KOHINAN JA VAIHEVIRHEEN VAIKUTUS VAIHEKOHERENTEILLA JÄRJESTELMILLÄ
|
|
- Martti Hiltunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 KOHINAN JA VAIHVIRHN VAIKUTUS VAIHKOHRNTILLA JÄRJSTLMILLÄ Mie vaihee epävaruu vaikuaa kohereia ilaiua? Mikä o piloiigaali? 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
2 VAIHVIRHN YLINN ANALYYSI QSB Kohia eää vaihekoherei ilaiukaoaallo vaihee arka eioii vaihelukolla vaiheea variaia. QSB-vaaaoiella aadaa uloke ekä SB:lle { 0} eä SSB:lle { ±H[]}. Vaihevirhe ollakekiarvoie Gaui proei variailla. Suoriukykyiaa kekieliövirhe. Jäeää aikauuuja poi. Kevä A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie { } 0 i o i o y B N x T r
3 VAIHVIRHN YLINN ANALYYSI QSB S Viieie oikeapuoleie eri o kaava SNR: kääeiarvo. Kevä A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie [ ] [ ] { } { } { } { } { } { } { } { } { } { } 0 o o i o o i o i o i o i o i o i o i o QSB QSB Q T B N y y e << L L
4 VAIHVIRHN YLINN ANALYYSI QSB S dellie kaava o voiaa yö SSB:lle. o eri SSB:lle kui QSB:lle kaialeveyeroa W W johue. SB:lle 0 ja. Kekieliövirhe o aa kaikille apaukille ku 0. eroigaali AWGN kohia. Vaihevirhee vaikuu o pieepi SB:lle kui QSB:lle ja SSB:lle aalla vaihevirhee variai arvolla illä << ku <<. Kevä A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie { } { } { } o o o SB SB
5 VAIHVIRHN YLINN ANALYYSI QSB S 5 QSB SSB SB Liälukeioa vaihekohiaa: hp:// hp:// 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
6 SIMRKKI 6 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
7 PILOTTISIGNAALIJÄRJSTLMÄ 7 Vaihevirhee yyvä koka vaihee eioiia käyeää läheeä kaavaa kulkeua vääriyyä kohiaia igaalia. Ilaiukaoaalo voidaa PLL: ijaa oeuaa piloiigaalilla. Piloiigaalia käyeää oikaavaiia järjeeliä. 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
8 KOHINAN JA VAIHVIRHN VAIKUTUS VAIHKOHRNTILLA JÄRJSTLMILLÄ Mie vaihee epävaruu vaikuaa kohereia ilaiua? Mikä o piloiigaali? 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
9 VAIHVIRHN YLINN ANALYYSI QSB Kohia eää vaihekoherei ilaiukaoaallo vaihee arka eioii vaihelukolla vaiheea variaia. QSB-vaaaoiella aadaa uloke ekä SB:lle { 0} eä SSB:lle { ±H[]}. Vaihevirhe ollakekiarvoie Gaui proei variailla. Suoriukykyiaa kekieliövirhe. Jäeää aikauuuja poi. Kevä A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie { } 0 i o i o y B N x T r
10 VAIHVIRHN YLINN ANALYYSI QSB S Viieie oikeapuoleie eri o kaava SNR: kääeiarvo. Kevä A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie [ ] [ ] { } { } { } { } { } { } { } { } { } { } 0 o o i o o i o i o i o i o i o i o i o QSB QSB Q T B N y y e << L L
11 VAIHVIRHN YLINN ANALYYSI QSB S dellie kaava o voiaa yö SSB:lle. o eri SSB:lle kui QSB:lle kaialeveyeroa W W johue. SB:lle 0 ja. Kekieliövirhe o aa kaikille apaukille ku 0. eroigaali AWGN kohia. Vaihevirhee vaikuu o pieepi SB:lle kui QSB:lle ja SSB:lle aalla vaihevirhee variai arvolla illä << ku <<. Kevä A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie { } { } { } o o o SB SB
12 VAIHVIRHN YLINN ANALYYSI QSB S 5 QSB SSB SB Liälukeioa vaihekohiaa: hp:// hp:// 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
13 SIMRKKI 6 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
14 PILOTTISIGNAALIJÄRJSTLMÄ 7 Vaihevirhee yyvä koka vaihee eioiia käyeää läheeä kaavaa kulkeua vääriyyä kohiaia igaalia. Ilaiukaoaalo voidaa PLL: ijaa oeuaa piloiigaalilla. Piloiigaalia käyeää oikaavaiia järjeeliä. 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05
Telecommunication engineering I A Exercise 3
Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,
LisätiedotLUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN
LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä
LisätiedotPUUT T E H TÄV. käyttää hyödyksi.
