Telecommunication engineering I A Exercise 3

Koko: px
Aloita esitys sivulta:

Download "Telecommunication engineering I A Exercise 3"

Transkriptio

1 Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe, jälkee.

2 Teleouao egeerg I 5359A xere 3 δ T x Käyäöä delaodulaaor uloulo e uodou pulea, vaa hyv kapea pulea. Reeregaal uodoeaa egroalla x T δ T dα jollo aadaa porraapprokaao gaala. elaodulodu gaal deodulo vodaa uoraa egroalla x, el uodoeaa uudeaa porraapprokaao, ja e jälkee uoreaa alpääöuodau porae reuoje pyöräek. elaodulaaor vodaa oeuaa vahoehoe yö ao. kuva ukae koparaaor ja vvee avulla e, eä xk eduaa y äyeä k aoagaala. Kapea pul ε ± polaree rppuu ä, oko k k q x uurep ε k va peep ε k ku k q äyeä approkova gaal x q k edelle arvo k q ~ x q. x -

3 Teleouao egeerg I 5359A xere 3 elaodulaaor äyeeooopeu 44, khz ja porragaal akelee aplud o,v. Modulova aoagaal o uooa V. aoagaal uur uuoopeu o: ax d d ax o V V Modulaaor pyyy euraaaa korkeaa ouujyrkkyydellä kulakerro: δ T gaal lekkauue ja äröyye eäek o olava voaa eho: δ d ax T d δ V δ V 7Hz,V 44,kHz V 3

4 Teleouao egeerg I 5359A xere 3 Proble PCM gaal uodoaek aoagaal äyeeää aplg yqu äyeeooeoreea ukaella opeudella. äyeey arvo kvaodaa quazg, joka jälkee kvaodu arvo koodaaa bäärk PCM-koodauk aok. Käyäöä operaao oeueaa aple & hold prllä ja aaloga-dgaaluuella. Kvaoao o koodau bäärkood avulla, jollo arvave be lukuäärä, ku kvaoaoje kokoaäärä o q, aadaa kaavaa olava kokoaluku: q log q log l x x l Kvaoa yyvä vrhe kvaokoha rajouu vällle o kvaoväl uuruu. Ku kvaoja oa-alue o [ A, A] lukuääräk aadaa A q ±, joa vola, kvaoaoje 4

5 Teleouao egeerg I 5359A xere 3 uur kvaoa yyvä vrhejäe äyää epäyhälö:, A A, A A, A, A, A q 5 log 5 5,64 Valaa 6 Jo kaaaajue aoagaal kaalevey o W, o e yqv eoreea ukae äyeeävä vähää äyeeooopeudella W. Tällö PCM - gaal arveak kaaleveydek aadaa karkea arvoua B W 6 4kHz 48kHz Arvoa oleeu, eä bvrra kaalevey o aa ku bopeu. Käyäöä arvava kaalevey kaavaa rppuu yö perupul uodoa, el ä aalouodoa jolla olla ja ykköe eeää joko kaaaajue a kaoaalooduloua. odulaaoeeelä vala vakuaa. 5

6 Teleouao egeerg I 5359A xere 3 Proble 3 Läheeyy gaal vaaaoeu gaal o x uauuu kaavaa AWG-kohaa x o r, jollo joka kaapääöuodaeaa pre-deeo ler ee laua hyöygaal pääee läp ellaeaa ja koha uodauu W-kaalle y o Kapeakaae gaal karkea: BW < % BW Kohaproe o kapeakaaa, koka yyplle kaalevey ää B:lle W o pe verraua kaoaaloaajuuee. Tällö kohaproe joa vodaa laa kvadrauurkopoeea avulla: o voa eää vekoreykeä yö euraava: 6

7 Teleouao egeerg I 5359A xere 3 7 o R φ ω ku R verhokäyrä ara φ vahe { } o y gaal eho ee laua ollakekarvoe gaal oe oe: { } { } [ ] { } { } o4 o4 o o Koha eho ee laua { } W W B H joa

8 Teleouao egeerg I 5359A xere 3 B o kakpuole koha ehohey valkoelle AWG kohalle kaapääöuodae uloa kaapääöuodae kaalevey W H uodae rouko vahvu oleeaa Koherea laea y kerroaa kaoaallolla ja ulo alpääöuodaeaa po-deeo ler y y [ ] o [ ] o o o o 4 4 o [ o4 ] llä o α α α oα [ o α ] 8

