35 0 / 45 + j Ajan funioii muuamalla aadaan laeua aluarvo heellä = 0: = 0/ 08,43. = in(ω 35 ) I 0 = A = 0 in(ω 08,43 ) aplace-muunneaan piiri yimen avaamien jäleen: U 0 = 3 V I 0 U 0 I() I() = I 0 + U0 + + = I 0 + U = Muoaaan ääneimuunneava lauee opivaan muooon: = I() = [ ] + 00 ( + 00) + (300) ( + 00) + (300) = [ ( + 00) + (300) ] ( + 00) + (300) Kääneimuunno: = e 00 [ co(300) in(300) ] ε()
7 0.5 ae uvan jauvuuilaa olevaa piiriä vauen vira i () ajan funiona eä vauea lämmöi muuuva eho P. e () e () e () = 0in(ω)V j 3 () e () = 5in(ω + 30 )A j 3 () = in(ω + 60 )A ω = 300 rad/ = 5 Ω = 40mH = 0mF. Käiellään aajuude erieen. Taajuudella ω piiriä vaiuaa ai lähdeä. E = 0 /0 E E E = 5 /30 I = E E + jω = 0,337/ 9,7 A i () = 0,477in(300 9,7 )A Taajuudella ω: J 3 Koonaivira: Koonaieho J 3 = /60 I = jω + jω =,385/ 08,3 A i () =,958in(600 08,3 )A = 0,477in(300 9,7 ) +,958in(600 08,3 )A P = I + I = 0,568W + 9,584W = 0,5W
S Piirianalyysi 2 1. Välikoe
S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita
LisätiedotS-55.1220 Piirianalyysi 2 Tentti 27.10.2011
S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω
LisätiedotS-55.1220 Piirianalyysi 2 Tentti 4.1.2007
S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.
LisätiedotS-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
LisätiedotS-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
LisätiedotELEC-C4120 Piirianalyysi II 2. välikoe
LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2
LisätiedotS Piirianalyysi 2 Tentti
S-55.2 Piirianalyyi 2 Tentti 4.9.06. j(t) u(t) ake jännite u(t) ajan funktiona ja vatukea kuluva teho, kun j(t) ĵ in(ω t)+ĵ 2 in(ω 2 t) ja piiri on jatkuvuutilaa. Ω 5µH 00 nf ĵ 300 ma ĵ 2 0 ma ω 0 6 rad/
LisätiedotSATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 3 / Laplace-muunnos
SAE1050 Piirianalyyi II yky 016 kevät 017 1 / 6 ehtävä 1. Muodota alla olevaa kuvaa eitetyn muotoien jännitteen aplace-muunno. u(t) - t Kuva 1. Jännitteen kuvaaja tehtävään 1. Määritetään funktio paloittain:
LisätiedotS Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
Lisätiedot( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
LisätiedotDerivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan
87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen
LisätiedotSATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit
SATE1150 Piirianalyyi, oa 2 yy 2017 1 /10 auharjoitu 1: R ja Rpiirit Tehtävä 1. a) Millainen uodatin on yeeä uvaa 1? Perutele aia taratelemalla unin yittäien omponentin impedanin taajuuäyttäytymitä. b)
Lisätiedota. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
LisätiedotDEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarie järjeelmä Harjoiu 6, harjoiuenpiäjille arkoieu rakaiuehdouke Tää harjoiukea käiellään aplace-muunnoa ja en hyödynämiä differeniaaliyhälöiden rakaiemiea Tehävä Määrielmän mukaan funkion f
LisätiedotJLP:n käyttämättömät mahdollisuudet. Juha Lappi
JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p
LisätiedotSATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 10 / Kaksiporttien ABCD-parametrit ja siirtojohdot aikatasossa
SATE050 Piirianalyysi II syksy 06 kevä 07 / 6 Tehävä. Määriä alla olevassa kuvassa esieylle piirille kejumariisi sekä sen avulla syööpiseimpedanssi Z(s), un kuormana on resisanssi k. i () L i () u () C
LisätiedotYhden vapausasteen värähtely - harjoitustehtäviä
Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /
Lisätiedotb) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
LisätiedotTässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.
DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,
LisätiedotS /142 Piirianalyysi 2 2. Välikoe
S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston
LisätiedotW dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Lisätiedot12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
LisätiedotURN: NBN:fi-fe19991228
URN: NBN:fi-fe19991228 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
LisätiedotHuomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
LisätiedotOjala, Leena Ojala ja Timo Ranta LAPLACE-MUUNNOS
Timo Ojala, eena Ojala ja Timo Rana APACE-MUUNNOS Eipuhe Tämä aplace-muunnoa ja en ovelamia käielevä oppimaeriaali on arkoieu ähköekniikan ininöörikouluukeen. Eiieoina ulii unea eimerkiki Ojalain lakuoppien
Lisätiedot( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
LisätiedotS Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
LisätiedotBINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
LisätiedotEPOP Kevät
EPOP Kevät 2012 16.1.2012 Projeti 1 Muutosilmiöt Piirianalyysi 1:ssä äsitellyt tasa- ja vaihtovirta-analyysit ovat jatuvan tilan menetelmiä, joissa oletetaan, että piirin herätteet (riippumattomat lähteet)
Lisätiedotjärjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
LisätiedotMittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
LisätiedotDiskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
Lisätiedot2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
Lisätiedot( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖKNKKA JA KONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen entti 0..0: tehtävät,3,5,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
Lisätiedot5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE
Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa
LisätiedotLuento 6. Järjestelmät
Lueno 6 Järjeelmän (yeemin) äie ja luoiue Lineaarinen aia invariani järjeelmä Impulivae Siirofunio Sabiiliuu Järjeelmien ooaminen oia..7 Järjeelmä Järjeelmä / Syeemi / Proei on objei, joa määriää relaaio
LisätiedotOPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2
OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9
LisätiedotDEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
LisätiedotS Ä H K Ö - J A T I E T O T E K N I I K A N O S A S T O
S Ä H K Ö J A T I E T O T E K N I I K A N O S A S T O 2.0.2007 Piirieria II (Graafise laskime salliuja). Laske kuvan piirille siirfunki U u (s)/u in (s) ja piirrä nllanapakara. Laske myös Laplacekääneismuunns
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
LisätiedotTehtävän 1 moottorin kuormana an työkone, jonka momentti on vakio T=30 Nm. Laske
SÄHKÖENERGAEKNKKA Hrjoius - lueno 9 ehävä 1 Oheisess kuvss on ssähkökoneen sijiskykenämlli. Joh pyörimisnopeuden kv momenin funkion, kun mgneoinivuo φ j nkkurijännie V ov vkioin. Piirrä johmsi kv -ω soss,
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali
7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNIIKKA 19.12.2002 Kimmo Silvonen Tentti: tehtävät 1,3,4,7,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen
LisätiedotKOE 2 Ympäristöekonomia
Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO
LisätiedotTelecommunication engineering I A Exercise 3
Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,
Lisätiedota) Ortogonaalinen, koska kantafunktioiden energia 1
S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Tentti 6.5.007: tehtävät,3,4,6,0. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotLuento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
LisätiedotJohda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
LisätiedotTasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
LisätiedotMAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan
3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa
LisätiedotELEC-C1230 Säätötekniikka. Luku 3: Dynaamisen vasteen määrittäminen, Laplace-muunnos, siirtofunktio
ELEC-C30 Sääöekniikka Luku 3: Dynaamien vaeen määriäminen, Laplace-muunno, iirofunkio Differeniaaliyhälön rakaiu Syeemin ymmärämien ja hallinnan kannala on olennaia ieää, mien lähöuure y() käyäyyy ajan
LisätiedotAlipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle:
. Saainen analyyi.. Buck-opoloia Käiellään enin buck-yyppiä hakkurieholähdeä (kuva 2.2a ja 3.). ää eimerkiä kuorma on puhaai reiiivinen (R), mua yleiei e on yöeävien laieiden ominaiuukia muodouva impedani.
Lisätiedot2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
LisätiedotProjekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on
EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA A KTONKKA Kimmo Silvonen Tentti 20.5.200: tehtävät,3,5,6,8.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.)
LisätiedotProjekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on
EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana
LisätiedotHarjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
LisätiedotELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen
2. välikoe.2.207. Saat vastata vain neljään tehtävään!. aske jännite u 2 (t) ajan t 4 t kuluttua kytkimen sulkemisesta. 9 V S 50 Ω, 00 Ω, 50 Ω. t 0 {}}{{}}{ S t 0 u u 2 (t) 2. aske jännite U yhden millivoltin
Lisätiedota) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
LisätiedotEnnen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä
DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
LisätiedotKOMISSION VALMISTELUASIAKIRJA
EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:
LisätiedotPD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
LisätiedotMallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
Lisätiedotb) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55. SÄHKÖTKNIIKKA JA LKTONIIKKA 2. välikoe.2.22. Saat vastata vain neljään tehtävään! Sallitut: Kako, [r.] laskin, [MAOL], [sanakirjan käytöstä sovittava valvojan kanssa!]. Laske jännite. = V, = 2 Ω,
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
. väliko 27.0.2008. Saat vatata vain nljään thtävään!. ak jännit. = 4 Ω, 2 = 4 Ω, 3 = 4 Ω, = 0 V, = 3 A, = 2 A. 2 + I 3 2. ak jännit, kun kytkin uljtaan htkllä. = 0 V = 2 = 0 Ω, = 0,2 F, 0 = 2 V. 2 i 2
LisätiedotJoulukuun vaativammat valmennustehtävät ratkaisut
Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4
LisätiedotMS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
LisätiedotPuolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017
OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1
LisätiedotR = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
Lisätiedotjärjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen
DEE- Lineaariset järjestelmät Disreettiaiaiset järjestelmät aiatason analsi DEE- Lineaariset järjestelmät Risto Mionen Disreettiaiaiset järjestelmät 7 3 5 Lineaaristen, vaioertoimisten differenssihtälöiden
Lisätiedot1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)
. Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.
LisätiedotSATE1040 PIIRIANALYYSI I / MAARIT VESAPUISTO: APLAC -HARJOITUSTYÖ / KEVÄT RYHMÄ 4: Luoma, Tervo
1 SATE1040 PIIRIANALYYSI I / MAARIT VESAPUISTO: APLAC -HARJOITUSTYÖ / KEVÄT 2008 RYHMÄ 4: Luoma, Tervo Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-simulointiohjelmiston ominaisuuksiin
LisätiedotSATE2180 Kenttäteorian perusteet syksy / 6 Laskuharjoitus 7 / Siirrosvirta ja indusoitunut sähkömotorinen voima
ATE18 Kenäeorin perusee syksy 18 1 / 6 Lskuhrjoius 7 / iirrosvir j inusoiunu sähkömoorinen voim Tehävä 1. All olevn kuvn mukinen piiri on sinimuooisesi värähelevässä j epähomogeenisess mgneeikenässä sin
LisätiedotRATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
Lisätiedotx v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
LisätiedotKANTOAALTOMODULOIDUN KAISTANPÄÄSTÖSIGNAALIN (BANDPASS) JA KANTATAAJUISEN (BASEBAND) SIGNAALIN AMPLITUDISPEKTRIT
KANOAALOMODULOIDUN KAISANPÄÄSÖSINAALIN BANDPASS JA KANAAAJUISEN BASEBAND SINAALIN AMPLIUDISPEKRI 536A ieoliienneeniia II Osa 5 Kari Käräinen Sysy 05 EHOIHEYSSPEKRI & KAISANLEVEYS Edellä arasellu modulaaio
Lisätiedot( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 09: Yhden vapausasteen vaimeneva ominaisvärähtely
9/ VÄRÄHTELYMEKNKK SESSO 9: Yhn vpun vinv oinivärähly LKEYHTÄLÖ Viooi vinnu vinnuvoin oln olvn uorn vrrnnollinn värählvän n nopun li F v () jo on vinnuvio. Kuv on viooii vinnun värählijän prulli, jo vinnu
LisätiedotHelpompaa korjausrakentamista HB-Priimalla s. 7 NEWS
Helpompaa orjausraenamisa HB-Priimalla s. 7 NEWS Tuu ja urvallinen HB-PRIIMA -väliseinälevy Hiljaisuus vaiona HB-PRIIMA Silence -uoeperhe Laaduas ja miaara Turvallinen Edullinen Nopea ja helppo asenaa
LisätiedotF Y S I I K K A KERTAUSTEHTÄVIÄ 1-20
F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.3 SÄHKÖTKNKKA.5.22 Kimmo Silvonen Tentti: tehtävät,3,4,6,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.. Laske virta.
LisätiedotAnalyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
LisätiedotLuento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
LisätiedotS Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
LisätiedotRF-Tekniikan Perusteet II
RF-Teniian Peusee II Kevä 003 740800 RF-Teniian Peusee II Luenno o 8 0 SM Haa e 8 0 SM Haa alaa.. Kija: Poa Micowave ngineeing, nd diion, Wiley Tuevaa ijallisuua: Räisänen, Leho Radioeniia Collin, Foundaions
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Lisätiedot