PUU / j j l Y / E H ÄÄ l l l l r r Ä E H Ä l l j l j H rl r j K PUU j r r j r IE OA P P r j r l J rj r P r l j r l l j l r r j r j r P P l r j r l j P j Ml r j rg j r r l M A R JA r l l O E H ÄÄ l / l
LisätiedotBINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
LisätiedotMat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
LisätiedotKULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN
LisätiedotLUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 2015
1 LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS 51357A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 015 Kantatajuisen järjestelmän lähdön (SNR) D = P T /(N 0 W) käytetään referenssinä verrattaessa eri kantoaaltomodulaatioita
LisätiedotLUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015
1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie
LisätiedotYKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin
LisätiedotLUKU 6 TÄRKEIMPIEN ASIOIDEN KERTAUS
LUKU 6 TÄRKEIMPIEN ASIOIDEN KERTAUS 1 (8) Kantatajuisen järjestelmän lähdön (SNR) D = P T /N 0 W käytetään referenssinä verrattaessa eri kantoaaltomodulaatioita keskenään. Analyysissä oletettiin AWGN-kanava,
LisätiedotTilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)
Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,
LisätiedotYKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
LisätiedotBH60A0900 Ympäristömittaukset
BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie
Lisätiedot4.3 Liikemäärän säilyminen
Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.
LisätiedotMat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
Lisätiedot12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
LisätiedotTL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut
TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime
LisätiedotFlippauksen arvioinnista
Flippauksen arvioinnista Voidaanko arvioinnilla vaiku-aa oppimiseen? PedaForum 2017, 16.-17.8.2017 Lasse Heikkinen, Erkki Pesonen Flippauksen arvioinnista / Lasse Heikkinen, Erkki Pesonen 16.-17.8.2017
LisätiedotKUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
Lisätiedot12. laskuharjoituskierros, vko 16, ratkaisut
1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä
LisätiedotTIETOLIIKENNETEKNIIKKA I A
TIETOLIIKENNETEKNIIKKA I 521359A KURSSI ANALOGISEN TIEDONSIIRRON PERUSTEISTA Dos. Kari Kärkkäinen Tietoliikennelaboratorio, huone TS439, 4. krs. kk@ee.oulu.fi, http://www.telecomlab.oulu.fi/~kk/ puh: 08
LisätiedotKULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
LisätiedotKOE 2 Ympäristöekonomia
Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO
LisätiedotRATKAISUT: 8. Momentti ja tasapaino
Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset
SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn
LisätiedotKAAVOITUSKATSAUS VALMISTUMASSA OLEVAT KAAVAT 3 VIREILLÄ OLEVAT KAAVAT 6 UUDET KAAVAHANKKEET, EI KAAVOITUSPÄÄTÖSTÄ 18 MAAKUNTAKAAVOITUS 18
OIUU LIU OLE IEILLÄ OLE ä - ä, ä d UUDE HNEE, EI OIUÄÄÖÄ UNOIU OLLIUINEN LIIEE:,,, - d: / O: O, ONLINN d:, Fx: - äö: ()f :wwwf / / Höö, ääö B ä, - H, äö, H, N E,,, OIUU ää ä ä ää d ä ää ä, dää g äö- :
LisätiedotFCG Planeko Oy HELSINGIN KAUPUNKI MUNKKINIEMEN KÄYTTÄJÄKYSELY. Yhteenveto ja johtopäätökset 0100-D1194
FCG P Oy HELSINGIN AUPUNI UNINIEEN ÄYÄJÄYSELY Yhv hääö -D9..9 FCG P Oy Yhv hääö () SISÄLLYSLUEELO YLEISÄ... YSELY.... V d.... Y d h....3 Ad v.... Ad äyö.... Lh.... Eöyy v... LIIEE (CD)...... yyyh v...