9 Teleouao egeerg I 5359A xere 3 y gaal eho lau jälkee alpääöuoda pääää aoagaal ellaeaa läve: { } ja koha eho lau jälkee o { } W W { } y W 5kHz a R 4dB W / Hz Vaaaoea haluaa aavuaa 4dB gaalkohauhde, jollo R 4 db log 4 koka hyöygaal eho ee ja jälkee lau aa R W 5 5 W,5W 9

10 Teleouao egeerg I 5359A xere 3 b Vaaaoe lähdö kohaeho 4 8 W 5 W 5 W 5W

KOHINAN JA VAIHEVIRHEEN VAIKUTUS VAIHEKOHERENTEILLA JÄRJESTELMILLÄ

KOHINAN JA VAIHEVIRHEEN VAIKUTUS VAIHEKOHERENTEILLA JÄRJESTELMILLÄ KOHINAN JA VAIHVIRHN VAIKUTUS VAIHKOHRNTILLA JÄRJSTLMILLÄ Mie vaihee epävaruu vaikuaa kohereia ilaiua? Mikä o piloiigaali? 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05 VAIHVIRHN YLINN ANALYYSI QSB

Lisätiedot

KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA

KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA KVANTIOINTIKOHINA JA KANAVAN AWGN- KOHINA PULIKOODIMODULAATIOA Teolkenneeknkka I 5359A Kar Kärkkänen Osa 6 5 Kvansonkohna PCM-järjeselmässä PCM:ssa on kaks vrhelähdeä:. kvansonkohna,. kanavan kohnan aheuama

Lisätiedot

DIGITAALISET PULSSIMODULAATIOT M JA PCM

DIGITAALISET PULSSIMODULAATIOT M JA PCM DIGITAALISET PULSSIMODULAATIOT M JA PCM 1 (10) Deltamodulaatio ( M) M koodaa informaation ± polariteetin omaavaki binääriiki impuleiki. Menetelmä on ykinkertainen. Idea perutuu ignaalin m(t) muutoken binäärieen

Lisätiedot

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015

DIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015 1 DIGITAALISET PULSSIMODULAATIOT M JA PCM 521357A Tietoliikennetekniikka I Oa 21 Kari Kärkkäinen DELTAMODULAATIO M 2 M koodaa näytteen ± polariteetin omaavaki binääripuliki. Idea perutuu ignaalin m(t muutoken

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

INTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA

INTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA 1 INTERFERENSSIN VIKUTUS LINERISISS MOULTIOISS Men yksaajunen häökanoaalo haaa lasua? 521357 Teolkenneeknkka I Osa 18 Ka Käkkänen Kevä 2015 KERTUST 2 Kanoaaloodulaaolle: os[2πf φ] Lneaanen odulaao Vahee

Lisätiedot

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015 1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie

Lisätiedot

Eo C)sl. oarl. d to E= J. o-= o cy) =uo. f,e. ic v. .o6. .9o. äji. :ir. ijo 96. {c o o. ';i _o. :fe. C=?i. t-l +) (- c rt, u0 C.

Eo C)sl. oarl. d to E= J. o-= o cy) =uo. f,e. ic v. .o6. .9o. äji. :ir. ijo 96. {c o o. ';i _o. :fe. C=?i. t-l +) (- c rt, u0 C. C C C)l A\ d Y) L P C v J J rl, ( 0 C.6 +) ( j 96.9 :r : C (Db]? d '; _ äj r, { . 3 k l: d d 6 60QOO:ddO 96.l ä.c p _ : 6 äp l P C..86 p r5 r!l (, ō J. J rl r O 6!6 (5 ) ä dl r l { ::: :: :: 6e g r : ;

Lisätiedot

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL 75 95.9.59F 9.. yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu Siäänrakennettu

Lisätiedot

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä

Lisätiedot

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot

FCG Planeko Oy HELSINGIN KAUPUNKI MUNKKINIEMEN KÄYTTÄJÄKYSELY. Yhteenveto ja johtopäätökset 0100-D1194

FCG Planeko Oy HELSINGIN KAUPUNKI MUNKKINIEMEN KÄYTTÄJÄKYSELY. Yhteenveto ja johtopäätökset 0100-D1194 FCG P Oy HELSINGIN AUPUNI UNINIEEN ÄYÄJÄYSELY Yhv hääö -D9..9 FCG P Oy Yhv hääö () SISÄLLYSLUEELO YLEISÄ... YSELY.... V d.... Y d h....3 Ad v.... Ad äyö.... Lh.... Eöyy v... LIIEE (CD)...... yyyh v...