Lisätiedota) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?
L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä
Lisätiedotb) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.
nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen
LisätiedotKestävä tuotanto ja tuotteet. Suomen Akatemian tutkimusohjelma kestävä tuotanto ja tuotteet KETJU 2006 2010
Ketävä tuotanto ja tuotteet Suomen Akatemian tutkimuohjelma ketävä tuotanto ja tuotteet KETJU 2006 2010 Ketävä tuotanto ja tuotteet (KETJU) 2006 2010 KETJU lyhyeti Tuotanto ja tuotteet vaikuttavat ympäritöön
LisätiedotSOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA
0..0 () SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA Soiaalipäivytyke kehittämiellä o maakaamme eide voie jatkmo. Alkyäyke ille atoi vode valtioevoto periaatepäätö, joa aetettii tavoitteeki
LisätiedotLuku 16 Markkinatasapaino
68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien
Lisätiedotsttttttttttts3ssts3tt
ttttttt sttttttttttts3ssts3tt 1 18 ssssssssssssss saaa 7777777777777777777777 000 )7))) 2 12 eeeesseaes AsA 757777777)7775777)7775 088 )77)) 3 19 AsososeosssseooA saaa 77777)7775777777777775 080 )75))
LisätiedotINTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA
1 INTERFERENSSIN VIKUTUS LINERISISS MOULTIOISS Men yksaajunen häökanoaalo haaa lasua? 521357 Teolkenneeknkka I Osa 18 Ka Käkkänen Kevä 2015 KERTUST 2 Kanoaaloodulaaolle: os[2πf φ] Lneaanen odulaao Vahee
LisätiedotOPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2
OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9
Lisätiedotr u u R Poistetut tehtavat, kunjännitestabiiliusja jännitteensäätö yhdistettiin:
oittut thtavat, kuäittaiiliua äittäätö yhitttii: Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. iirrä oho a
LisätiedotOSALLISTUMIS- JA ARVIOINTISUUNNITELMA. Hakanpään asemakaavan muutos, kortteli 360. Liite Suunnittelualue
OSLLSTUMS- J RVONTSUUNNTLM Liie Hakanpään aemakaan muuo, korei 0. Suunnieuaue Tämä oaiumi- a ioiniuunniema kokee Uian kaupungin Nummean kaupunginoaa () iaien Hakanpään aemakaan koreia 0. Hakanpään.. hieua
LisätiedotNAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.10.06
NAANTALI KARJALUOTO - PIRTTILUOTO ASEMAKAAVALUONNOS 3.0.06 Siniellä värillä on eitetty rakennuala/rakennualan oa, joka ijaitee kahden metrin korkeukäyrän alapuolella. Silta Epoon Suviaaritoa. Yleitä Aemakaavaonnoken
LisätiedotHY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.4 Tilatollie aali peruteet, kevät 7 6. lueto: Johdatu regreioaalii Regreioaali idea Tavoitteea elittää elitettävä tekiä/muuttua havaittue arvoe vaihtelu elittävie tekiöide/muuttuie havaittue arvoe
LisätiedotRATKAISUT: 3. Voimakuvio ja liikeyhtälö
Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy
LisätiedotMP069 alueen sähköteknisten reunaehtojen laskeminen.
M069 alueen ähkötekniten reunaehtojen lakeinen. Kekiteho tälle alueelle aatiin kun otettiin Tornion irkkiötä ataaa oakotitalo alue ja niiden talojen kulututen peruteella äärättiin kullekin tontille kulutupite
LisätiedotLUKU 8 BINÄÄRISET TIEDONSIIRTOMENETELMÄT A Tietoliikennetekniikka II Osa 2 Kari Kärkkäinen Syksy 2015
1 LUKU 8 BINÄÄRISET TIEDONSIIRTOMENETELMÄT 521361A Tieoliikeeekiikka II Osa 2 Kari Kärkkäie BINÄÄRISET TIEDONSIIRTOMENETELMÄT SISÄLTÖ 2 Digiaalise siirojärjeselmie perusosa ja luokielu Kaaaajuie iedosiiro
Lisätiedot12. Luento. Modulaatio
Analoginen modulaaio Digiaalinen modulaaio. Lueno..7 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri kanoaallon aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,
LisätiedotÄänen nopeus pitkässä tangossa
IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu
LisätiedotKojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
Lisätiedot1. Asiakaslähtöisyys
. Aiklähtöiyy,,,,,,,,,,,, Vtute k.. Vtuki yht. kpl. - - vtuki - vtuki - - vtuki Plvelut vtv t ikki de trpeit Toimi huomioi d ikk etu Aikk toiveet otet huomioo Kotiplv elut kotiir hoido mie vikutu ikk m
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3
Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotLIITE 1 Jaksoarviointi, Syntymäpäivätaivas Opettaja
LIITE 1 Jaksoarviointi, Syntymäpäivätaivas Opettaja SYNTYMÄPÄIVÄTAIVAS (aapinen s. 114 125): JAKSOARVIOINTI, opettajan ohjeet Jaksoarvioinnin kolme ensimmäistä tehtävää ovat sanelutehtäviä ja ne tehdään
LisätiedotRatkaisu: z TH = j0,2 pu. u TH. Thevenin jännite u TH on 1,0 pu ja sen impedanssi z = j0,2 pu.
L89 Jäittaiiliu. Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. Piirrä i oho a äitläht Thvii kvivaltti. Aa
LisätiedotSÄRKÄNNIEMEN ASEMAKAAVA Viitesuunnitelmaluonnos ARKKITEHDIT MY
SÄRKÄNNIEMEN ASEMAKAAA iiteuuitelmaluoo 15.11.218 ARKKITEHDIT MY ASUINKORTTELI Auot 95 kem² Opikelija-a. 715 kem² Liikela 1 kem² Laitopyäköi 1kr.1 ap ONKINIEMEN TRIKOOTEHDAS JA ASUINKORTTELI eruparaettavaa
Lisätiedot10 Suoran vektorimuotoinen yhtälö
10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen
LisätiedotOppijan verkkopalvelukokonaisuus. Mika Tammilehto 11.5.2010
Oijan verkkoaveukokonaisuus Mika Tammieho 11.5.2010 SADe-ohjema SADe-ohjeman (2009-2014) ehävä Sähköisen asioinnin vaakunnaisesi oeueavien aveukokonaisuuksien, niiden ieojärjesemäarkkiehuurien ja aveujärjesemien
Lisätiedot521357A TIETOLIIKENNETEKNIIKKA I
1 521357A TIETOLIIKENNETEKNIIKKA I KURSSI ANALOGISEN TIEDONSIIRRON PERUSTEISTA KARI KÄRKKÄINEN Tietoliikennetekniikan osasto, huone TS439 kk@ee.oulu.fi, puh: 029 448 2848, http://www.ee.oulu.fi/~kk/ https://noppa.oulu.fi/noppa/kurssi/521357a/etusivu
LisätiedotTekniset tiedot. Kontaktorit ja moottorinkäynnistimet CI-TI TM Suojakytkimet CTI 25M - 100 520B1345