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN 1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

RATKAISUT: 14. Aaltoliike, heijastuminen ja taittuminen

RATKAISUT: 14. Aaltoliike, heijastuminen ja taittuminen Phya 9 pao (7) 4 Aaltolke, hejatue ja tattue : 4 Aaltolke, hejatue ja tattue 4 a) Aalloptuu o kahde lähä aaa aheea olea ärähteljä älatka b) Aaltolkkee peruyhtälö o = λ f, joa λ o aalloptuu, f o taajuu

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.

Lisätiedot

HERNESAARI OSAYLEISKAAVAEHDOTUS VESIHUOLLON YLEISSUUNNITELMA

HERNESAARI OSAYLEISKAAVAEHDOTUS VESIHUOLLON YLEISSUUNNITELMA HERNESAAR OSAYLESKAAAEHDOTUS ESHUOLLON YLESSUUNNTELMA KS/TEK SSÄLLYSLUETTELO Yä S- v p äöd d ävvä Hvvä K äää ää Nyy S Yä d ävvä Hvvä v v L: L y HELSNGN KAUUNK KAUUNKSUUNNTTELURASTO Y Td Yä y vää H yv-

Lisätiedot

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL Vallox 75 95.9.59F.5.9 yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,

Lisätiedot

Älä tee mitään merkintöjä kaavakokoelmaan!

Älä tee mitään merkintöjä kaavakokoelmaan! AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()

Lisätiedot

1. välikoe

1. välikoe Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q q

Lisätiedot

11. Takaisinkytketyt vahvistimet

11. Takaisinkytketyt vahvistimet Kar berg Kar berg. akankykey vahvme. ahvn yyppejä Jännevahvn Ohjaun läheen pääyyppejä Jänne hjau jännelähde ra hjau jännelähde Jänne hjau vralähde ra hjau vralähde v kun >> v kun >> ja >> njänne n en uraan

Lisätiedot

7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0

7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0 7.lk matematiikka 1 Janne Koponen verio 2.0 Tämä monite on tehty 7.lk. geometrian opetukeen ja olen käyttänyt itä ite Hatanpään koulua. Jo joku opettaja haluaa tätä kuitenkin käyttää omaa opetukeaan, on

Lisätiedot

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA INTERFERENSSIN VIUTUS LINERISESS MOULTIOSS Teolkenneeknkka I 521359 a äkkänen Osa 15 1 19 Inefeenssn vakuus lneaasessa odulaaossa Radoaausa nefeenssä RFI sn usa äeselsä, kun oa kanoaaloaauus on lähellä

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus. TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen

Lisätiedot

ää*r: rfrtlqäe'räs rr[; äsüä FäF r."f F'*üe ;=v* tr, $rr;gt :r1 älfese li ä; äepö* l4:e x1;'.äö l--g! li r: ; ;;*; ssü ntirs E,pä ;;qi?

ää*r: rfrtlqäe'räs rr[; äsüä FäF r.f F'*üe ;=v* tr, $rr;gt :r1 älfese li ä; äepö* l4:e x1;'.äö l--g! li r: ; ;;*; ssü ntirs E,pä ;;qi? j X \: c : 1:8" : Z : : ) ) c 1 T [ b[ ]4 ) < c 1 ü ]T G \\ e p > : [ : e L [? p 2 9 Z S: c? [:? " : e :: [ : >9 Y :[ p e ß < 1 9 1 \ c 4 > ) 1 :91$ :e h b 1 6 " ö:p:?e S9e R ü e $ :1 ee \ eö 4:e 1ö X

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Luonnos 1 (13) 17.6.2011 Sosiaali- ja terveystoimialan palvelustrategia (linjaukset) Yleistä