Tekniset tiedot Kontaktorit ja moottorinkäynnistimet CI-TI TM Suojakytkimet CTI 25M - 100 Lokakuu 2002 DKACT.PD.C00.F2.20 520B1345 2 DKACT.PD.C00.F2.20 Danfoss A/S 10-2002 Johdanto Oikosuluilta ja ylikuormitukselta
LisätiedotX 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k
Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
LisätiedotPhysica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä
Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän
LisätiedotMarina Kostik. Joulu. Naiskuorolle
32 758 Marina Kostik Joulu Naiskuorolle 2017 Copyright by the Composer All Rights Reserved No part of this publication may be copied or reproduced in any form or by any means without the prior permission
LisätiedotPOIKKIPINNAN GEOMETRISET SUUREET
1.10.018 POIKKIPINNAN GEOMETRISET SUUREET KOORDINAATISTON VALINTA: x akseli sauvan tai palkin akselin suuntainen akseli alaspäin akseli siten, että muodostuu oikeakätinen koordinaatisto Pintamomentti (pinnan
LisätiedotDIGITAALISET PULSSIMODULAATIOT M JA PCM A Tietoliikennetekniikka I Osa 21 Kari Kärkkäinen Kevät 2015
1 DIGITAALISET PULSSIMODULAATIOT M JA PCM 521357A Tietoliikennetekniikka I Oa 21 Kari Kärkkäinen DELTAMODULAATIO M 2 M koodaa näytteen ± polariteetin omaavaki binääripuliki. Idea perutuu ignaalin m(t muutoken
LisätiedotPTTKÄ 0058 Y-TUNNUS:0931104-0 VIRALL]NEN 01.01.2012- % -t7i4,00. -2t43,36. -L7r4,50 4OU ]ÄSENI4AKSUT -90,00 4015 PALKAT JA KM.KORVAUS 4022 PR- KULUT
POHJO]5_ ESPOON TULOSLASKEL[4A PONSI RY PTTKÄ 0058 Y-TUNNUS:0931104-0 VIRALL]NEN 01.01.2012- % 3L.12.2012 01.01. 2011- % 3L. 12.2011 VARSINAINEN TOII4INTA 3011 TOII4INTAMAKSU OLDBOYS 3012 TOIMINTAI4AKSU
Lisätiedotäiäää?l älägcläälii äisrä lää äää
E m vf z ln7 r vr ll n U d \r .Tl vr r E0.Tl : N. ' 6 J n n 5 EF g m : ' ".E q ' v { m i. 'n 9. E!. G r'.n ff ge re E'l n,. q (f,,r L : n 6 :. G N. +.:, lrf s 'T ^ x vr L : @ : L 5 T g G H liäiiiiii$ä1läl
LisätiedotOppikirjat lukuvuonna 2015 2016
Oulun Suomalaisen Yhteiskoulun lukio Maunonkatu 1 90100 Oulu Huom! Voit hankkia painetun oppikirjan tai vastaavan digikirjan Jos valitset kursseja muista lukioista, tarkista ko. kurssien oppikirjat sieltä.
LisätiedotLUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA
LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että
LisätiedotDerivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan
87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen
LisätiedotRekisteriseloste. 1. Rekisterinpitäjä. 3. Rekisterin nimi
Rekisteriseloste 1. Rekisterinpitäjä N im i: Res p o ndeo Oy Y -t u nnus : 2 6 2 2 6 8 4-1 O s oit e: Ität u ulenkuja 11, 02100 E s p oo 2. Yhteyshenkilö rekisteriä koskevissa asioissa E lisa Tiilimäki
LisätiedotKOHINA KULMAMODULAATIOISSA
OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.
Lisätiedothttp://www.angelniemenankkuri.com/index.php?page=ilu/nuoret/ajankohtaista&select=3&head=nuori%20...
Sivu 1/28 " #%% ((%% ( * +, " -. / " - ("*0 "# % "# (( # # ( ( * # +,,-. /0,-,,2 3 #4 3 % % 5 5 * 4 % 3 6 4 4 44( ( % #"" #"#"# + 7. 4 %%2%%3 % 4 9#:200; 1 5242%% 1,1200/,/,/ (43%% 1 ("*01,01200/,202200/
LisätiedotKANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA
KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja
Lisätiedott P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
LisätiedotUuden laatuaja+elun vastaano+o amma0korkeakouluisa ja yliopistoissa
Uuden laatuaja+elun vastaano+o amma0korkeakouluisa ja yliopistoissa Timo Ala- Vähälä Koulutuksen tutkimuslaitos, JY Yhteistyötä laadun vuoksi Mikkelin amma0korkeakoulu 9.12.2010 Kysymyksen ase+elu Mitä
LisätiedotOppikirjat lukuvuonna
Oppikirjat lukuvuonna 2018 2019 Voit hankkia painetun oppikirjan tai vastaavan digikirjan. Jos hankit kirjoja käytettyinä, tarkista, että tehtäväsivuja ei ole tehty valmiiksi! Jos valitset kursseja muista
LisätiedotSAVONLINNAN KAUPUNKI KAAVOITUSKATSAUS 2018
ONLINNN UUNI OIUU g OIUU LIU OLE IEILLÄ OLE ä ä, ä d UUDE HNEE, EI OIUÄÄÖÄ UNOIU OLLIUINEN LIIEE:,,, d: / O: O, ONLINN d:, Fx: äö: ()f : wwwf / / Höö, ääö B ä, H, äö, H, N E,,, OIUU ää ä ä ää d ä ää ä,
LisätiedotRadiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut
Radiokurssi Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Modulaatiot CW/OOK Continous Wave AM Amplitude Modulation FM Frequency Modulation SSB Single Side Band PM Phase Modulation ASK
LisätiedotVerkoston ulkoisvaikutukset
Verkosto ulkoisvaikutukset Varia luku 35 Luettavaa Varia (2006, 7. paios, luku 35, s.658 655) Forget produtivity: more people should joi Faebook saatavilla http://www.ab.et.au/ews/stories/2008/1 1/27/2431283.htm
LisätiedotANALOGISET PULSSIMODULAATIOT PAM, PWM JA PPM
1 ANALOGISET PULSSIMODULAATIOT PAM, PWM JA PPM Millä eri tavoilla ignaalinäyteet voidaan eittää & koodata? PULSSIMODULAATIOMENETELMIEN LUOKITTELU Modulaatioenetelät Analogiet Digitaaliet Kantoaaltoodulaatiot
LisätiedotKielet ja kirjoitusjärjestelmät
26. tammikuuta 2012 http://harjumaki.fi/verse 19.1. 3.5.2012, to 16 18, Päärakennus ls 15 Tutustutaan seemiläisiin kieliin maantieteellisesti ja ajallisesti ryhmiteltyinä maantieteellisesti: kielen oletettu
LisätiedotJarmo Kuusela PL 467 65101 VAASA 20.10.2009 MAAPERÄTUTKIMUS LAKEUDEN ANKKURI, SEINÄJOKI
YT Rkes Oy Jrmo Ksel P 6 MAAPERÄTUTKMUS 6 VAASA MAAPERÄTUTKMUS AKEUDEN ANKKUR, SENÄJOK Ylesä YT Rkes Oy: (Jrmo Ksel) omeksos o KS-Geokosl sor ohjkmkse es mlle kede Akkrll Seäjoell Aleell eh okrks seessä,
LisätiedotOSYKin oppikirjat lukuvuonna
OSYKin oppikirjat lukuvuonna 2019 2020 Voit hankkia painetun oppikirjan tai vastaavan digikirjan. Jos hankit kirjoja käytettyinä, tarkista, että tehtäväsivuja ei ole tehty valmiiksi! Jos valitset kursseja
Lisätiedota. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
Lisätiedot1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,
LisätiedotTehtävä 1. Vaihtoehtotehtävät.