Luonnos 1 (13) 17.6.2011 Sosiaali- ja terveystoimialan palvelustrategia (linjaukset) Yleistä L 1 (13) - j rv pvrg (j) Yä Pvrg - j rv rg ä r pvrg. Pvrg j: 1. j v (= rppv pvj) 2. ä - j rvpv järjää 3. äärää pv p j j - j rvh v EU- ääöä j äääöä hj. Thj rää fr-hj p rhj. Nää vv r p h j r r. K -hää äääö

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe.3.0 ae ehävä eri paperille uin ehävä 3 5. Muia irjoiaa joaieen paperiin elväi nimi, opielijanumero, urin nimi ja oodi. Tehävä laeaan oreaoulun oepaperille. Muia papereia ei

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Nelisolmuinen levyelementti

Nelisolmuinen levyelementti Lv hm 6..3 Nliolminn lvlmntti arkatllaan kvan nliolmita lvlmnttiä. q 6 q 8 η 3 q 5 ( 3, 3 q 7 (, q (, v P q ξ (, q q 3 Pitn P koordinaatit voidaan laa mokoordinaattin ξ ja η avlla, jotka ovat normratt

Lisätiedot

Yhden vapausasteen värähtely - harjoitustehtäviä

Yhden vapausasteen värähtely - harjoitustehtäviä Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /

Lisätiedot

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle:

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle: . Saainen analyyi.. Buck-opoloia Käiellään enin buck-yyppiä hakkurieholähdeä (kuva 2.2a ja 3.). ää eimerkiä kuorma on puhaai reiiivinen (R), mua yleiei e on yöeävien laieiden ominaiuukia muodouva impedani.

Lisätiedot

MO-teoria ja symmetria

MO-teoria ja symmetria MO-teora ja symmetra () Kaks atomorbtaaa vovat muodostaa kaks moekyyorbtaaa - Stova orbtaa - ajottava orbtaa () Atomorbtaaen energoden otava keskenään samansuurusa () Atomorbtaaen symmetravaatmukset LCAO

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien

Lisätiedot

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1 KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,

Lisätiedot

Kirjainkiemurat - mallisivu (c)

Kirjainkiemurat - mallisivu (c) Aa Ii Uu Ss Aa Ii Uu Ss SII-LIN VII-LI-KUP-PI I-sot, pie-net kir-jai-met, sii-li neu-voo aak-ko-set. Roh-ke-as-ti mu-kaan vaan, kaik-ki kyl-lä op-pi-vat! Ss Har-joit-te-le kir-jai-mi-a li-sää vih-koo-si.

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Ei asemakaavaa. E3 Söörmarkun eritasoliittymä

Ei asemakaavaa. E3 Söörmarkun eritasoliittymä X= Värn slyks Suunnllu : Y = Tään suunnlan ukaan Y = raknnaa a parannaa X= Mudn suunnln ukaan raknnaa E asakaaaa Tdn hallnnllsssa järjslyssä apahdu uusa Y E Söörarkun raslyä Y Y M a s a Va Y P r R R Va

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018 Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {

Lisätiedot

Videokoulu PASSE LEI TA VI NKKE JÄ TA RIN A N K E RT OJ A L L E

Videokoulu PASSE LEI TA VI NKKE JÄ TA RIN A N K E RT OJ A L L E Vdeool PASSE LEI TA VI NKKE JÄ TA RIN A N K E RT OJ A L L E v 1.0 29.10.2015 Mely j ome m Te o e m m oll eem j m. M l ed j vdeo? Keelle vdeo oll eem? M vdeoll l d e? Mllo olemme vee pee, jollo vomme o

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Tekes: Korjausrakentamisen kehittäminen -teema TEEMAN TILANNEKUVA

Tekes: Korjausrakentamisen kehittäminen -teema TEEMAN TILANNEKUVA eke: Krurkee kehäe ee EEMN ILNNEKUV J Sre, kvr, V llce Prer Oy 20.11.2013 J Sre Älykä rkeeu elypärö: V Lkee Rkeuke Su edelläkävä älykkää re plvelu eklg, k udv u ue, yö vp kkuuk. eke edää käyäe, yrye ekä

Lisätiedot

MONIKAPPALEMEKANIIKAN MALLINTAMINEN PARAMETRISOIMALLA SIDOSMONISTO

MONIKAPPALEMEKANIIKAN MALLINTAMINEN PARAMETRISOIMALLA SIDOSMONISTO IIVISELMÄ MONIKAPPALEMEKANIIKAN MALLINAMINEN PARAMERISOIMALLA SIDOSMONISO J. MÄKINEN & H. MARJAMÄKI eknllen ekankan a optonnn lato apereen teknllnen ylopto PL 589 33101 AMPERE ää etykeä kuvataan lyhyet