Kem-9.7 Proeiautomaation peruteet Perutehtävät Tentti 9.. Tehtävä. Vaihtoehtotehtävät. Oikea vatau,p, väärä vatau -,p ja ei vatauta p Makimi,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN
LisätiedotJATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI
1 JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI Miten tiedonsiirrossa tarvittavat perusresurssit (teho & kaista) riippuvat toisistaan? SHANNONIN 2. TEOREEMA = KANAVAKOODAUS 2 Shannonin 2. teoreema
LisätiedotSUOMEN SALIBANDYLIITTO r.y turnaus,kierrokset 1-2 Erotuomariasettelija Tero Merenheimo
1.turnaus,kierrokset 1-2 Erotuomariasettelija Tero Merenheimo 19.11.2016 09:00 PC2-A ES Oilers Sininen Indians Esport Areena 4 Espoo Oilers Sininen 19.11.2016 10:00 PC2-A ES SB Vantaa Black Panthers Esport
LisätiedotViikkotehtävät IV, ratkaisut
Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää
LisätiedotValinnat Kouvolan Yhteislyseo
Valinnat 15 WILMASSA 1.5.2017 KLO 08:00-7.5.2017 klo 20:00 Tarjotin 1718 Kurssitarjotin https://peda.net/kl/ky/lukuvuosi-1718 Kurssien sisällöt näet parhaiten Wilmasta, mutta myös täältä: https://peda.net/kl/ky/opetussuunnitelmat
LisätiedotSuodatus ja näytteistys, kertaus
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;
LisätiedotTASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
LisätiedotLuento 6 Luotettavuus ja vikaantumisprosessit
Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,
Lisätiedot6.1 LTY Juha Pyrhönen
6.1 LTY Juha Pyhönen 6. PYÖRIVÄN KONEEN PÄÄMITAT Edelliiä luvuia olee takatelleet koneenuunnittelun kannalta täkeitä teoeettiia kyyykiä. Sähköagnetiin täkeiden lainalaiuukien takatelu tehtiin kaaleea 1.
LisätiedotMULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 22 1 (16)
MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM Tietoliikennetekniikka I 521357A Kari Kärkkäinen Osa 22 1 (16) Multipleksointimenetelmät Usein on tarve yhdistää eri lähteistä tulevia toisistaan riippumattomia
Lisätiedot1 x 2 1 x 2 C 1 D. 1 x 2 C 1. x 2 C 1 C x2 D x 2 C 1; x 0: x 2 C 1 C 1. x 2 x 4 C 1 ja. x 4 C 1 D.x4 1/.x 4 C 1/
Matematiikan ja tilatotieteen valintakoetehtävien 9 ratkaiut Sivu. a). / 6,
LisätiedotHERNESAARI OSAYLEISKAAVAEHDOTUS VESIHUOLLON YLEISSUUNNITELMA
HERNESAAR OSAYLESKAAAEHDOTUS ESHUOLLON YLESSUUNNTELMA KS/TEK SSÄLLYSLUETTELO Yä S- v p äöd d ävvä Hvvä K äää ää Nyy S Yä d ävvä Hvvä v v L: L y HELSNGN KAUUNK KAUUNKSUUNNTTELURASTO Y Td Yä y vää H yv-
LisätiedotOPPIKIRJAT xls - Taul klo
YLITORNION YHTEISKOULUN LUKIO OPPIKIRJAT 2017-2018 KURSSI KIRJAN NIMI KUSTANTAJA ISBN BIOLOGIA 1. vuoden kurssi BI1 uusi OPS BIOS 1: Elämä ja evoluuutio SanomaPro lainakirja BI2 uusi OPS BIOS2: Ekologia
LisätiedotRak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007
Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan
Lisätiedot6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia
6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön
LisätiedotELEC-C4120 Piirianalyysi II 2. välikoe
LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2
Lisätiedotää!ääää ääälrirtiiti
v giiäiääiääi EiääliI ä äilliiääi;fiiääiiäiilii lääiieffi iääi!:;ääti ää!ääää ääälrirtiiti v A oo 5: t.l \J o "-! a ) i < \ J O 11 F z tiie;t; E!.ääEäE ii ze }E ieee:::eee etiä!ä! äerie;icfe giä:lä :iffiti
LisätiedotAnalyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
Lisätiedot