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

MUODONMUUTOKSET. Lähtöotaksumat:

MUODONMUUTOKSET. Lähtöotaksumat: MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto

DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto DEE-53000 Sähkömageese järjeselme lämmösro Lueo 8 1 Sähkömageese järjeselme lämmösro Rso Mkkoe Dfferessmeeelmä Numeersa rakasua haeaa aluee dskreeesä psesä. Muodoseaa verkko ja eseää dervaaa erousosamäärä.

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q

Lisätiedot

Soorrea. OUTC'KUMPU Oy.' Malminetsintä. O. POhjamies/pAL ,4 1 (3) VLF -MI'ITAUS. Periaate. Lähetysase.mat

Soorrea. OUTC'KUMPU Oy.' Malminetsintä. O. POhjamies/pAL ,4 1 (3) VLF -MI'ITAUS. Periaate. Lähetysase.mat - OUTCKUMPU Oy Malmnesnä O POhames/pAL 94 (3) VLF -MTAUS Peraae Läheysasema VU (= Very M Frequency) -ruauks$sa käyeään apuna 5-0 khz aauusaueea omva asea Näden asemen anenrrl ova pysyä a nssä kulkeva vra

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2

VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2 / ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,

Lisätiedot

Voiman momentti. Momentin yksikkö on [M] = [F] [r] = 1 Nm (newtonmetri) Voiman F vaikutussuora

Voiman momentti. Momentin yksikkö on [M] = [F] [r] = 1 Nm (newtonmetri) Voiman F vaikutussuora Voa oett Moett o oa ja oa ae tulo Täsällse ääteltä oa F oett (aksel A suhtee) o M A = F, ssä o oa akutussuoa (kohtsuoa) etäss akselsta A Voa ae sjasta odaa kättää ös oa akutuspstee ja akselpstee lhtä etästtä,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja

Lisätiedot

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20 F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin

Lisätiedot

LAPUAN KAUPUNKI 8. LIUHTARIN KAUPUNGINOSA ASEMAKAAVAN KUMOAMINEN KUORTANEENTIE I

LAPUAN KAUPUNKI 8. LIUHTARIN KAUPUNGINOSA ASEMAKAAVAN KUMOAMINEN KUORTANEENTIE I . G ä y, ä y-, y-.., äydy.... äyö- ö.. yäyy g xx.xx. xx yäyy g xx.xx. xx - . - D.. d.. ääyä. ä y-, - y., ö ---, ---, ---, --- (ä) - --... - g - -. y - y d ä. - -,. - .., Ä, yydä g d ää :., ä äy äää ä-.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi 6/ VÄRÄHTEYMEKANKKA SESS 6: Evvle sysee JHDANT Use äyä pplee uodos sysee vod orv yhde vpussee evvlell llll os se pplede se/ul-se vod lusu s oord vull. Tällö sysee geoers vod uodos yheyde se e pplede leloe

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV. Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut

TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

2.4 Erikoistapaus kantalukuna 10 eli kymmenen potenssit

2.4 Erikoistapaus kantalukuna 10 eli kymmenen potenssit 2.4 Kyenen potenit 2.4 Erikoitapau kantaukuna ei kyenen potenit Potenin kantaukuna käytetään kyentä erityieti, kun uku on erittäin uuri tai erittäin pieni. Tää auttaa näitten ääritapauten hahottaiea. Tarkateaan

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R

Lisätiedot

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa

Lisätiedot

Osakeoptioiden markkinahinnoittelu, volatiliteetti ja kohde-etuuden hintadynamiikka

Osakeoptioiden markkinahinnoittelu, volatiliteetti ja kohde-etuuden hintadynamiikka Oaeopode marahoelu volalee a ohde-euude hadyama Kaaalouede Pro-radu Kaaaloueee lao Tamperee ylopo 8 Teemu Krau TIIVISTELMÄ Tamperee ylopo Teä: Tuelma m: Taloueede lao; aaalouede KRAUS TEEMU Oaeopode marahoelu

Lisätiedot